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Clearly an oxymoron, because every theorist expects 
different TeV-scale new physics 
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motivated by precision unification of couplings
not motivated, but why not
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not motivated, but why not
based on her/his personal taste(s) or prejudice(s)

Experiments should try to falsify theories - especially 
true for indirect (as opposed to production) probes! 

Imagine to kill supersymmetry, extra dimensions & 
technicolor at once by signal defying expectations

Theoretical Expectations
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concrete model of new 
physics 
predict observables & 
correlations directly
are smoking gun 
signals possible?

Top-down approach:

discussed only sporadically

what data can be 
obtained? 
how is it parametrized 
efficiently? 
what can be learned 
about model classes? 

Bottom-up approach:

main theme of this talk 



Bottom-Up Approach
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Fix minimal set of assumptions:

new physics enters at MNP = O(1 TeV), allowing for 
systematic expansion in powers of MW/MNP << 1
standard model (SM) is weakly coupled to new 
sector (technical assumption could be relaxed)

Assumptions satisfied in many SM extensions

[see S. Jäger, talk at NA62 Physics Handbook Workshop]
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Use effective SU(2)L×U(1)Y invariant Lagrangian

Similar to weak Hamiltonian with simple matching   
between two, but fewer operators per coefficient

Leff =
�

i

CiQi

Fix minimal set of assumptions:

new physics enters at MNP = O(1 TeV), allowing for 
systematic expansion in powers of MW/MNP << 1
standard model (SM) is weakly coupled to new 
sector (technical assumption could be relaxed)

Assumptions satisfied in many SM extensions

[see S. Jäger, talk at NA62 Physics Handbook Workshop]
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Effective framework takes care of assumptions, but no 
further prejudice

[see S. Jäger, talk at NA62 Physics Handbook Workshop]



Bottom-Up Approach Cont’d
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Effective framework takes care of assumptions, but no 
further prejudice

In setup can now ask & answer important questions: 

to what degree are K → πνν channels linked to other 
kaon modes, such as KL → π0l+l-, ΔMK, εK & εʹ′/ε?
in particular, do these constraints rule out large 
effects in neutrino modes? 
can one design models that break correlations &       
if so, does this lead to other observable signatures?
...

[see S. Jäger, talk at NA62 Physics Handbook Workshop]
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6 operators, 6 observables 

[see S. Jäger, talk at NA62 Physics Handbook Workshop]



Z-Penguin Operators

6

Three operators involving Higgs field affect largest 
number of observables, so let’s focus on them  

After electroweak symmetry breaking, one has  

d̄LγµsLZ
µ + ūLγµcLZ

µ + . . .

which is left-handed (LH) Z-penguin well-known from 
MSSM, Randall-Sundrum (RS) models, ...

Z

MSSM

dL sL

ũL ũLt̃R

Z

χ̃±

(D̄LγµSL)(φ
†Dµφ)
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Three operators involving Higgs field affect largest 
number of observables, so let’s focus on them  

After electroweak symmetry breaking, one has  

d̄LγµsLZ
µ + ūLγµcLZ

µ + . . .

which is left-handed (LH) Z-penguin well-known from 
MSSM, Randall-Sundrum (RS) models, ...

Z

RS
Z

dL

sL

Q

(D̄LγµSL)(φ
†Dµφ)



Z-Penguin Operators Cont’d
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Similarly, there is right-handed (RH) Z-penguin

which has no counterpart in SM

(d̄RγµsR)(φ
†Dµφ) d̄RγµsRZ

µ + . . .



Z-Penguin Operators Cont’d
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Parametrize flavor-changing Z-boson vertices by 

where Vij are Cabibbo-Kobayashi-Maskawa (CKM) 
elements & CSM ≈ 0.8 is value of Inami-Lim function 
characterizing LH Z-penguin in SM

(V ∗
tsVtd CSM + CNP) d̄LγµsLZ

µ + �CNP d̄RγµsRZ
µ

Similarly, there is right-handed (RH) Z-penguin

which has no counterpart in SM

(d̄RγµsR)(φ
†Dµφ) d̄RγµsRZ

µ + . . .



