Some Thoughts About Rare Kaon Decays

Ulrich Haisch University of Oxford

UK Flavour 2013 4–7 September 2013, Durham IP³

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV-scale new physics
 - o motivated by naturalness of electroweak scale
 - o motivated by precision unification of couplings
 - o not motivated, but why not
 - o based on her/his personal taste(s) or prejudice(s)

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV-scale new physics
 - o motivated by naturalness of electroweak scale
 - o motivated by precision unification of couplings
 - o not motivated, but why not
 - o based on her/his personal taste(s) or prejudice(s)
- Experiments should try to falsify theories especially true for indirect (as opposed to production) probes!

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV-scale new physics
 - o motivated by naturalness of electroweak scale
 - o motivated by precision unification of couplings
 - o not motivated, but why not
 - o based on her/his personal taste(s) or prejudice(s)
- Experiments should try to falsify theories especially true for indirect (as opposed to production) probes!
- Imagine to kill supersymmetry, extra dimensions & technicolor at once by signal defying expectations

Two Ways to Study New Physics

Two Ways to Study New Physics

Top-down approach:

- o concrete model of new physics
- o predict observables & correlations directly
- o are smoking gun signals possible?

discussed only sporadically

Two Ways to Study New Physics

Top-down approach:

- o concrete model of new physics
- o predict observables & correlations directly
- o are smoking gun signals possible?

Bottom-up approach:

- o what data can be obtained?
- o how is it parametrized efficiently?
- o what can be learned about model classes?

discussed only sporadically

main theme of this talk

Bottom-Up Approach

- Fix minimal set of assumptions:
 - o new physics enters at M_{NP} = O(1 TeV), allowing for systematic expansion in powers of M_W/M_{NP} << 1
 - o standard model (SM) is weakly coupled to new sector (technical assumption could be relaxed)

Assumptions satisfied in many SM extensions

Bottom-Up Approach

- Fix minimal set of assumptions:
 - o new physics enters at $M_{\rm NP}$ = O(1 TeV), allowing for systematic expansion in powers of $M_{\rm W}/M_{\rm NP}$ << 1
 - o standard model (SM) is weakly coupled to new sector (technical assumption could be relaxed)
 - Assumptions satisfied in many SM extensions
- Use effective SU(2)_L×U(1)_Y invariant Lagrangian

$$\mathcal{L}_{\text{eff}} = \sum_{i} C_i Q_i$$

Similar to weak Hamiltonian with simple matching between two, but fewer operators per coefficient

Bottom-Up Approach Cont'd

Effective framework takes care of assumptions, but no further prejudice

Bottom-Up Approach Cont'd

- Effective framework takes care of assumptions, but no further prejudice
- In setup can now ask & answer important questions:
 - o to what degree are $K \to \pi \nu \bar{\nu}$ channels linked to other kaon modes, such as $K_L \to \pi^0 l^+ l^-$, ΔM_K , $\epsilon_K \& \epsilon' / \epsilon$?
 - o in particular, do these constraints rule out large effects in neutrino modes?
 - o can one design models that break correlations & if so, does this lead to other observable signatures?
 - 0 ...

	Operator	$K^+ o \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 u ar{ u}$	$K_L o \pi^0 l^+ l^-$	$K_L o l^+ l^-$	$K^+ o l^+ \nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	in MSSM?
$ \begin{vmatrix} Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \end{vmatrix} $	$(\bar{D}_L \gamma_\mu S_L)(\bar{L}_L \gamma^\mu L_L)$	1	1	1	hs				-	-	√
$Q_{lq}^{(3)}$	$\left (\bar{D}_L \gamma_\mu \sigma^i S_L) (\bar{L}_L \gamma^\mu \sigma^i L_L) \right $	1	✓	1	hs	hs	1	✓	_	-	✓
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L)(\bar{l}_R \gamma^\mu l_R)$	_	_	1	hs	hs	1	1	_	_	small
Q_{ld}	$(\bar{d}_R \gamma_\mu s_R)(\bar{L}_L \gamma^\mu L_L)$	1	1	1	hs	_	_		_	_	small
Q_{ed}	$(\bar{d}_R \gamma_\mu s_R)(\bar{l}_R \gamma^\mu l_R)$	_	_	1	hs	_	_	_	_	_	small
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(\bar{l}_R L_L)$	_		_	_	1	1	1		_	tiny
$(Q_{lq}^t)^{\dagger}$	$(\bar{u}_R \sigma_{\mu\nu} S_L)(\bar{l}_R \sigma^{\mu\nu} L_L)$	_		_		_	?	?	_	_	tiny
Q_{qde}	$(ar{d}_R S_L)(ar{L}_L l_R)$	_	_	1	1	_	_	_	-	_	tiny
Q_{qde}^{\dagger}	$(ar{D}_L s_R)(ar{l}_R L_L)$		_	1	1	1	1	1	_	_	large $\tan \beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	1	1	1	hs	-		_	1	(√)	√
$Q_{\phi q}^{(1)}$ $Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\phi^\dagger D^\mu \sigma^i \phi)$	1	1	1	hs	hs	1	1	1	(√)	√
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi)$	1	1	1	hs	_	_	_	1	(√)	large $\tan \beta$ (non-MFV)

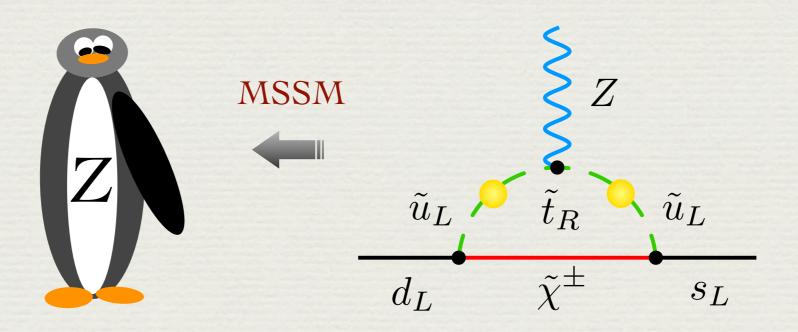
	Operator	$K^+ \to \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 u ar{ u}$	$K_L o \pi^0 l^+ l^-$	$K_L o l^+ l^-$	$K^+ o l^+ \nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	in MSSM?
$Q_{lq}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\bar{L}_L \gamma^\mu L_L)$	√	√	√	hs	_	_	_	_	_	✓
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L)(\bar{L}_L \gamma^\mu \sigma^i L_L)$	✓	✓	✓	hs	hs	✓	✓	_	_	✓
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L)(\bar{l}_R \gamma^\mu l_R)$	_	_	1	hs	hs	1	1	_	_	small
Q_{ld}	$(\bar{d}_R \gamma_\mu s_R)(\bar{L}_L \gamma^\mu L_L)$	✓	✓	✓	hs	_	_	_	_	_	small
Q_{ed}	$(\bar{d}_R \gamma_\mu s_R)(\bar{l}_R \gamma^\mu l_R)$	-	-	1	hs	_	_	_	_	-	small
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(\bar{l}_R L_L)$	-	-			1	1	1	-	-	tiny
$(Q_{lq}^t)^{\dagger}$	$(\bar{u}_R \sigma_{\mu\nu} S_L)(\bar{l}_R \sigma^{\mu\nu} L_L)$	-	-	_	-	-	?	?	-	_	tiny
Q_{qde}	$(\bar{d}_R S_L)(\bar{L}_L l_R)$	_	-	1	1	_	_	_	_	_	tiny
Q_{qde}^{\dagger}	$(\bar{D}_L s_R)(\bar{l}_R L_L)$	_	_	1	1	1	1	1	_	_	$\text{large } \tan \beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	✓	√	✓	hs	_	_	_	✓	(√)	√
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\phi^\dagger D^\mu \sigma^i \phi)$	✓	✓	✓	hs	hs	✓	✓	✓	(√)	✓
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R) (\phi^\dagger D^\mu \phi)$	✓	✓	✓	hs	_	_	_	✓	(√)	large $\tan \beta$ (non-MFV)

