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Brief introduction



Rare b decays

Most important short-distance effects in b ➙ s ll come from:
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W Altmannshofer et al., JHEP01(2009)019.

SM Wilson coefficients (NNLL order):
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Lattice QCD and b ➙ s

✤ Compute hadronic matrix elements of local operators

✤ Exclusive modes, with (at most) 1 hadron in final state 

✤ Require lattice momenta to be small compared to lattice scale

Thus we can contribute by calculating

B ➙ K l l 

B ➙ K* l l  &  Bs ➙ φ l l 

Λb ➙ Λ l l 

form factors in the low recoil (large q2) regime

Caveat: long-distance effects (resonant contributions) not included



B ➙ K 
form factors

C Bouchard et al., (HPQCD)



B ➙ K form factors
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✤ “Gold-plated” matrix elements: QCD-stable |i ⟩ and |f ⟩ states

✤ Observables: differential branching fraction dΓ/dq2,               
forward/backward asymmetry AFB (zero in SM), and “flat term” 
FH



Lattice actions & parameters

3

ens L3 ⇥Nt r1/a au0msea u0 Nconf Ntsrc amval
l amval

s amb aEsim
bb̄ T

C1 243 ⇥ 64 2.647(3) 0.005/0.05 0.8678 1200 2 0.0070 0.0489 2.650 0.28356(15) 12 – 15

C2 203 ⇥ 64 2.618(3) 0.01/0.05 0.8677 1200 2 0.0123 0.0492 2.688 0.28323(18) 12 – 15

C3 203 ⇥ 64 2.644(3) 0.02/0.05 0.8688 600 2 0.0246 0.0491 2.650 0.27897(20) 12 – 15

F1 283 ⇥ 96 3.699(3) 0.0062/0.031 0.8782 1200 4 0.00674 0.0337 1.832 0.25653(14) 21 – 24

F2 283 ⇥ 96 3.712(4) 0.0124/0.031 0.8788 600 4 0.01350 0.0336 1.826 0.25558(28) 21 – 24

TABLE I: Left to right: labels for the three coarse and two fine ensembles used in this analysis; lattice volume;
inverse lattice spacing in r1-units; light/strange sea-quark masses; tadpole improvement factor u0 = hplaquettei1/4;
number of configurations; number of time sources; valence light-quark mass; valence strange-quark mass; b-quark
mass; spin-averaged bb̄ ground state energies used to relate our B meson simulation energies to the physical MB ;

and the range of temporal separations between the B meson and the kaon.

order, the relevant lattice vector (J = Vµ) and tensor
(J = Tµ⌫) currents are

V(0)
µ =  s �µ b, (12)

V(1)
µ = � 1

2amb
 s �µ � ·r b, (13)

T (0)
µ⌫ =  s �µ⌫  b, (14)

T (1)
µ⌫ = � 1

2amb
 s �µ⌫ � ·r b. (15)

For the tensor current we focus on the Tk0 component,
where heavy-quark symmetry allows us to relate it to the
vector current.

The continuum vector current hVµi is matched to the
lattice vector current by

hVµi = (1 + ↵s⇢
(Vµ)
0 )hV(0)

µ i+ hV(1),sub
µ i, (16)
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hV(1),sub
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µ i � ↵s⇣
Vµ

10 hV(0)
µ i. (17)

The matching calculation is done to one loop using mass-
less HISQ lattice perturbation theory. Details of the cal-
culation, and values for the matching coe�cients, are
given in [25]. In matching the temporal component of
the vector current we omit O (↵s⇤QCD/mb) contributions
specified in [25]. To justify their omission, we generated
data for these terms and verified their contributions are
sub-percent, consistent with the findings of [26].

The continuum tensor current hTk0i is matched to the
lattice current by

hTk0i = (1 + ↵s⇢
(T )
0 )hT (0)

k0 i+ hT (1),sub
k0 i, (18)
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T
10hT (0)

k0 i. (19)

As mentioned above, heavy-quark symmetry of the
NRQCD b quark allows the tensor current renormaliza-
tion to be recast in terms of vector current quantities:

T (0)
k0 = V(0)

k , T (1)
k0 = �V(1)

k , and ⇣T10 = �⇣Vk
10 .
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FIG. 2: Ensemble C2 fit results to the ground state

energy aE
sim(0)
B for various source-sink smearing

combinations. There is a factor of roughly four
improvement from simultaneous fits to local (“l”) and
smeared (“s”) sources and sinks. The shaded band

shows the best-fit result using all smearing
combinations.

IV. EXTRACTING MATRIX ELEMENTS

Hadronic matrix elements are extracted from fits to
two and three point correlator data using Bayesian fitting
techniques [27].