X =
λt

λ5
Xt +

Reλc

λ
Pc,u +

1

λ5

�
CNP + �CNP

�

Anatomy of Neutrino Modes

8

Br(KL → π0νν̄) ∝ (ImX)2

Br(K+ → π+νν̄(γ)) ∝ |X|2

After summation over neutrino flavors, branching 
ratios of K → πνν channels can be written as 

λi = V ∗
isVid , λ ≈ 0.23 , Xt ≈ 1.5 , Pc,u ≈ 0.4



9

Z-Penguins in Neutrino Modes
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same results obtained 
for RH Z-penguin 

|CNP| ≤ 2 |λtCSM|

|CNP| ≤ |λtCSM|
|CNP| ≤ 0.5|λtCSM|

CNP = |CNP| eiφC

SM

SM

[see S. Jäger, talk at NA62 Physics Handbook Workshop]
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|CNP| ≤ 2 |λtCSM|

|CNP| ≤ |λtCSM|
|CNP| ≤ 0.5|λtCSM|

CNP ∝ λtCSM

MFV

in minimal-flavor 
violating (MFV) 
models deviations   
very constraint

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

LH

SM



“Natural SUSY”

g̃

H̃

t̃L t̃R

b̃L

W̃

B̃

b̃R

L̃i, ẽilight states

decoupled states

Q̃i q̃i

1TeV

0.2TeV

� 1TeV

To avoid destabilizing weak scale only higgsinos (H), stops 
(tL, tR), LH sbottom (bL) & gluino (g) need to be TeVish 

～

～ ～ ～～

[see for example Brust et al. 1110.6670; Papucci, Ruderman & Weiler, 1110.6926]

10



“Natural SUSY”
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Due to hierarchy |M2| >> |µ|, stop-chargino effects in 
LH Z-penguin below 10% level. Predictions for rare 
kaon decays (as well as Bs → µ+µ- & B → K∗l+l-)
essentially unaltered in MFV MSSM

Light stops & charginos lead to specific pattern of 
deviations in flavor observables: 

∆C

CSM
≈ m2

tA
2
t

12s2βm
4
t̃1

Z

χ
t̃

χ

s

d



QV = (d̄γµs)(l̄γ
µl) QS = (d̄s)(l̄l)

QP = (d̄s)(l̄γ5l)

s d

Z γ A,H

Anatomy of Leptonic Modes

11

KL → π0l+l- modes receive contributions from (axial-)
vector (A, V), (pseudo-)scalar (P, S), ... operators:

s d s d

QA = (d̄γµs)(l̄γ
µγ5l)



CS,P ∝ msml

Anatomy of Leptonic Modes Cont’d

12

In many explicit SM extensions such as RS scenarios, 
little Higgs models, scenarios with extra chiral/vector-
like matter, ..., contribution from QA dominates over 
those of QV, QS & QP:  

CA ∝ − 1

s2w

�
CNP − C̃NP

�
≈ −4.4

�
CNP − C̃NP

�

CV ∝
�

1

s2w
− 4

��
CNP + C̃NP

�
≈ 0.4

�
CNP + C̃NP

�



LH Z-penguin

13

Correlations of Leptonic Modes

SM

in scenarios with QA 

dominance, deviations 
in KL → π0l+l- channels 
strongly correlated 
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[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]



V,A only

SM rescaled
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Correlations of Leptonic Modes

-1 0
1, SM

2

3

-2

-3

-4

-5

presence of photon 
penguin can break QA 

dominance & opens up 
parameter space  

LH Z-penguin

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]



S, P also

1, SM
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Correlations of Leptonic Modes

all
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ed
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y 
KL

