Rare decays on the lattice

MATTHEW WINGATE DAMTP, UNIVERSITY OF CAMBRIDGE UK FLAVOUR 2013 WORKSHOP

Outline

- Brief introduction
- $B \to Kll$
- $B \to K^* ll \text{ and } B_s \to \varphi ll$

Brief introduction

Rare *b* decays

$$\mathcal{H}^{b
ightarrow s}_{ ext{eff}} \, = \, - rac{4G_F}{\sqrt{2}} V^*_{ts} V_{tb} \sum_i (C_i \mathcal{O}_i \, + \, C_i' \mathcal{O}_i')$$

Most important short-distance effects in $b \rightarrow s \ ll$ come from:

$$egin{aligned} \mathcal{O}_{9}^{(')} &= rac{e^2}{16\pi^2} \, ar{s} \gamma^\mu P_{L(R)} b \, ar{\ell} \gamma_\mu \ell & \mathcal{O}_{10}^{(')} &= rac{e^2}{16\pi^2} \, ar{s} \gamma^\mu P_{L(R)} b \, ar{\ell} \gamma_\mu \gamma_5 \ell \ & \mathcal{O}_{7}^{(')} &= rac{m_b e^2}{16\pi^2} \, ar{s} \sigma^{\mu
u} P_{R(L)} b \, F_{\mu
u} \end{aligned}$$

Long-distance effects arise from

SM Wilson coefficients (NNLL order):

 $C_9^{ ext{eff}}(m_b) = 4.211 + Y(q^2)$ $C_{10}^{ ext{eff}}(m_b) = -4.103$ $C_7^{ ext{eff}}(m_b) = -0.304$ $C_9' = C_{10}' = C_7' = 0$ $C_1(m_b) = -0.257$ $C_2(m_b) = 1.009$

W Altmannshofer *et al.*, JHEP01(2009)019.

Lattice QCD and $b \rightarrow s$

Compute hadronic matrix elements of local operators

- Exclusive modes, with (at most) 1 hadron in final state
- Require lattice momenta to be small compared to lattice scale

Thus we can contribute by calculating

 $B \rightarrow Kll$

 $B \to K^* ll \& B_s \to \varphi ll$

 $\Lambda_b \to \Lambda l l$

form factors in the low recoil (large q^2) regime

Caveat: long-distance effects (resonant contributions) not included

C Bouchard *et al.*, (HPQCD)

$B \rightarrow K$ form factors

$$egin{aligned} &\langle K(k)|ar{s}\gamma^{\mu}b|B(p)
angle \ = \ igg[(p+k)^{\mu}-rac{m_B^2-m_K^2}{q^2}\,q^{\mu}igg]f_+(q^2)+rac{m_B^2-m_K^2}{q^2}\,q^{\mu}f_0(q^2) \ &\langle K(k)|ar{s}\sigma^{\mu
u}q_
u b|B(p)
angle \ = \ rac{if_T(q^2)}{m_B+m_K}\left[q^2(p+k)^{\mu}-(m_B^2-m_K^2)q^{\mu}
ight] \end{aligned}$$

***** "Gold-plated" matrix elements: QCD-stable $|i\rangle$ and $|f\rangle$ states

Observables: differential branching fraction *dΓ/dq*², forward/backward asymmetry *A_{FB}* (zero in SM), and "flat term" *F_H*

Lattice actions & parameters

MILC lattices (2+1 asqtad staggered) HISQ light & strange quarks NRQCD bottom quarks