A. B Meson Two Point Fits

Two point correlator data for B mesons are fit to the
ansatz

C↵�
B (t) =

2N�1X

n=0

b↵(n)b�(n)†(�1)nte�E
sim(n)

B t, (20)

where

b↵(n) =
a3h�↵

B |B(n)iq
2a3E(n)

B

. (21)

r1 = 0.3133(23) fm
1/a (GeV)
1.667(12)
1.649(12)
1.665(12)
2.330(17)
2.338(17)

mπ(MeV)
267(2)
348(3)
488(4)
313(2)
438(3)

ens
C1
C2
C3
F1
F2

MILC lattices (2+1 asqtad staggered)
HISQ light & strange quarks

NRQCD bottom quarks

C. Bouchard et al., arXiv:1306.0434, arXiv:1306:2384

1-loop operator matching: C Monahan, J Shigemitsu, RR Horgan, PRD87 (2013)
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FIG. 2: Form factors for B → K!+!−.

K̄0!+!−) and B± → K±!+!−. The observables we cal-
culate from the form factors introduce additional depen-
dence on MB, MK , and τB . In what follows we calculate
isospin averaged values for each observable. Values for
most input parameters are taken from the PDG [29]. We
use 1/αEW = 128.957(20) [30], |VtbV ∗

ts| = 0.0405(8) [31],
and Wilson coefficients from [32] with 2% errors [33]. In-
put parameter errors are propagated to errors reported
for observables [34].
Following Ref. [1] and restricting ourselves to the Stan-

dard Model, the differential decay rate is

dΓ!/dq
2 = 2a! + 2/3 c!, (1)

where a! and c!, defined in [11], are functions of form
factors, Wilson coefficients, and other input parameters.
We convert decay rates into branching fractions using

the B meson’s mean lifetime, B! = Γ!τB . The resulting
differential branching fractions are shown for decay into
a generic light dilepton final state in Fig. 3a and a di-
tau final state in Fig. 3c. Differential branching fractions
for dielectron and dimuon final states are nearly identi-
cal and when a generic light dilepton final state is refer-
enced, values are obtained using the average differential
branching fraction. Figs. 3b and 3d show error contri-

butions from form factors, input parameters, and Wilson
coefficients, denoted Ci. Uncertainty in the form factors
dominates. Form factor errors are better controlled in the
region of simulated q2. As a result, differential branch-
ing fractions for B → Kτ+τ− and for light dilepton final
states at large q2 are more precisely determined.
Integrating the differential branching fractions over q2

bins defined by (q2low, q
2
high) permits direct comparison

with experiment,

B!(q
2
low, q

2
high) ≡

∫ q2high

q2
low

dq2 dB!/dq
2 . (2)

Integrating over the full kinematic range yields the total
branching fractions

107Be(4m
2
e, q

2
max) = 5.55± 1.19,

107Bµ(4m
2
µ, q

2
max) = 5.54± 1.19,

107Bτ (14.18 GeV2, q2max) = 1.41± 0.15, (3)

where q2max = (MB −MK)2. For the ditau final state we
begin the integration at 14.18 GeV2 to account for the
experimentally vetoed ψ(2S) region. A detailed compar-
ison of our Standard Model branching fraction results
with experiment, and other calculations, is given in Ta-
ble I. The results of Altmannshofer and Straub [4] use
form factors from Ref. [35], in which quenched lattice [36]
and light cone sum rule [6] results are combined. The re-
sults of Bobeth et al. [5] use form factors obtained from
light cone sum rules in Ref. [7] and extrapolated to large
q2 via z expansion.
The ratio of dimuon and dielectron branching fractions

Rµ
e (q

2
low, q

2
high) ≡

∫ q2high
q2
low

dq2 dBµ/dq2

∫ q2
high

q2
low

dq2 dBe/dq2
, (4)

is a potentially sensitive probe of new physics [37], though
measurements thus far [12, 13] have been consistent with
the Standard Model. We extend the ratio to ditau fi-
nal states, where new physics contributions may be even
larger [38] and find

Rµ
e (4m

2
µ, q

2
max) = 1.00029(69), (5)

Rτ
µ(14.18 GeV2, q2max) = 1.174(40), (6)

Rτ
e (14.18 GeV2, q2max) = 1.178(41), (7)

Rτ
! (14.18 GeV2, q2max) = 1.176(40). (8)

Correlations among form factors are accounted for in the
calculation of the ratios. We give values of the branching
fraction ratios in different q2 bins in Tables II and III.
The angular distribution of the differential decay rate

is given by

1

Γ!

dΓ!

d cos θ!
=

1

2
F !
H +A!

FB cos θ!+
3

4
(1−F !

H)(1− cos2 θ!),

(9)
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FIG. 2: Form factors for B → K!+!−.
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culate from the form factors introduce additional depen-
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ts| = 0.0405(8) [31],
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ison of our Standard Model branching fraction results
with experiment, and other calculations, is given in Ta-
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form factors from Ref. [35], in which quenched lattice [36]
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Correlations among form factors are accounted for in the
calculation of the ratios. We give values of the branching
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(9)C. Bouchard et al., arXiv:1306.0434, arXiv:1306:2384
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FIG. 3: (left) Standard Model differential branching fractions and experiment. (right) Form factor, input parameter,
and Wilson coefficient (Ci) contributions to the error. The total error is the sum in quadrature of the components.

where θ! is the angle between the B and "− as mea-
sured in the dilepton rest frame. The “flat term” F !