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

	Operator	$K^+ \to \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 u ar{ u}$	$K_L \to \pi^0 l^+ l^-$	$K_L o l^+ l^-$	$K^+ o l^+ u$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	in MSSM?
$Q_{lq}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\bar{L}_L \gamma^\mu L_L)$	√	√	√	hs	—	_	—	_	_	✓
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L)(\bar{L}_L \gamma^\mu \sigma^i L_L)$	✓	✓	✓	hs	hs	✓	✓	_	_	✓
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L)(\bar{l}_R \gamma^\mu l_R)$	_	_	✓	hs	hs	✓	✓		_	small
Q_{ld}	$(\bar{d}_R \gamma_\mu s_R)(\bar{L}_L \gamma^\mu L_L)$	✓	✓	✓	hs	_	_	_	_	_	small
Q_{ed}	$(\bar{d}_R \gamma_\mu s_R)(\bar{l}_R \gamma^\mu l_R)$	-	-	✓	hs		-	-	-	_	small
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(\bar{l}_R L_L)$	-	-	_		1		$ $	-	_	tiny
$(Q_{lq}^t)^\dagger$	$(\bar{u}_R \sigma_{\mu\nu} S_L)(\bar{l}_R \sigma^{\mu\nu} L_L)$	-	-	_		_	?	?		_	tiny
Q_{qde}	$(\bar{d}_R S_L)(\bar{L}_L l_R)$	_	_	✓	1	_	_	_	_	_	tiny
Q_{qde}^{\dagger}	$(\bar{D}_L s_R)(\bar{l}_R L_L)$	_	_	✓	1	1	✓	✓		_	$\text{large } \tan \beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	√	√	✓	hs	_			√	(√)	√
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\phi^\dagger D^\mu \sigma^i \phi)$	✓	✓	✓	hs	hs	✓	✓	✓	(√)	✓
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R) (\phi^\dagger D^\mu \phi)$	✓	✓	✓	hs	_	_	_	✓	(√)	large $\tan \beta$ (non-MFV)

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

	Operator	$K^+ \to \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 u ar{ u}$	$K_L \to \pi^0 l^+ l^-$	$K_L o l^+ l^-$	$K^+ o l^+ u$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	in MSSM?
$Q_{lq}^{(1)}$ $Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu S_L)(\bar{L}_L \gamma^\mu L_L)$	√	√	✓	hs	_	_	_	_	_	✓
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L)(\bar{L}_L \gamma^\mu \sigma^i L_L)$	✓	✓	✓	hs	hs	✓	✓	_	_	✓
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L)(\bar{l}_R \gamma^\mu l_R)$	_	_	√	hs	hs			_	_	small
Q_{ld}	$(ar{d}_R\gamma_\mu s_R)(ar{d}_R)$					1			1	1	small
Q_{ed}	$(\bar{d}_R \gamma_\mu s_R)$ 6 op	small									
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(l_{r_{r_r}})$										tiny
$(Q_{lq}^t)^{\dagger}$	$(\bar{u}_R \sigma_{\mu\nu} S_L)(\bar{l}_R \sigma^{\mu\nu} L_L)$	_	_	_	_	_	?	?	_	_	tiny
Q_{qde}	$(ar{d}_R S_L)(ar{L}_L l_R)$	-	-	✓	1		_	_	_		tiny
Q_{qde}^{\dagger}	$(ar{D}_L s_R)(ar{l}_R L_L)$	_	_	✓	1	1	√	√	_	_	$\text{large } \tan \beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	√	√	√	hs	_	_	_	√	(\)	√
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\phi^\dagger D^\mu \sigma^i \phi)$	✓	✓	✓	hs	hs	✓	✓	✓	$ (\checkmark) $	✓
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi)$	✓	✓	✓	hs			_	✓	()	large $\tan \beta$ (non-MFV)

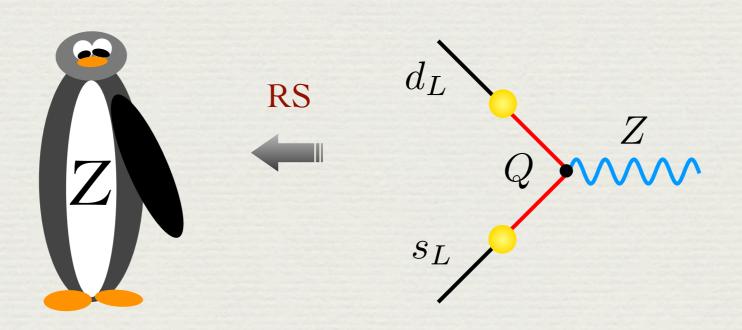

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Z-Penguin Operators

- Three operators involving Higgs field affect largest number of observables, so let's focus on them
- After electroweak symmetry breaking, one has

$$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi) \longrightarrow \bar{d}_L \gamma_\mu s_L Z^\mu + \bar{u}_L \gamma_\mu c_L Z^\mu + \dots$$

which is left-handed (LH) Z-penguin well-known from MSSM, Randall-Sundrum (RS) models, ...



Z-Penguin Operators

- Three operators involving Higgs field affect largest number of observables, so let's focus on them
- After electroweak symmetry breaking, one has

$$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi) \longrightarrow \bar{d}_L \gamma_\mu s_L Z^\mu + \bar{u}_L \gamma_\mu c_L Z^\mu + \dots$$

which is left-handed (LH) Z-penguin well-known from MSSM, Randall-Sundrum (RS) models, ...

Z-Penguin Operators Cont'd

■ Similarly, there is right-handed (RH) Z-penguin

$$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi) \longrightarrow \bar{d}_R \gamma_\mu s_R Z^\mu + \dots$$

which has no counterpart in SM

Z-Penguin Operators Cont'd

■ Similarly, there is right-handed (RH) Z-penguin

$$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi) \longrightarrow \bar{d}_R \gamma_\mu s_R Z^\mu + \dots$$