ens	$L^3 \times N_t$	r_1/a	$au_0m_{ m sea}$	u_0	$N_{\rm conf}$	$N_{\rm tsrc}$	$am_l^{ m val}$	am_s^{val}	am_b	$aE_{bar{b}}^{ m sim}$	T
C1	$24^3 \times 64$	2.647(3)	0.005/0.05	0.8678	1200	2	0.0070	0.0489	2.650	0.28356(15)	12 - 15
C2	$20^3 \times 64$	2.618(3)	0.01/0.05	0.8677	1200	2	0.0123	0.0492	2.688	0.28323(18)	12 - 15
C3	$20^3 \times 64$	2.644(3)	0.02/0.05	0.8688	600	2	0.0246	0.0491	2.650	0.27897(20)	12 - 15
F1	$28^3 \times 96$	3.699(3)	0.0062/0.031	0.8782	1200	4	0.00674	0.0337	1.832	0.25653(14)	21 - 24
F2	$28^3 \times 96$	3.712(4)	0.0124/0.031	0.8788	600	4	0.01350	0.0336	1.826	0.25558(28)	21 - 24

	<u>ens</u> C1 C2 C3 F1 F2	$r_{1} = 0.3133(23) \text{ fm}$ $\frac{1/a \text{ (GeV)}}{1.667(12)}$ $1.649(12)$ $1.665(12)$ $2.330(17)$ $2.338(17)$	$\frac{m_{\pi}(\text{MeV})}{267(2)}$ 348(3) 488(4) 313(2) 438(3)	
C. Boud 1-loop operator mat	chard <i>et al., a</i> ching: C Moi	0.5 arXiv:1306.049 0.5 nahan, J Shiger 0.5	49 arXiv:1 15 - nitsu, RR	306:2384 Horgan, PRD87 (2013)

 $B \rightarrow K l^+ l^-$

C. Bouchard *et al.*, arXiv:1306.0434, arXiv(25) 06:2384

Resonant contribution

Figure 1: Dimuon mass distribution of data with fit results overlaid for the fit that includes contributions from the non-resonant vector and axial vector components, and the $\psi(3770)$, $\psi(4040)$, and $\psi(4160)$ resonances. Interference terms are included and the relative strong phases are left free in the fit.

R. Aaij *et al.*, (LHC*b*) arXiv:1307.7595

$B \rightarrow K^* e^3 B_s \rightarrow \varphi$ form factors

with RR Horgan, Z Liu, S Meinel

Traditional form factor basis

$$\langle V(k,arepsilon)|ar{q}\hat{\gamma}^{\mu}b|B(p)
angle \ = \ rac{2iV(q^2)}{m_B+m_V}\epsilon^{\mu
u
ho\sigma}arepsilon_{
u}^{*}k_{
ho}p_{\sigma}$$

$$egin{aligned} \langle V(k,arepsilon)|ar{q}\hat{\gamma}^{\mu}\hat{\gamma}^{5}b|B(p)
angle &=2m_{V}A_{0}(q^{2})rac{arepsilon^{strianglesizet}\cdot q}{q^{2}}q^{\mu}+(m_{B}+m_{V})A_{1}(q^{2})igg(arepsilon^{strianglesizet}-rac{arepsilon^{strianglesizet}\cdot q}{q^{2}}q^{\mu}igg) &=2m_{V}A_{0}(q^{2})rac{arepsilon^{strianglesizet}\cdot q}{m_{B}+m_{V}}\left((p+k)^{\mu}-rac{m_{B}^{2}-m_{V}^{2}}{q^{2}}q^{\mu}
ight) &=2m_{V}A_{0}(q^{2})rac{arepsilon^{strianglesizet}\cdot q}{m_{B}+m_{V}}\left((p+k)^{\mu}-rac{m_{B}^{2}-m_{V}^{2}}{q^{2}}q^{\mu}igg) &=2m_{V}A_{0}(q^{2})rac{arepsilon^{strianglesizet}\cdot q}{m_{B}+m_{V}}\left((p+k)^{\mu}-rac{m_{B}^{2}-m_{V}^{2}}{q^{2}}q^{\mu}igg) &=2m_{V}A_{0}(q^{2})rac{arepsilon^{strianglesizet}\cdot q}{m_{B}+m_{V}}\left((p+k)^{\mu}-rac{m_{B}^{2}-m_{V}^{2}}{q^{2}}q^{\mu}igg) &=2m_{V}A_{0}(q^{2})rac{arepsilon^{strianglesizet}\cdot q^{\mu}}{m_{B}+m_{V}}\left((p+k)^{\mu}-rac{arepsilon^{strianglesizet}\cdot q^{\mu}+rac{arepsilon^{strianglesizet}\cdot q^{\mu}}{q^{2}}r^{\mu}\right) &=2m_{V}A_{0}(q^{2})rac{arepsilon^{strianglesizet}\cdot q^{\mu}+m_{V}}\left((p+k)^{strianglesizet}\cdot q^{\mu}+rac{arepsilon^{strianglesizet}\cdot q^{\mu}+arepsilon^{strianglesizet}\cdot q^{\mu}+arepsilon^$$