H ,
introduced by Bobeth et al. [39], is suppressed by m2

! in
the Standard Model and is potentially sensitive to new
physics [1, 5]. The “forward-backward asymmetry” A!

FB

is zero in the Standard Model (up to negligible QED
contributions [39, 40]) so is also a sensitive probe of new
physics. The flat term [39]

F !
H(q2low, q

2
high) =

∫ q2high
q2
low

dq2 (a! + c!)

∫ q2
high

q2
low

dq2 (a! + 1/3 c!)
(10)

is constructed as a ratio to reduce uncertainties. Eval-
uated in experimentally motivated q2 bins, values for
F e,µ,τ
H are given in Tables II and III.

SUMMARY AND OUTLOOK

Employing the first unquenched lattice QCD form
factors [11], we calculate: Standard Model differential
branching fractions; branching fractions integrated over
experimentally motivated q2 bins; ratios of branching
fractions potentially sensitive to new physics; and the flat
term in the angular distribution of the differential decay
rate. Where available, we compare with experiment and
previous calculations. For q2 >

∼ 10 GeV2 our results are
more precise than experiment or previous calculations.
For all q2 our results are consistent with previous calcu-
lations and experiment.

Predictions for observables involving the ditau final
state are particularly precise and potentially sensitive to
new physics. Given this combination, measurements of
Bτ , Rτ

! , or F
τ
H by experimentalists would be particularly

interesting and welcome.

HPQCD Collaboration
(using NRQCD+HISQ 
valence on MILC 
nf=2+1 asqtad)
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state and (bottom) a ditau final state.

Appendix A: Modified z Expansion

In recent D ! K(⇡) semileptonic decay analyses we
developed the modified z expansion [23, 24] in which the
chiral/continuum and kinematic extrapolations are per-
formed in a single step. These works, and our more re-
cent D ! K analysis [47], demonstrate the utility of
the modified z expansion in semileptonic D decays. The
kinematic extrapolations required for semileptonic D de-
cays are, however, mild compared to those needed for
semileptonic B decays. In addition to the two-step chi-
ral/continuum and kinematic extrapolation of Sec. V, we
perform the extrapolations simultaneously via the mod-
ified z expansion. This allows us to test the modified z
expansion for semileptonic decays requiring sizable kine-
matic extrapolation and provides a consistency check of
our final results. We modify the BCL parameterized z

expansion [33] and fit the form factor data to

f0(q
2) = B0

KX

k=0

a0kD
0
k z(q

2)k, (A1)

fi(q
2) =

Bi

Pi(q2)

K�1X

k=0

aikD
i
k

h
z(q2)k � (�1)k�K k

K
z(q2)K

i
,

(A2)

where i = +, T and

B = 1 + b1(aEK)2 + b2(aEK)4, (A3)

Dk = 1 + c
(k)
1 xl + c

(k)
2 xl(log xl + �) + c

(k)
3 �xs

+ d
(k)
1 (a/r

1

)2 + d
(k)
2 (a/r

1

)4

+ e(k)
�
1
2�M

2
⇡ + �M2

K

�
, (A4)

xl =
(MHISQ

⇡ )2

(4⇡F⇡)2
, (A5)

�xs =
(MHISQ

⌘s
)2 �M2

⌘phys

s

(4⇡F⇡)2
, (A6)

�M2
⇡,K =

(Masqtad
⇡,K )2 � (MHISQ

⇡,K )2

(4⇡F⇡)2
. (A7)

Indices specifying the form factor (0,+, T ) are implicitly
assumed in Eqs. (A3, A4) above.
In the modified z expansion P and z are calculated sep-

arately for each ensemble using simulation masses and
momenta. We include the function B to account for
momentum-dependent discretization e↵ects. The func-
tion Dk contains the NLO chiral analytic terms with co-
e�cients ci, e, and d1 and the NNLO d2 term. The c1 and
c2 terms extrapolate in light quark mass and accommo-
date finite volume e↵ects via a shift in the chiral log [48].
We calculate the shift � for each ensemble using