which has no counterpart in SM

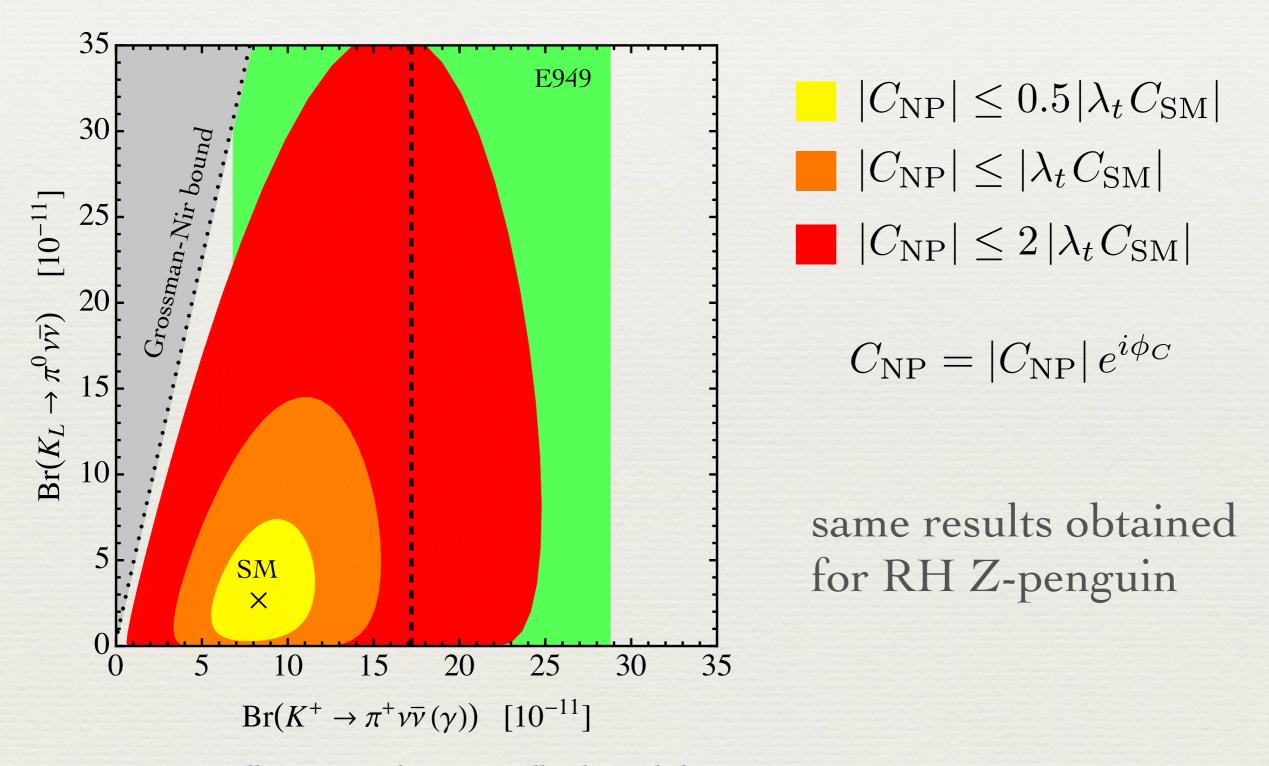
Parametrize flavor-changing Z-boson vertices by

$$(V_{ts}^*V_{td}\,C_{\mathrm{SM}} + C_{\mathrm{NP}})\,\bar{d}_L\gamma_\mu s_L Z^\mu + \widetilde{C}_{\mathrm{NP}}\bar{d}_R\gamma_\mu s_R Z^\mu$$

where V_{ij} are Cabibbo-Kobayashi-Maskawa (CKM) elements & $C_{SM} \approx 0.8$ is value of Inami-Lim function characterizing LH Z-penguin in SM

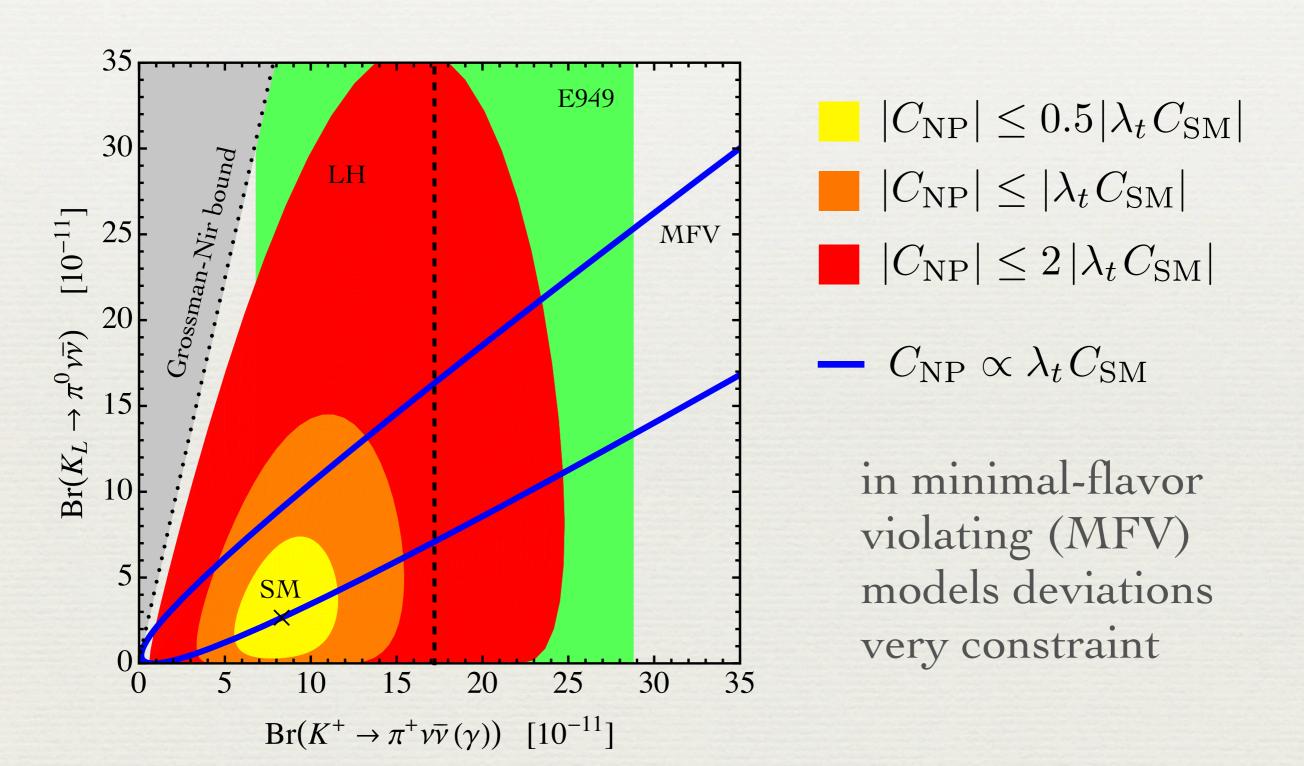
Anatomy of Neutrino Modes

After summation over neutrino flavors, branching ratios of $K \rightarrow \pi \nu \overline{\nu}$ channels can be written as