$$q^{
u}\langle V(k,arepsilon)|ar{q}\hat{\sigma}_{\mu
u}b|B(p)
angle \ = \ 2T_1(q^2)\epsilon_{\mu
ho au\sigma}arepsilon^{*
ho}p^{ au}k^{\sigma}$$

$$egin{aligned} q^
u \langle V(k,arepsilon) | ar{q} \hat{\sigma}_{\mu
u} \hat{\gamma}^5 b | B(p)
angle &= i T_2(q^2) [arepsilon_{\mu}^* (m_B^2 - m_V^2) - (arepsilon^* \cdot q)(p+k)_{\mu}] \ &+ i T_3(q^2) (arepsilon^* \cdot q) \left[q_\mu - rac{q^2}{m_B^2 - m_V^2} (p+k)_{\mu}
ight] \end{aligned}$$

Helicity basis

$$egin{aligned} V_{\pm}(q^2) &= rac{1}{2} \left[\left(1 + rac{m_V}{m_B}
ight) A_1(q^2) \mp rac{\sqrt{\lambda}}{m_B(m_B + m_V)} \, V(q^2)
ight] \ T_{\pm}(q^2) &= rac{1}{2m_B^2} \left[(m_B^2 - m_V^2) T_2(q^2) \mp \sqrt{\lambda} T_1(q^2)
ight] \end{aligned}$$

$$\begin{split} \mathbf{A_{12}(q^2)} &= \frac{(m_B + m_V)^2 (m_B^2 - m_V^2 - q^2) A_1(q^2) - \lambda A_2(q^2)}{16 m_B m_V^2 (m_B + m_V)} \\ \mathbf{T_{23}(q^2)} &= \frac{m_B + m_V}{8 m_B m_V^2} \left[\left(m_B^2 + 3 m_V^2 - q^2 \right) T_2(q^2) - \frac{\lambda T_3(q^2)}{m_B^2 - m_V^2} \right] \end{split}$$

with
$$\lambda = (t_+ - t)(t_- - t)$$
 $t = q^2$ $t_{\pm} = (m_B \pm m_V)^2$

Most convenient basis for us: $V, A_0, A_1, A_{12}, T_1, T_2, T_{23}$

Lattice actions & parameters

MILC lattices (2+1 asqtad staggered) asqtad light & strange quarks NRQCD bottom quarks

label #	$N_x^3 \times N_t$	$am_{\ell}^{\rm sea}/am_s^{\rm sea}$	r_1/a	$1/a \; ({\rm GeV})$
c007 2109	$20^3 \times 64$	0.007/0.05	2.625(3)	1.660(12)
c02 2052	$20^3 \times 64$	0.02/0.05	2.644(3)	1.665(12)
f0062 1910	$28^3 \times 96$	0.0062/0.031	3.699(3)	2.330(17)

ensemble	$m_B (\text{GeV})$	m_{B_s} (GeV)	$m_{\pi} \; ({\rm MeV})$	$m_K \ ({ m MeV})$	m_{η_s} (MeV)	$m_{\rho} \; ({\rm MeV})$	m_{K^*} (MeV)	$m_{\phi} ({ m MeV})$
c007	5.5439(32)	5.6233(7)	313.4(1)	563.1(1)	731.9(1)	892(28)	1045(6)	1142(3)
c02	5.5903(44)	5.6344(15)	519.2(1)	633.4(1)	730.6(1)	1050(7)	1106(4)	1162(3)
f0062	5.5785(22)	5.6629(13)	344.3(1)	589.3(2)	762.0(1)	971(7)	1035(4)	1134(2)
"physical"	5.279	5.366	140	495	686	775	892	1020