� =
4

M⇡L

X

r 6=0

K1(rM⇡L)

r
, (A8)

where r is a three-vector whose integer components run
over all lattice sites (r = |r|) and K1 is the order one
modified Bessel function of the second kind. To take the
infinite volume limit, we set � = 0. The c3 term ab-
sorbs strange quark mass mistuning by comparing the
⌘s meson mass obtained from simulation strange quark
masses [23] to the “physical” ⌘s mass from [49]. The e
term absorbs slight di↵erences between the valence and
sea quark masses due to our mixed (HISQ and asqtad) ac-
tion. The di terms account for discretization e↵ects. As
in Eq. (35) we account for heavy-quark mass-dependent

discretization e↵ects by making the d
(k)
i mild functions

of amb

d
(k)
1 ! d

(k)
1 (1 + f

(k)
1 �xb + f

(k)
2 �x2

b ),

d
(k)
2 ! d

(k)
2 (1 + f

(k)
3 �xb + f

(k)
4 �x2

b ), (A9)



Resonant contribution

R. Aaij et al., (LHCb) arXiv:1307.7595

of the resonances that are subsequently anal-
ysed, resolution e↵ects are neglected. While
the  (2S) state is narrow, the large branching
fraction means that its non-Gaussian tail is
significant and hard to model. The  (2S) con-
tamination is reduced to a negligible level by
requiring m

µ

+
µ

� > 3770MeV/c2. This dimuon
mass range is defined as the low recoil region
used in this analysis.
In order to estimate the amount of back-

ground present in the m
µ

+
µ

� spectrum, an un-
binned extended maximum likelihood fit is per-
formed to the K+µ+µ� mass distribution with-
out the B+ mass constraint. The signal shape
is taken from a mass fit to the B+!  (2S)K+

mode in data with the shape parameterised
as the sum of two Crystal Ball functions [17],
with common tail parameters, but di↵erent
widths. The Gaussian width of the two compo-
nents is increased by 5% for the fit to the low
recoil region as determined from simulation.
The low recoil region contains 1830 candidates
in the signal mass window, with a signal to
background ratio of 7.8.
The dimuon mass distribution in the low

recoil region is shown in Fig. 1. Two peaks
are visible, one at the low edge corresponding
to the expected decay  (3770)! µ+µ� and
a wide peak at a higher mass. In all fits, a
vector resonance component corresponding to
this decay is included. Several fits are made to
the distribution. The first introduces a vector
resonance with unknown parameters. Subse-
quent fits look at the compatibility of the data
with the hypothesis that the peaking structure
is due to known resonances.
The non-resonant part of the mass fits con-

tains a vector and axial vector component. Of
these, only the vector component will inter-
fere with the resonance. The probability den-
sity function (PDF) of the signal component
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Figure 1: Dimuon mass distribution of data with
fit results overlaid for the fit that includes con-
tributions from the non-resonant vector and ax-
ial vector components, and the  (3770),  (4040),
and  (4160) resonances. Interference terms are
included and the relative strong phases are left
free in the fit.

is given as

Psig / P (m
µ

+
µ

�) |A|2 f 2(m2
µ

+
µ

�) , (1)

|A|2 = |AV
nr +

X

k

ei�kAk

r |2 + |AAV
nr |2 , (2)

where AV
nr and AAV

nr are the vector and axial
vector amplitudes of the non-resonant decay.
The shape of the non-resonant signal in m

µ

+
µ

�

is driven by phase space, P (m
µ

+
µ

�), and the
form factor, f(m2

µ

+
µ

�). The parametrisation of
Ref. [18] is used to describe the dimuon mass
dependence of the form factor. This form fac-
tor parametrisation is consistent with recent
lattice calculations [19]. In the SM at low re-
coil, the ratio of the vector and axial vector
contributions to the non-resonant component is
expected to have negligible dependence on the
dimuon mass. The vector component accounts
for (45± 6)% of the di↵erential branching frac-
tion in the SM (see, for example, Ref. [20]).
This estimate of the vector component is as-
sumed in the fit.
The total vector amplitude is formed by sum-
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Traditional form factor basis
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Helicity basis
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Lattice actions & parameters

2

〈V (p′, ε)|q̄γ̂µb|B(p)〉 =
2iV (q2)

mB + mV
εµνρσε∗νp′ρpσ (2)

〈V (p′, ε)|q̄γ̂µγ̂5b|B(p)〉 = 2mV A0(q
2)

ε∗ · q
q2

qµ + (mB + mV )A1(q
2)

(

ε∗µ −
ε∗ · q
q2

qµ

)

−A2(q
2)

ε∗ · q
mB + mV

(

(p + p′)µ −
m2

B − m2
V

q2
qµ

)

(3)

qν〈V (p′, ε)|q̄σ̂µνb|B(p)〉 = 2T1(q
2)εµρτσε∗ρpτp′σ (4)

qν〈V (p′, ε)|q̄σ̂µν γ̂5b|B(p)〉 = iT2(q
2)[ε∗µ(m2

B − m2
V ) − (ε∗ · q)(p + p′)µ]

+iT3(q
2)(ε∗ · q)

[

qµ −
q2

m2
B − m2

V

(p + p′)µ

]

(5)

TABLE I: Parameters of the MILC 2+1 asqtad gauge field
configurations used in this work. r1/a values come from [24].
We take r1 = 0.3133(23) fm from [25].