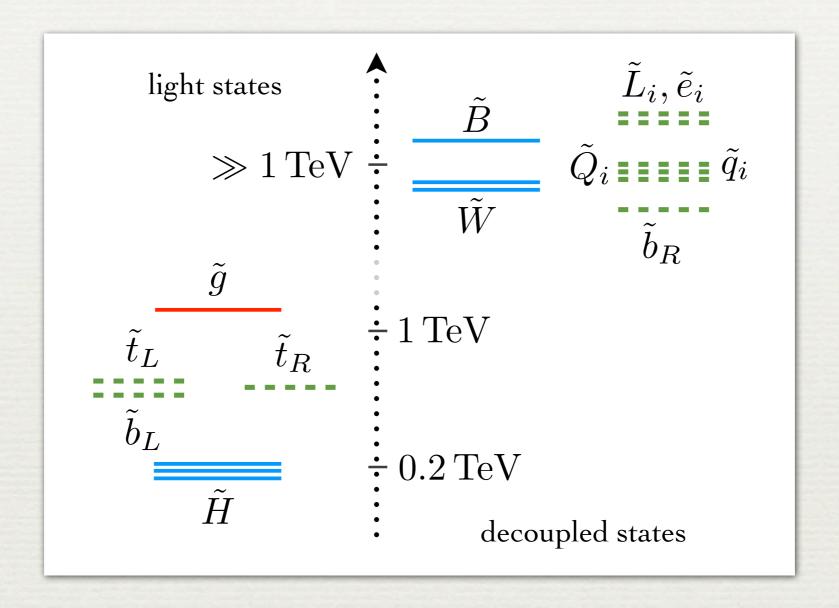

$$\operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu}) \propto (\operatorname{Im} X)^2$$

$$\operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) \propto |X|^2$$

$$X = \frac{\lambda_t}{\lambda^5} X_t + \frac{\text{Re}\lambda_c}{\lambda} P_{c,u} + \frac{1}{\lambda^5} \left(C_{\text{NP}} + \widetilde{C}_{\text{NP}} \right)$$


$$\lambda_i = V_{is}^* V_{id}$$
, $\lambda \approx 0.23$, $X_t \approx 1.5$, $P_{c,u} \approx 0.4$

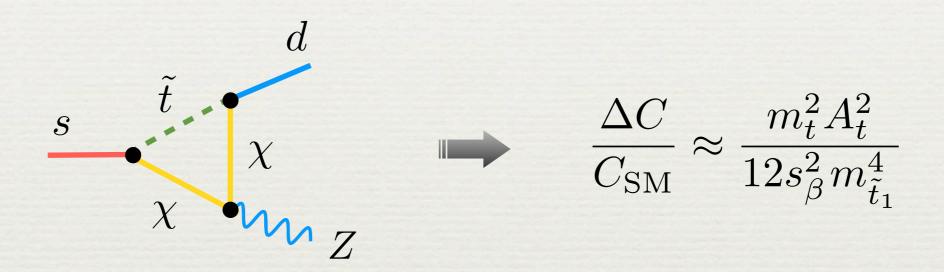
Z-Penguins in Neutrino Modes


[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Z-Penguins in Neutrino Modes

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

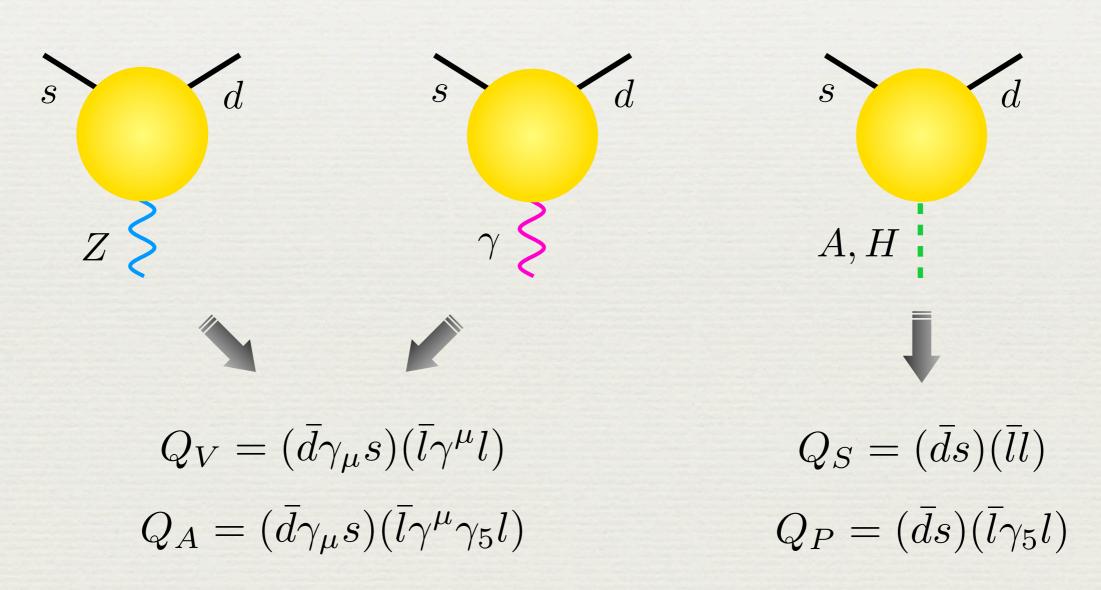
"Natural SUSY"



To avoid destabilizing weak scale only higgsinos (\widetilde{H}) , stops $(\widetilde{t}_L, \widetilde{t}_R)$, LH sbottom (\widetilde{b}_L) & gluino (\widetilde{g}) need to be TeVish

[see for example Brust et al. 1110.6670; Papucci, Ruderman & Weiler, 1110.6926]

"Natural SUSY"

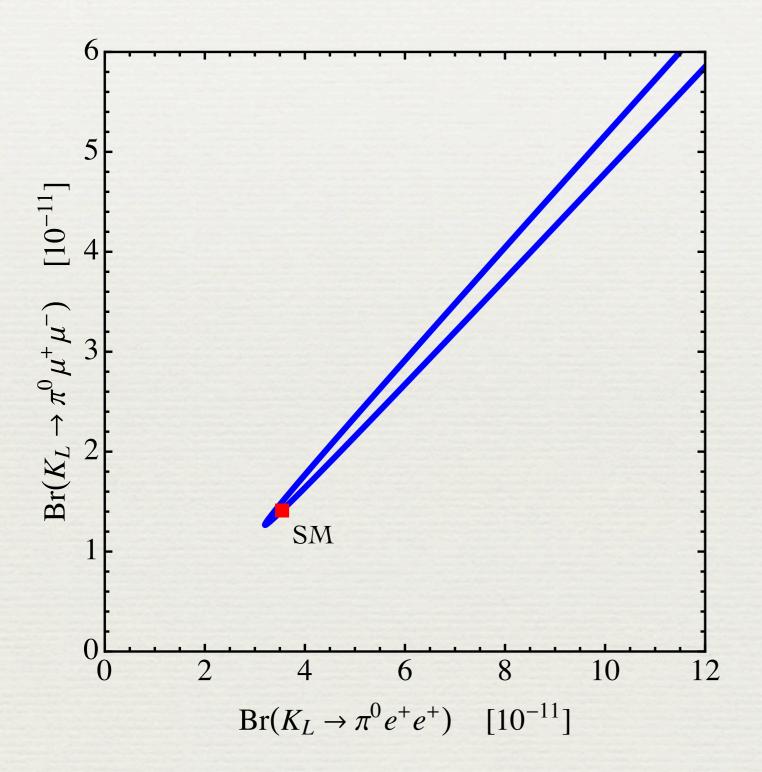

Light stops & charginos lead to specific pattern of deviations in flavor observables:

Due to hierarchy $|M_2| >> |\mu|$, stop-chargino effects in LH Z-penguin below 10% level. Predictions for rare kaon decays (as well as $B_s \to \mu^+\mu^- \& B \to K^*l^+l^-$) essentially unaltered in MFV MSSM

Anatomy of Leptonic Modes

■ $K_L \to \pi^0 l^+ l^-$ modes receive contributions from (axial-) vector (A, V), (pseudo-)scalar (P, S), ... operators:

Anatomy of Leptonic Modes Cont'd

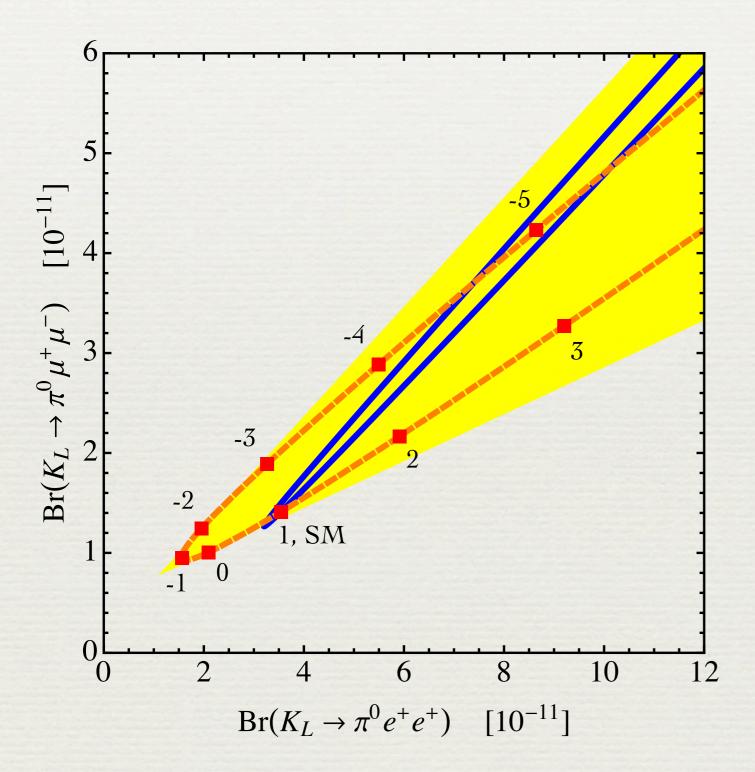

In many explicit SM extensions such as RS scenarios, little Higgs models, scenarios with extra chiral/vector-like matter, ..., contribution from Q_A dominates over those of Q_V, Q_S & Q_P:

$$C_V \propto \left(\frac{1}{s_w^2} - 4\right) \left(\frac{C_{\mathrm{NP}}}{C_{\mathrm{NP}}} + \tilde{C}_{\mathrm{NP}}\right) \approx 0.4 \left(\frac{C_{\mathrm{NP}}}{C_{\mathrm{NP}}} + \tilde{C}_{\mathrm{NP}}\right)$$

$$C_A \propto -rac{1}{s_w^2} \left(rac{C_{
m NP}}{C_{
m NP}} - ilde{C}_{
m NP}
ight) pprox -rac{4.4}{4.4} \left(rac{C_{
m NP}}{C_{
m NP}} - ilde{C}_{
m NP}
ight)$$

$$C_{S,P} \propto m_s m_l$$

Correlations of Leptonic Modes



LH Z-penguin

in scenarios with Q_A dominance, deviations in $K_L \rightarrow \pi^0 l^+ l^-$ channels strongly correlated

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]

Correlations of Leptonic Modes

- LH Z-penguin
- --- SM rescaled
- V, A only

presence of photon penguin can break Q_A dominance & opens up parameter space

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]

Correlations of Leptonic Modes

- S, P also
- --- SM rescaled
- V, A only

rare semileptonic kaon channels also allow to disentangle S, P from V, A contributions

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]

Anatomy of Ek

■ Most severe constraints on flavor structure in many non-MFV models due to CP violation in kaon sector:

$$\epsilon_K \propto {
m Im} \left(C_{LL}^{sd} + {
m 115} C_{LR}^{sd} \right)$$

$$Q_{LL}^{sd} = (\bar{s}_L \gamma_\mu d_L)(\bar{s}_L \gamma^\mu d_L)$$

$$Q_{LR}^{sd} = (\bar{s}_R d_L)(\bar{s}_L d_R)$$

$$SM$$

$$t$$

$$d_L$$

$$W^{\pm}$$

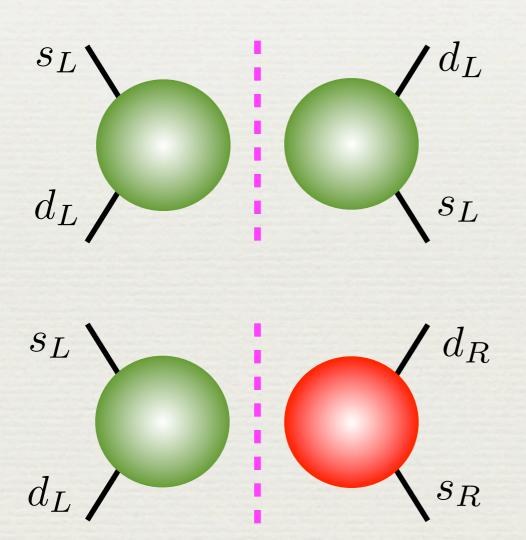
$$d_L$$

$$W^{\pm}$$

$$s_L$$

$$d_R$$

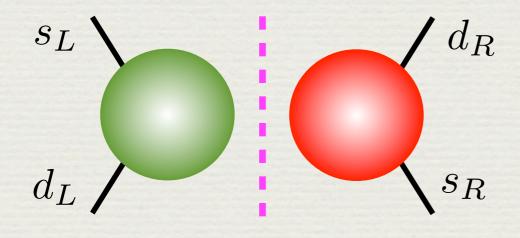
$$d_R$$


$$d_R$$

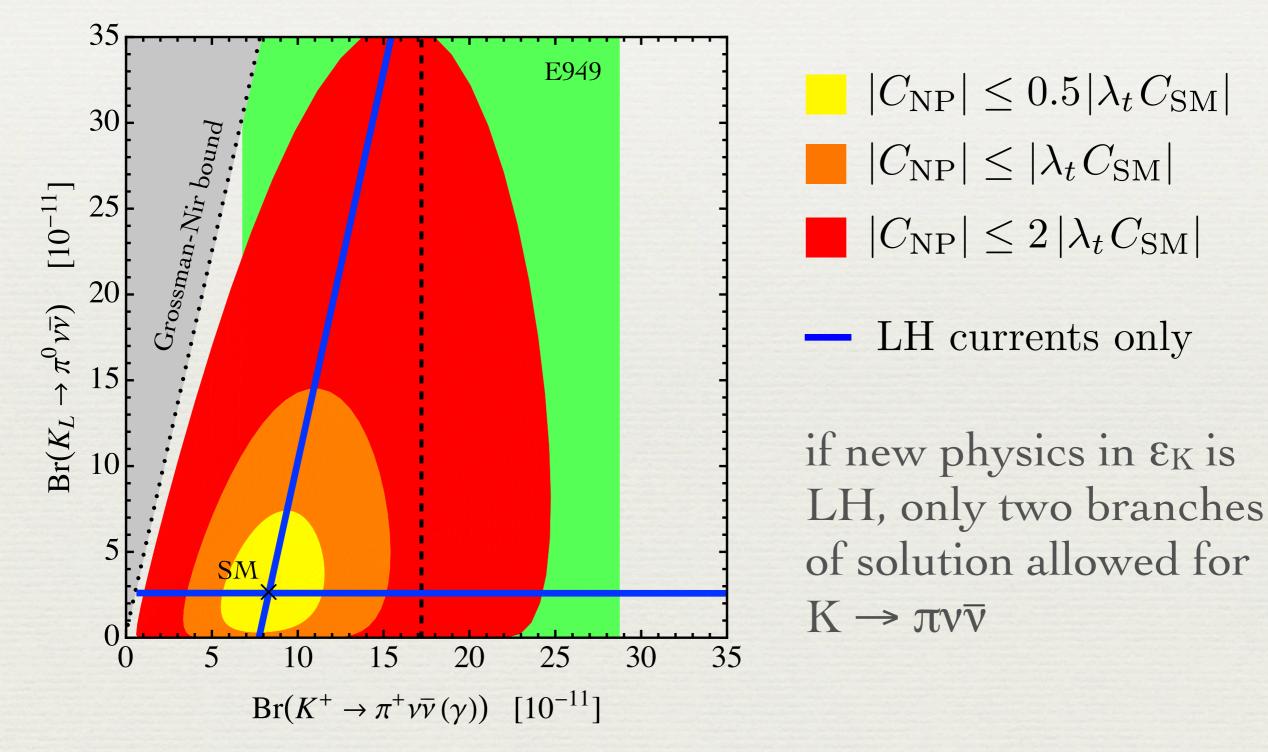
$$d_L$$

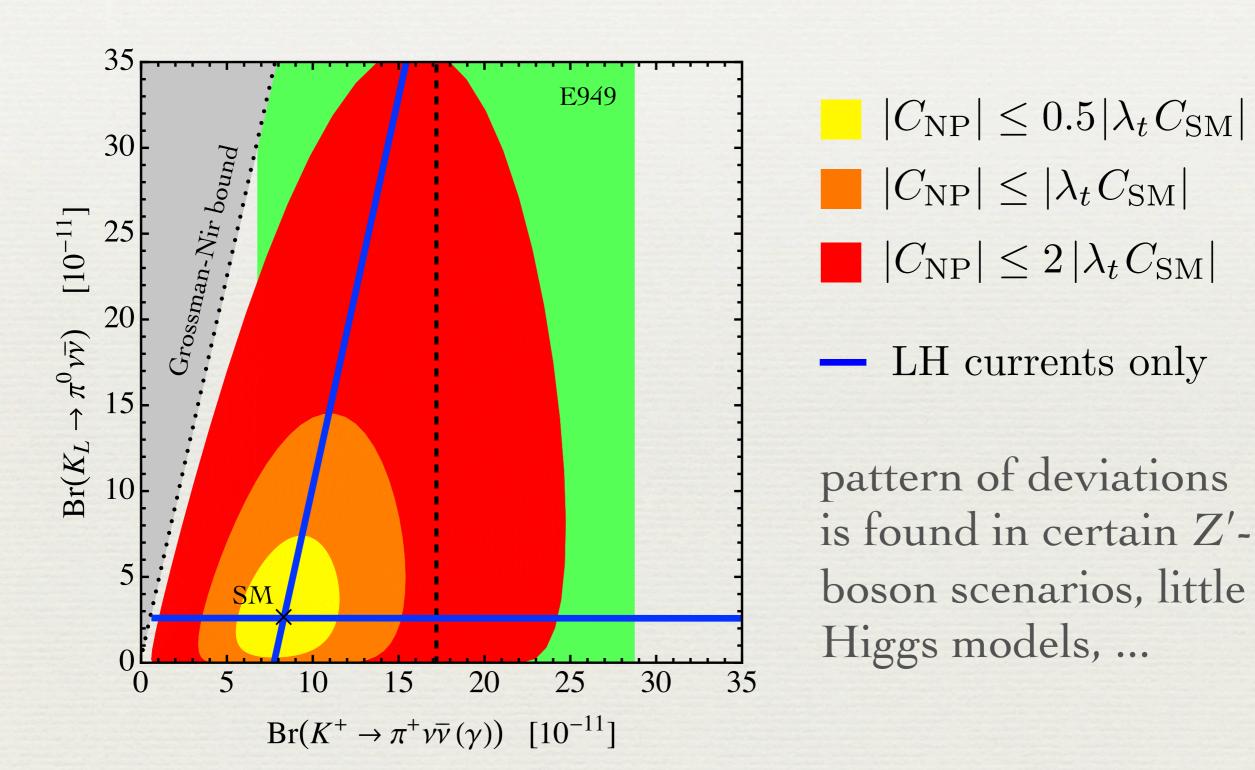
$$s_L$$

Ek & Rare K Decay Link

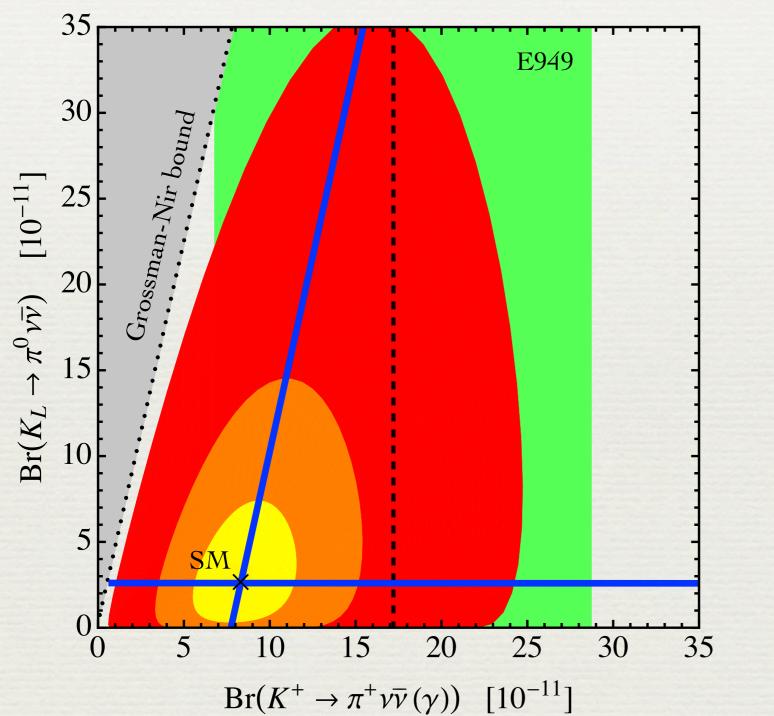

■ SM extensions fall into two classes, those with pure LH structure & those with both LH & RH currents:

EK & Rare K Decay Link


■ SM extensions fall into two classes, those with pure LH structure & those with both LH & RH currents:


while in LH case, ε_K restricts phase in s \rightarrow d transition, connection between $\Delta S = 2,1$ lost, if RH interactions present

EK & Rare K Decay Link Cont'd


[see M. Blanke, arXiv:0904.2528 [hep-ph]]