 →
 µ

+ µ
-

rare semileptonic kaon 
channels also allow to 
disentangle S, P from 
V, A contributions

V,A only

SM rescaled

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]



Qsd
LL = (s̄LγµdL)(s̄Lγ

µdL) t

W±

W±

Anatomy of  εK 

14

Most severe constraints on flavor structure in many 
non-MFV models due to CP violation in kaon sector: 

Qsd
LR = (s̄RdL)(s̄LdR)

RS

SM

h

dL

sR dR

sL

dL

dL

sL

sL

t

�K ∝ Im
�
Csd

LL + 115Csd
LR

�
∼



εK & Rare K Decay Link

15

SM extensions fall into two classes, those with pure 
LH structure & those with both LH & RH currents:

sL

dL

dL

sL

sL

dL sR

dR

[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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SM extensions fall into two classes, those with pure 
LH structure & those with both LH & RH currents:

sL

dL

dL

sL νL

νL

while in LH case, εK 
restricts phase in s → d 
transition, connection 
between ΔS = 2,1 lost, if 
RH interactions present    

sL

dL

sL

dL sR

dR

[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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εK & Rare K Decay Link Cont’d

16

|CNP| ≤ 2 |λtCSM|

|CNP| ≤ |λtCSM|
|CNP| ≤ 0.5|λtCSM|

SM
�

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Br�K� � Π�ΝΝ �Γ�� �10�11�

Br
�K L�

Π0
ΝΝ
��10

�
11
�

if new physics in εK is 
LH, only two branches 
of solution allowed for 
K → πνν

[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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LH currents only

pattern of deviations 
is found in certain Zʹ′-
boson scenarios, little 
Higgs models, ...

[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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& absent in MSSM, 
RS, ..., as QLR renders 
dominant effect in εK 
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[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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Anatomy of  εʹ′/ε 
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Prediction for εʹ′/ε very sensitive to interplay between 
QCD (Q6) & electroweak (Q8) penguin operators:

��

�
∝ −Im

�
λt (−1.4 + 13.8R6 − 6.6R8)

+ (1.5 + 0.1R6 − 13.3R8)
�
CNP − �CNP

� �

d

s

[see M. Bauer et al., arXiv:0912.1625 [hep-ph]]
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εʹ′/ε  Strikes Back
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|CNP| ≤ 2 |λtCSM|

|CNP| ≤ |λtCSM|
|CNP| ≤ 0.5|λtCSM|

CNP = |CNP| eiφC

[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]
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εʹ′/ε  “sleeping beauty” 
of flavor physics:  
when will lattice’s kiss 
wake her? 

SM

[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]



Gluonic Penguins in εʹ′/ε 

19

g
RS

W±
(k)

u(l) u(l)

g

sR,L dL,R

Chromomagnetic penguin operators (Q8g, Q8g) can also 
give large correction to εʹ′/ε. But in general (meaning 
MSSM, RS, ...) there is no correlation with Z penguin. 
In fact, often possible to decouple effects

∼



Gluonic Penguins in εʹ′/ε 
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[see M. Bauer et al., arXiv:0912.1625 [hep-ph]]
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physics could show up
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Conclusions & Outlook

Effects of O(50%) in both K → πνν modes are not at 
variance with other existing constraints (εʹ′/ε, ...). In 
view of cleanness of rare kaon modes, such deviations 
would provide smoking-gun signal for new physics 

Since kaon observables feature testable correlations, 
mandatory to measure as many rare kaon modes as 
possible. Only experiment can unravel flavor mystery!
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Talk by S. Jäger given at NA62 Physics Handbook 
Workshop, 10−12 December 2009 CERN

F. Mescia, C. Smith & S. Trine, hep-ph/0606081

M. Blanke, arXiv:0904.2528 [hep-ph]

M. Bauer, S. Casagrande, U. Haisch & M. Neubert,      
arXiv:0912.1625 [hep-ph]

...
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