label # N3
x × Nt amsea

! /amsea
s r1/a 1/a (GeV)

c007 2109 203
× 64 0.007/0.05 2.625(3) 1.660(12)

c02 2052 203
× 64 0.02/0.05 2.644(3) 1.665(12)

f0062 1910 283
× 96 0.0062/0.031 3.699(3) 2.330(17)

III. MONTE CARLO DETAILS

A. Gauge field configurations

We used a subset of the MILC collaboration configu-
rations [24, 26]. The action used by MILC is the 1-loop
improved Symanzik-improved gauge action [27, 28] and
include the effects of 2 + 1 flavors of dynamical fermions
using the O(a2) tadpole-improved (AsqTad) staggered
quark action [29–33] making use of the fourth-root pro-
cedure to account for the multiple tastes present in stag-
gered fermion formulations (e.g. see [34, 35]).

We chose these the subset listed in Table I in order to
vary both the up/down sea quark mass msea

% and the lat-
tice spacing a: we chose 2 “coarse” lattices (c007 and
c02) on which to test quark mass dependence, and 1
“fine” lattice (f0062) with approximately the same Gold-
stone pion mass as on c007. (Results for meson masses
will be discussed below and in Table III.) The mass de-
noted by msea

s is only approximately tuned to the phys-
ical strange quark mass. (Precise tuning must be done
self-consistently and requires a great deal of computa-
tional effort, especially for the first set of ensembles with
a particular action.)

A calculation of B → π&ν form factors on a similar

TABLE II: Valence quark parameters.

config # amval
! /amval

s uP amb n uL

c007 16872 0.007/0.04 2.8 2

c02 16416 0.02/0.04 2.8 2

f0062 15280 0.0062/0.031 1.95 2

subset of MILC lattices [36] found very mild quark mass
dependence and no statistically significant dependence on
the lattice spacing. Since the signal-to-noise ratio is much
worse for correlation functions involving vector mesons in
place of pseudoscalar mesons, we chose to invest compu-
tational effort in obtaining a large statistical sample on
these 3 ensembles. As will be shown in the results sec-
tion, this set of configurations is sufficient given the other
sources of uncertainties.

B. Correlation functions

We use the same action for the light and strange va-
lence quarks as was used in the configuration generation.

For the heavy quark, we use lattice NRQCD [37]. The
specific form of the action is the same as was used in
earlier work by the HPQCD collaboration (e.g. [36]).

SORT OUT UPPER/LOWER INDICES: We use local
interpolating operators ΦB ∼ q̄′γ̂5b and ΦV ∼ q̄′γ̂jq to
annihilate B and V mesons, respectively. We compute
the following 3-point correlation functions for J = q̄Γb,
Γ ∈ {γ̂µ, γ̂µγ̂5, σ̂µν}: 〈ΦV (x)J(y)Φ†

B(z)〉.
Paragraph about identities satisfied for correlation

functions which use 2-component heavy quarks.
In fact we analyze correlation functions which project

4

TABLE III: Meson masses (statistical error only). Physical values ignore isospin splittings.

ensemble mB (GeV) mBs
(GeV) mπ (MeV) mK (MeV) mηs

(MeV) mρ (MeV) mK∗ (MeV) mφ (MeV)

c007 5.5439(32) 5.6233(7) 313.4(1) 563.1(1) 731.9(1) 892(28) 1045(6) 1142(3)

c02 5.5903(44) 5.6344(15) 519.2(1) 633.4(1) 730.6(1) 1050(7) 1106(4) 1162(3)

f0062 5.5785(22) 5.6629(13) 344.3(1) 589.3(2) 762.0(1) 971(7) 1035(4) 1134(2)

“physical” 5.279 5.366 140 495 686 775 892 1020

2. Bayesian fits

Our Bayesian approach to fitting correlation functions
follows Refs. [38, 39]. The number of exponentials in-
cluded in the fit functions is increased so that we can
fit data closer to the meson sources and sinks. Gaussian
priors are introduced in order to constrain those fit pa-
rameters which are unconstrained by the numerical data.

3. Results

Paragraph about agreement between fitting methods.
Since we make use of an effective field theory to treat

the b quark, the net energy of a B meson is obtained by
adding the renormalized b quark mass to the energy of
the B meson in the Monte Carlo calculation Esim. For a
B meson with spatial momentum k relative to the lattice
rest frame

E(k) = Esim(k) + Cv . (10)

The additional term is renormalized by interactions:

Cv = Zm(amb) + aE0 . (11)

(At tree level, Zm = 1 and E0 = 0.) The multiplica-
tive and additive renormalization constants have been
computed perturbatively [40]; however, we can determine
them directly from Monte Carlo calculations of hadron
dispersion relations using [41]

Cv =
a2k2 − a2[E2(k) − E2(0)]

2nQa[E(k) − E(0)]
(12)

where nQ is the number of heavy quarks in the hadron.
Since Cv only depends on the heavy quark and gluon ac-
tions, the shift in hadron energies does not depend on
the hadronic state. We can compute the energy of the
1S ηb most precisely, so we determine Cv using with the
ηb momentum |k| = 2π/(aNx). We find consistent re-
sults if we use |k| = 4π/(aNx) and both agree with the
perturbative determination. Within the 0.15% statisti-
cal uncertainties, we find no dependence on the sea quark
mass. Central values for the coarse and fine lattices are
given in Table IV.