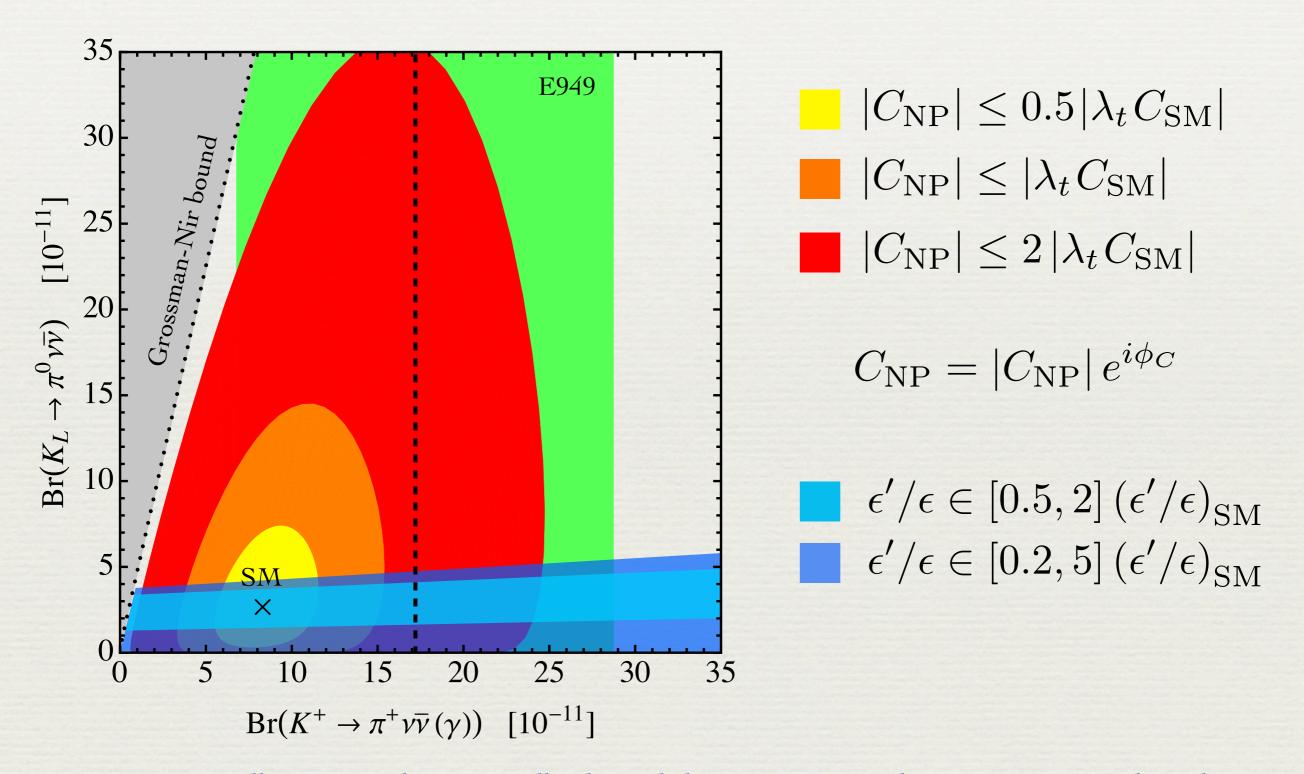
EK & Rare K Decay Link Cont'd

[see M. Blanke, arXiv:0904.2528 [hep-ph]]

EK & Rare K Decay Link Cont'd

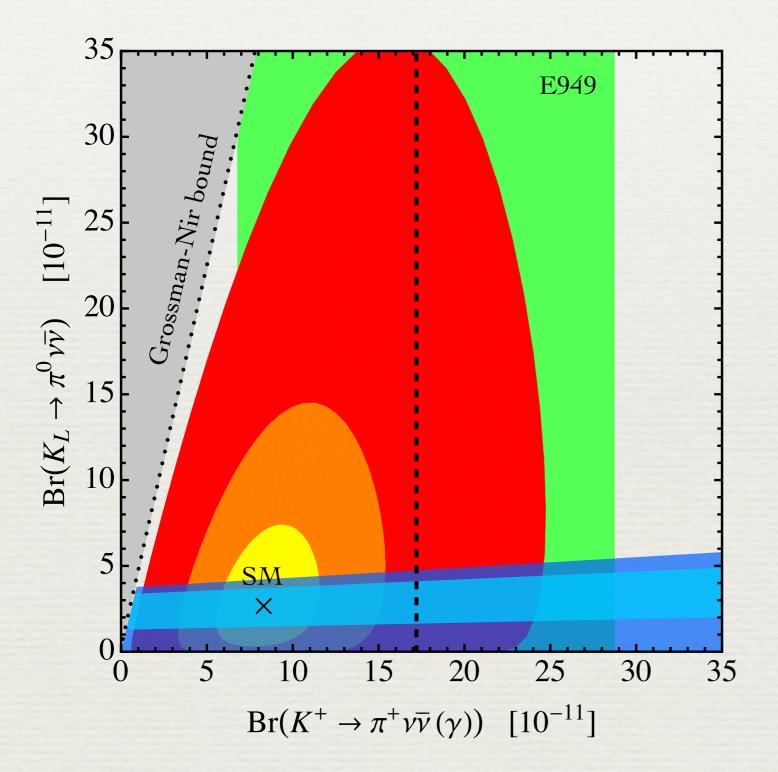
- $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$
- $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$
- $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$
- LH currents only

but pattern not generic & absent in MSSM, RS, ..., as Q_{LR} renders dominant effect in ε_K


[see M. Blanke, arXiv:0904.2528 [hep-ph]]

Anatomy of ϵ'/ϵ

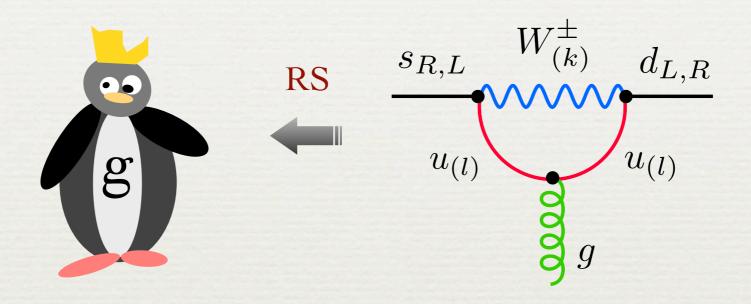
Prediction for ε'/ε very sensitive to interplay between QCD (Q₆) & electroweak (Q₈) penguin operators:


$$\frac{\epsilon'}{\epsilon} \propto -\text{Im} \left[\lambda_t \left(-1.4 + 13.8R_6 - 6.6R_8 \right) + \left(1.5 + 0.1R_6 - 13.3R_8 \right) \left(\frac{C_{\text{NP}} - \tilde{C}_{\text{NP}}}{C_{\text{NP}}} \right) \right]$$

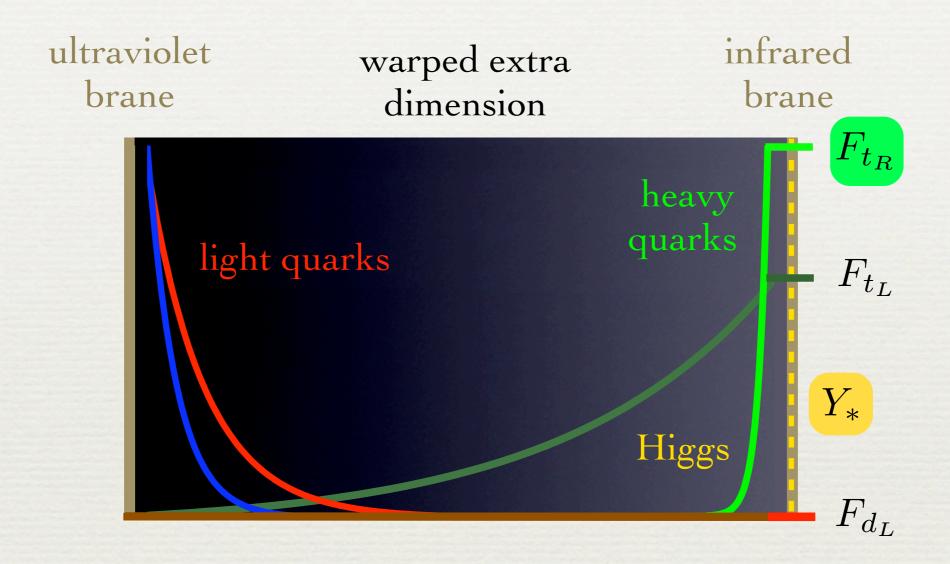
ε'/ε Strikes Back

[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]

ε'/ε Strikes Back


stringent correlation between CP-violating kaon observables present in MSSM, RS, compositeness, ...