Operator matching

- Effective field theory, cutoff by lattice
- HQET power counting: requires working with low recoil
- Current matching

$$(\bar{q}\Gamma^{V,A}_{\mu}b)|_{ ext{cont}} \doteq (1+lpha_s
ho^{(\mu)})(ar{c}\Gamma^{V,A}_{\mu}b)|_{ ext{latt}}$$

$$(\bar{q}\hat{\sigma}_{\mu\nu}b)|_{\text{cont}} \doteq (1+lpha_s c^{(T
u)})(\bar{q}\hat{\sigma}_{\mu\nu}b)|_{\text{latt}}$$

ensemble	C_v	$ ho^{(0)}$	$\rho^{(k)}$	$c^{(T0)}$	$c^{(Tj)}$
С	2.825	0.043	0.270	0.076	0.076
f	1.996	-0.058	0.332	0.320	0.320

Gulez et al., PRD69 (2003), PRD73 (2006); Mueller et al., PRD83 (2011)

Operator matching

$$\begin{aligned} (\bar{q}\Gamma_{\mu}^{V,A}b)|_{\text{cont}} \doteq & (1+\alpha_{s}\rho^{(\mu)})(\bar{c}\Gamma_{\mu}^{V,A}b)|_{\text{latt}} + J_{\Gamma}^{(1)\text{sub}} \\ (\bar{q}\hat{\sigma}_{\mu\nu}b)|_{\text{cont}} \doteq & (1+\alpha_{s}c^{(T\nu)})(\bar{q}\hat{\sigma}_{\mu\nu}b)|_{\text{latt}} + J_{\Gamma}^{(1)\text{sub}} \\ & + J_{\Gamma}^{(1)\text{sub}} \end{aligned}$$

$$J_{\Gamma}^{(1){
m sub}} = J_{\Gamma}^{(1)} - lpha_s \zeta_{10}^{\Gamma} J_{\Gamma}^{(0)}$$

Truncation errors $O(\alpha_s \Lambda_{QCD}/m_b)$

Gulez et al., PRD69 (2003), PRD73 (2006); Mueller, private communication

Ratio: (LO+NLO)/LO

c007

Ratio: (LO+NLO)/LO

f0062

Form factor shape

 $t = q^2$ $t_{\pm} = (m_B \pm m_F)^2$ Choose, e.g. $t_0 = 12 \ {
m GeV}^2$ $z = rac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$

Simplified series expansion

Series (z) expansion

$$F(t) = rac{1}{1-t/m_{ ext{res}}^2} \sum_n a_n z^n$$

Bourrely, Caprini, Lellouch PRD **79** (2009) following Okubo; Bourrely, Machet, de Rafael; Boyd, Grinstein, Lebed; Boyd & Savage; Arneson *et al.;* FNAL/MILC lattice collab; ...

Kinematic-continuum-mass fits

$$\equiv 1/P(t)$$

$$F(t) = \underbrace{\frac{1}{1 - t/m_{\text{res}}^2}}_{n} [1 + b_1(aE_F)^2 + \dots] \sum_n a_n d_n z^n$$
discretization errors

HPQCD

$$d_n = 1 + c_{n1} \frac{m_P^2}{(4\pi f)^2} + \dots$$

quark mass dependence

$$m_{\rm res} = m_{\rm comp} + \Delta m_{\rm phys}$$

In practice we need a 3 parameter fit: a_0 , a_1 , c_{01}

$B \rightarrow K^*$ form factors

$B_s \rightarrow \varphi$ form factors

Helicity f.f.