We must match the currents involving NRQCD b
quarks to the continuum currents of interest. The re-
sults presented in this paper use the matching performed

TABLE IV: Heavy quark renormalization parameters (given
the heavy quark parameters as in Table II) [36, 40, 42].

ensemble Cv ρ(0) ρ(k) c(T0) c(Tj)

c 2.825 0.043 0.270 0.076 0.076

f 1.996 −0.058 0.332 0.320 0.320

at leading order in 1/mb. In the calculation of B → π
form factors on comparable lattices [36] the effects of in-
cluding next-to-leading order operators were O(1%) or
smaller. Neglecting these contributions will not lead to
a significant error in light of the other uncertainties in
the present calculation. Nevertheless the perturbative
matching has been completed to NLO [MUELLER] and
the code has been written to compute the relevant cor-
relation function [MEINEL??]. For the temporal µ = 0
and spatial components µ = k of the vector Γµ = γ̂µ and
axial vector currents Γµ = γ̂µγ̂5 we write

(q̄ΓV,A
µ b)|cont

.
= (1 + αsρ

(µ))(c̄ΓV,A
µ b)|latt (13)

where the
.
= symbol means that the operators on either

side of the relation have the same matrix elements up
to the stated accuracy. Since staggered fermions have
a remnant chiral symmetry, the perturbative expansions
are equal for vector and axial vector currents. Results
for ρ(0) [40] and ρ(k) [36] are reproduced in Table IV.

The tensor current matching coefficients are defined
through

(q̄σ̂µνb)
.
= (1 + αsc

(Tν))(ψ̄σ̂µνΨ) (14)

CHECK THIS EQUATION. STATEMENT ABOUT
SCALE DEPENDENCE OF TENSOR CURRENT.
EQUIVALENCE OF ν = 0 and ν = j.

Results for the coefficients c(Tµ), are given in Table IV,
reproduced from [42] and private communication from
those authors.

Obtaining the form factors from the fit parameters.

Some statements about quark mass and lattice spacing
dependence.

MILC lattices (2+1 asqtad staggered)
asqtad light & strange quarks

NRQCD bottom quarks



Operator matching

✤ Effective field theory, cutoff by lattice

✤ HQET power counting: requires working with low recoil

✤ Current matching
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TABLE III: Meson masses (statistical error only). Physical values ignore isospin splittings.

ensemble mB (GeV) mBs
(GeV) mπ (MeV) mK (MeV) mηs

(MeV) mρ (MeV) mK∗ (MeV) mφ (MeV)

c007 5.5439(32) 5.6233(7) 313.4(1) 563.1(1) 731.9(1) 892(28) 1045(6) 1142(3)

c02 5.5903(44) 5.6344(15) 519.2(1) 633.4(1) 730.6(1) 1050(7) 1106(4) 1162(3)

f0062 5.5785(22) 5.6629(13) 344.3(1) 589.3(2) 762.0(1) 971(7) 1035(4) 1134(2)

“physical” 5.279 5.366 140 495 686 775 892 1020

2. Bayesian fits

Our Bayesian approach to fitting correlation functions
follows Refs. [38, 39]. The number of exponentials in-
cluded in the fit functions is increased so that we can
fit data closer to the meson sources and sinks. Gaussian
priors are introduced in order to constrain those fit pa-
rameters which are unconstrained by the numerical data.

3. Results

Paragraph about agreement between fitting methods.
Since we make use of an effective field theory to treat

the b quark, the net energy of a B meson is obtained by
adding the renormalized b quark mass to the energy of
the B meson in the Monte Carlo calculation Esim. For a
B meson with spatial momentum k relative to the lattice
rest frame

E(k) = Esim(k) + Cv . (10)

The additional term is renormalized by interactions:

Cv = Zm(amb) + aE0 . (11)

(At tree level, Zm = 1 and E0 = 0.) The multiplica-
tive and additive renormalization constants have been
computed perturbatively [40]; however, we can determine
them directly from Monte Carlo calculations of hadron
dispersion relations using [41]

Cv =
a2k2 − a2[E2(k) − E2(0)]

2nQa[E(k) − E(0)]
(12)

where nQ is the number of heavy quarks in the hadron.
Since Cv only depends on the heavy quark and gluon ac-
tions, the shift in hadron energies does not depend on
the hadronic state. We can compute the energy of the
1S ηb most precisely, so we determine Cv using with the
ηb momentum |k| = 2π/(aNx). We find consistent re-
sults if we use |k| = 4π/(aNx) and both agree with the
perturbative determination. Within the 0.15% statisti-
cal uncertainties, we find no dependence on the sea quark
mass. Central values for the coarse and fine lattices are
given in Table IV.