ε'/ε "sleeping beauty" of flavor physics: when will lattice's kiss wake her?


[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]

Gluonic Penguins in ϵ'/ϵ

Chromomagnetic penguin operators (Q_{8g}, \tilde{Q}_{8g}) can also give large correction to ε'/ε . But in general (meaning MSSM, RS, ...) there is no correlation with Z penguin. In fact, often possible to decouple effects

Gluonic Penguins in ϵ'/ϵ

$$\{C_{8g}, \widetilde{C}_{8g}\} \propto \left\{\lambda m_s, \frac{m_s}{\lambda}\right\} \frac{Y_*^2}{m_t}, \quad C \propto \frac{A^2 \lambda^5}{Y_*^2 F_{t_R}^2}, \quad \widetilde{C} \propto \frac{m_d m_s F_{t_R}^2}{A^2 \lambda^5 m_t^2}$$

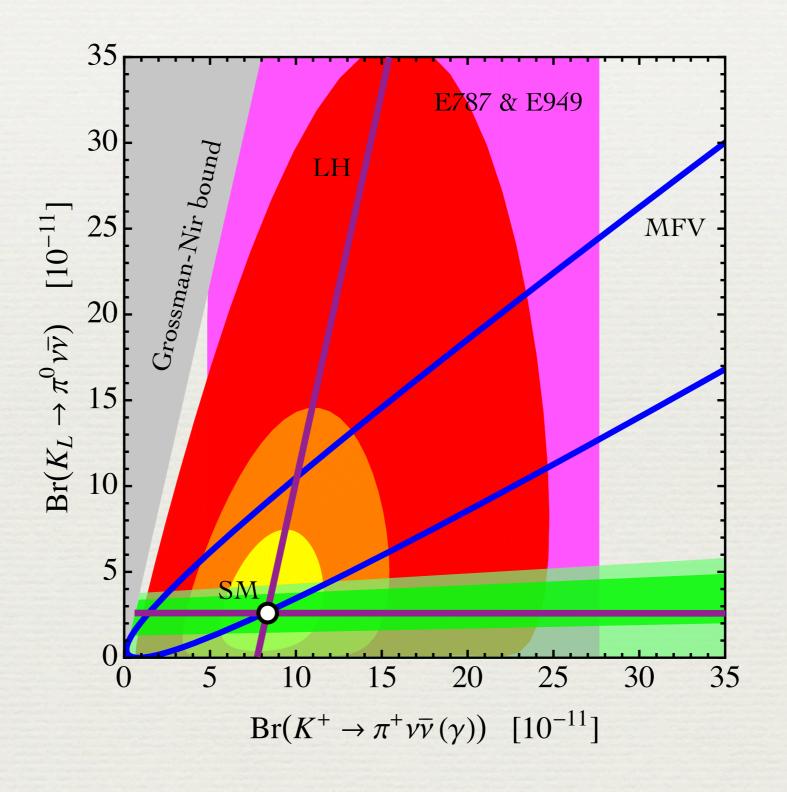
Conclusions & Outlook

In view of "textbook measurements" of CP phase in B_s system, $B \to K^*\mu^+\mu^- \& B_s \to \mu^+\mu^-$ by LHCb, rare decays of kaons last place where indisputable signals of new physics could show up

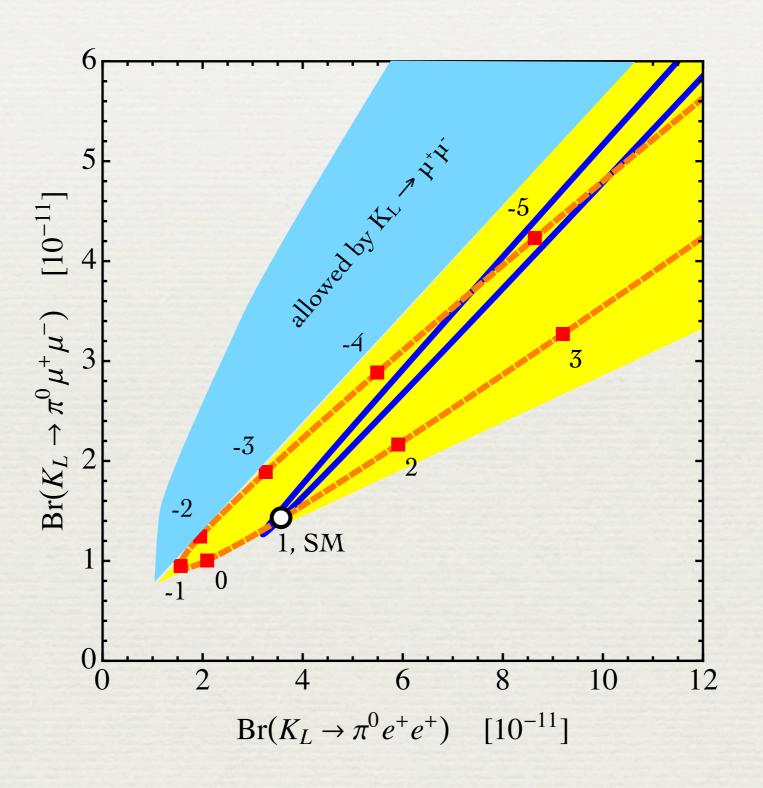
Conclusions & Outlook

- In view of "textbook measurements" of CP phase in B_s system, $B \to K^* \mu^+ \mu^- \& B_s \to \mu^+ \mu^-$ by LHCb, rare decays of kaons last place where indisputable signals of new physics could show up
- Effects of O(50%) in both $K \to \pi \nu \bar{\nu}$ modes are not at variance with other existing constraints (ϵ'/ϵ , ...). In view of cleanness of rare kaon modes, such deviations would provide smoking-gun signal for new physics

Conclusions & Outlook


- In view of "textbook measurements" of CP phase in B_s system, $B \to K^* \mu^+ \mu^- \& B_s \to \mu^+ \mu^-$ by LHCb, rare decays of kaons last place where indisputable signals of new physics could show up
- Effects of O(50%) in both $K \to \pi \nu \bar{\nu}$ modes are not at variance with other existing constraints (ϵ'/ϵ , ...). In view of cleanness of rare kaon modes, such deviations would provide smoking-gun signal for new physics
- Since kaon observables feature testable correlations, mandatory to measure as many rare kaon modes as possible. Only experiment can unravel flavor mystery!

Sources of Inspiration


- Talk by S. Jäger given at NA62 Physics Handbook Workshop, 10–12 December 2009 CERN
- F. Mescia, C. Smith & S. Trine, hep-ph/0606081
- M. Blanke, arXiv:0904.2528 [hep-ph]
- M. Bauer, S. Casagrande, U. Haisch & M. Neubert, arXiv:0912.1625 [hep-ph]

...

Neutrino Modes: Summary

Leptonic Modes: Summary