Status

Results preliminary: final checks & estimates of systematic uncertainties underway

Will publish form factors, along with SM predictions for observables using LQCD form factors

Caveat

- Lattice calculations done with kinematics such that K^* and φ are stable. Physical K^* is broad, φ less so.
- Not gold-plated. Is consistency between LQCD & LCSR reassuring?

$\Lambda_b \rightarrow \Lambda \ (e^3 \ \Lambda \rightarrow p)$ form factors

with W Detmold, C-J D Lin, S Meinel

 $\Lambda_b \rightarrow \Lambda$ form factors

In general

$$egin{aligned} &\langle\Lambda|ar{s}\gamma^{\mu}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{V}\gamma^{\mu}-f_{2}^{V}rac{i\sigma^{\mu
u}q_{
u}}{m_{\Lambda_{b}}}+f_{3}^{V}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]u_{\Lambda_{b}} \ &\langle\Lambda|ar{s}\gamma^{\mu}\gamma_{5}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{A}\gamma^{\mu}-f_{2}^{A}rac{i\sigma^{\mu
u}q_{
u}}{m_{\Lambda_{b}}}+f_{3}^{A}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]\gamma_{5}u_{\Lambda_{b}} \ &\langle\Lambda|ar{s}i\sigma^{\mu
u}q_{
u}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{TV}rac{\gamma^{\mu}q^{2}-q^{\mu}q}{m_{\Lambda_{b}}}-f_{2}^{TV}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]u_{\Lambda_{b}} \ &\langle\Lambda|ar{s}i\sigma^{\mu
u}q_{
u}\gamma_{5}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{TA}rac{\gamma^{\mu}q^{2}-q^{\mu}q}{m_{\Lambda_{b}}}-f_{2}^{TV}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]v_{5}u_{\Lambda_{b}} \end{aligned}$$

In the $m_b \rightarrow \infty$ limit

 $\langle \Lambda(p',s') | \, \bar{s} \Gamma Q \, | \Lambda_Q(v,0,s) \rangle \, = \, \bar{u}(p',s') [F_1(p' \cdot v) + \psi F_2(p' \cdot v)] \Gamma \, \mathcal{U}(v,s)$

 $\Lambda_b \rightarrow \Lambda$ form factors

In general

$$egin{aligned} &\langle\Lambda|ar{s}\gamma^{\mu}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{V}\gamma^{\mu}-f_{2}^{V}rac{i\sigma^{\mu
u}q_{
u}}{m_{\Lambda_{b}}}+f_{3}^{V}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]u_{\Lambda_{b}} \ &\langle\Lambda|ar{s}\gamma^{\mu}\gamma_{5}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{A}\gamma^{\mu}-f_{2}^{A}rac{i\sigma^{\mu
u}q_{
u}}{m_{\Lambda_{b}}}+f_{3}^{A}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]\gamma_{5}u_{\Lambda_{b}} \ &\langle\Lambda|ar{s}i\sigma^{\mu
u}q_{
u}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{TV}rac{\gamma^{\mu}q^{2}-q^{\mu}q}{m_{\Lambda_{b}}}-f_{2}^{TV}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]u_{\Lambda_{b}} \ &\langle\Lambda|ar{s}i\sigma^{\mu
u}q_{
u}\gamma_{5}b|\Lambda_{b}
angle \ = \ ar{u}_{\Lambda}\left[f_{1}^{TA}rac{\gamma^{\mu}q^{2}-q^{\mu}q}{m_{\Lambda_{b}}}-f_{2}^{TV}rac{q^{\mu}}{m_{\Lambda_{b}}}
ight]v_{5}u_{\Lambda_{b}} \end{aligned}$$

In the $m_b \rightarrow \infty$ limit

$$\langle \Lambda(p',s') | \, ar{s} \Gamma Q \, | \Lambda_Q(v,0,s)
angle \, = \, ar{u}(p',s') [F_1(p' \cdot v) + \psi F_2(p' \cdot v)] \Gamma \, \mathcal{U}(v,s)$$