We must match the currents involving NRQCD b
quarks to the continuum currents of interest. The re-
sults presented in this paper use the matching performed

TABLE IV: Heavy quark renormalization parameters (given
the heavy quark parameters as in Table II) [36, 40, 42].

ensemble Cv ρ(0) ρ(k) c(T0) c(Tj)

c 2.825 0.043 0.270 0.076 0.076

f 1.996 −0.058 0.332 0.320 0.320

at leading order in 1/mb. In the calculation of B → π
form factors on comparable lattices [36] the effects of in-
cluding next-to-leading order operators were O(1%) or
smaller. Neglecting these contributions will not lead to
a significant error in light of the other uncertainties in
the present calculation. Nevertheless the perturbative
matching has been completed to NLO [MUELLER] and
the code has been written to compute the relevant cor-
relation function [MEINEL??]. For the temporal µ = 0
and spatial components µ = k of the vector Γµ = γ̂µ and
axial vector currents Γµ = γ̂µγ̂5 we write

(q̄ΓV,A
µ b)|cont

.
= (1 + αsρ

(µ))(c̄ΓV,A
µ b)|latt (13)

where the
.
= symbol means that the operators on either

side of the relation have the same matrix elements up
to the stated accuracy. Since staggered fermions have
a remnant chiral symmetry, the perturbative expansions
are equal for vector and axial vector currents. Results
for ρ(0) [40] and ρ(k) [36] are reproduced in Table IV.

The tensor current matching coefficients are defined
through

(q̄σ̂µνb)
.
= (1 + αsc

(Tν))(ψ̄σ̂µνΨ) (14)

CHECK THIS EQUATION. STATEMENT ABOUT
SCALE DEPENDENCE OF TENSOR CURRENT.
EQUIVALENCE OF ν = 0 and ν = j.

Results for the coefficients c(Tµ), are given in Table IV,
reproduced from [42] and private communication from
those authors.

Obtaining the form factors from the fit parameters.

Some statements about quark mass and lattice spacing
dependence.

Gulez et al., PRD69 (2003), PRD73 (2006); Mueller et al., PRD83 (2011)
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Form factor shape

Series (z) expansion
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Kinematic-continuum-mass fits
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Bs ➙ φ form factors
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Status

✤ Results preliminary: final checks & estimates of systematic 
uncertainties underway

✤ Will publish form factors, along with SM predictions for 
observables using LQCD form factors

Caveat

✤ Lattice calculations done with kinematics such that K* and φ are 
stable.  Physical K* is broad, φ less so.

✤ Not gold-plated.  Is consistency between LQCD & LCSR 
reassuring?
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Λb ➙ Λ form factors
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Λb ➙ Λ form factors
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Lattice actions & parameters

RBC/UKQCD lattices (2+1 domain wall)

6

Set N

3
s ⇥ Nt ⇥ N5 am5 am

(sea)
s am

(sea)
u,d a (fm) am

(val)
s am

(val)
u,d m

(vv)
⇡ (MeV) m

(vv)
⌘s (MeV) Nmeas

C14 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.04 0.001 245(4) 761(12) 2705

C24 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.04 0.002 270(4) 761(12) 2683

C54 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.04 0.005 336(5) 761(12) 2780

C53 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.03 0.005 336(5) 665(10) 1192

F23 323 ⇥ 64⇥ 16 1.8 0.03 0.004 0.0849(12) 0.03 0.002 227(3) 747(10) 1918

F43 323 ⇥ 64⇥ 16 1.8 0.03 0.004 0.0849(12) 0.03 0.004 295(4) 747(10) 1919

F63 323 ⇥ 64⇥ 16 1.8 0.03 0.006 0.0848(17) 0.03 0.006 352(7) 749(14) 2785

TABLE I. Parameters of the gauge field ensembles and quark propagators. Here, N5 is the extent of the 5th dimension of the
lattice, and am5 is the domain-wall height [51]. The sea quark masses am

(sea)
q were used in the generation of the ensembles, and

we use the valence-quark masses am

(val)
q when computing domain-wall propagators. The values for the lattice spacings, a, are

taken from Ref. [60]. We denote the valence pion masses by m

(vv)
⇡ , and m

(vv)
⌘s is defined as the mass of the pseudoscalar meson

with valence strange-antistrange quarks, but without any disconnected contributions (we use m

(vv)
⌘s to tune the strange-quark

mass, using the approach of Ref. [61]). Finally, Nmeas is the number of light/strange domain-wall propagator pairs computed
on each ensemble.

a (fm) U(mb, a
�1) u0 Z c

(msa)
� c

(psa)
�

0.112 1.09964 0.875789 0.9383 �0.1660 G� �0.1374 G�

0.085 1.06213 0.885778 0.9526 �0.1482 G� �0.1294 G�

TABLE II. Renormalization parameters for the matching of LHQET to HQET in the MS scheme, from Ref. [56]. Here, G� is
defined by �

0��

0 = G��, so that G� = +1 if � commutes with �

0, and G� = �1 if � anticommutes with �

0.