Lattice actions & parameters

RBC/UKQCD lattices (2+1 domain wall)

Static ($m_b = \infty$) heavy quarks

Set	$N_s^3 \times N_t \times N_5$	am_5	$am_s^{(\mathrm{sea})}$	$am_{u,d}^{(\mathrm{sea})}$	$a~({\rm fm})$	$am_s^{(\mathrm{val})}$	$am_{u,d}^{(\mathrm{val})}$	$m_{\pi}^{(\mathrm{vv})}$ (MeV)	$m_{\eta_s}^{(\mathrm{vv})}$ (MeV)	$N_{\rm meas}$
C14	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.04	0.001	245(4)	761(12)	2705
C24	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.04	0.002	270(4)	761(12)	2683
C54	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.04	0.005	336(5)	761(12)	2780
C53	$24^3 \times 64 \times 16$	1.8	0.04	0.005	0.1119(17)	0.03	0.005	336(5)	665(10)	1192
F23	$32^3 \times 64 \times 16$	1.8	0.03	0.004	0.0849(12)	0.03	0.002	227(3)	747(10)	1918
F43	$32^3 \times 64 \times 16$	1.8	0.03	0.004	0.0849(12)	0.03	0.004	295(4)	747(10)	1919
F63	$32^3 \times 64 \times 16$	1.8	0.03	0.006	0.0848(17)	0.03	0.006	352(7)	749(14)	2785

1-loop operator matching: T Ishikawa et al., JHEP 1105, 040 (2011)

Form factor shape

In static limit, z-expansion is not applicable

- Instead, try monopole, dipole, etc. (Latter is a better fit to the data)
- Incorporate discretization and quark mass effects

$$F=rac{N}{(X+E_{\Lambda}-m_{\Lambda})^2}\left[1+d(aE_{\Lambda})^2
ight]$$

$$X = X_0 + c_\ell [m_\pi^2 - (m_\pi^{
m phys})^2] + c_s [m_{\eta_s}^2 - (m_{\eta_s}^{
m phys})^2]$$

In practice, c's & d's small, consistent with zero [except c_{l,+} = 0.094(32)]

$\Lambda_b \rightarrow \Lambda \ l^+l^-$

In the static limit, 10 form factors reduce to 2 $\langle \Lambda(p',s') | \bar{s} \Gamma Q | \Lambda_Q(v,0,s) \rangle = \bar{u}(p',s') [F_1(p' \cdot v) + \psi F_2(p' \cdot v)] \Gamma U(v,s)$

W Detmold *et al.*, Phys Rev D87 (2013)

 $\Lambda_b \rightarrow \Lambda l^+l^-$

CDF: red; LQCD: blue

LHCb: blue; binned LQCD: red/yellow

W Detmold *et al.*, Phys Rev D87 (2013) CDF, public note 108xx, v0.1, <u>http://www-cdf.fnal.gov/physics/new/bottom/bottom.html</u> LHCb, R Aaij, arXiv:1306.2577

In the static limit, 10 form factors reduce to 2 $\langle p(p',s') | \bar{s} \Gamma Q | \Lambda_Q(v,0,s) \rangle = \bar{u}(p',s') [F_1(p' \cdot v) + \psi F_2(p' \cdot v)] \Gamma U(v,s)$

 $\Lambda_b \rightarrow p \, l \, v$: shed light on $|V_{ub}|$ from $B \rightarrow X \, l \, v$ vs. $B \rightarrow \pi \, l \, v$???

W Detmold *et al.*, Phys Rev D88 (2013)

Summary

- First unquenched LQCD calculations of $b \rightarrow s$ form factors
- These reduce uncertainties in f.f., especially at large q^2
- Pseudoscalar mesons: Precise short distance, LHCb observation of resonance
- Vector mesons: complement sum rule calculations, many observables, final results soon
- Baryons: systematically improvable uncertainties, hint of high q² resonance