B. Lattice parameters

The details of the domain-wall/Iwasaki gauge field ensembles generated by the RBC/UKQCD collaboration can
be found in Ref. [51]. In Table I, we summarize the main properties of the subset of ensembles used here, as well as
some parameters of the domain-wall propagators that we computed on them. There are ensembles with two di↵erent
lattice spacings a ⇡ 0.11 fm and a ⇡ 0.085 fm, with lattice dimensions of 243 ⇥ 64 and 323 ⇥ 64, respectively, so that
the spatial box size is L ⇡ 2.7 fm in both cases. We will refer to these two lattice spacings as “coarse” and “fine”.
At the coarse lattice spacing, we use only one ensemble with the lightest available up/down sea-quark masses. At the
fine lattice spacing, we use two di↵erent ensembles.

In order to construct the correlation functions discussed in Sec. III A, we require domain-wall propagators with
Gaussian-smeared sources at (x0,x), and with masses corresponding to the strange quark as well as the (degenerate)
up/down quarks. As shown in Table I, we have seven di↵erent combinations of parameters, which we denote as C14,
C24, C54, C53, F23, F43, F63 (where C, F stand for “coarse”and “fine”, and the two digits indicate the light and
strange valence quark masses). In four of these combinations, the valence-quark masses are chosen to be lighter than
the sea-quark masses (“partially quenched”), while the other three combinations have valence-quark masses equal to
the sea-quark masses (unitary case). On each gauge configuration, we use O(10) source locations (x0,x) to increase
statistics. The resulting total numbers of “measurements”, Nmeas, are listed in Table I. On each configuration, we
average the correlators over the source locations prior to further analysis.

In the static heavy-quark action, we use gauge links with one level of HYP smearing with the parameters
(↵1,↵2,↵3) = (1.0, 1.0, 0.5) as introduced in Ref. [62]. The numerical values of the matching coe�cients needed for
the current (11) are taken from Ref. [56] and are given in Table II for the choice of HYP smearing parameters used
here.

C. Results for R+ and R�

At the coarse lattice spacing, we computed the three-point functions (18), (19) for the source-sink separations
t/a = 4, 5, ..., 15, and at the fine lattice spacing for t/a = 5, 6, ..., 20. We computed these three-point functions
for lattice momenta p

0 with 0  |p0|2  9 · (2⇡)2/L2. We then constructed the quantities (27) and (28) using
statistical bootstrap with 1000 samples. When performing the momentum direction average for the largest momentum
|p0|2 = 9·(2⇡)2/L2, we used only p

0 = (2, 2, 1)·2⇡/L and lattice symmetries applied to that (for |p0|2 < 9·(2⇡)2/L2, all

Static (mb = ∞) heavy quarks

1-loop operator matching: T Ishikawa et al., JHEP 1105, 040 (2011)



Form factor shape

✤ In static limit, z-expansion is not applicable

✤ Instead, try monopole, dipole, etc.  (Latter is a better fit to 
the data)

✤ Incorporate discretization and quark mass effects

✤ In practice, c’s & d’s small, consistent with zero                  
[except cl,+ = 0.094(32)]
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FIG. 5. Our predictions for the di↵erential decay rates of ⇤b ! p µ�⌫̄µ (left) and ⇤b ! p ⌧�⌫̄⌧ (right), divided by |Vub|2.
We only show the kinematic region where we have lattice QCD results for the form factors F

+

and F�. The inner error band
originates from the statistical plus systematic uncertainty in F±. The outer error band additionally includes an estimate of
the uncertainty caused by the use of leading-order HQET for the b quark. The plot for ⇤b ! p e�⌫̄e is indistinguishable from
⇤b ! p µ�⌫̄µ and is therefore not shown.

these two uncertainties in quadrature, and hence estimate the systematic uncertainty in |Vub|�2d�/dq2 that is caused
by the use of leading-order HQET to be

s
⇤2

QCD

m

2

b

+
|p0|2
m

2

b

, (41)

where we take ⇤
QCD

= 500 MeV.
We also provide the following results for the integrated decay rate in the kinematic range of our lattice calculation,

14 GeV2  q

2  q

2

max

[where q

2

max

= (m
⇤b � mN )2],

1

|Vub|2
Z q2

max

14 GeV

2

d�(⇤b ! p `

�
⌫̄`)

dq2
dq2 =

8
><

>:

15.3 ± 2.4 ± 3.4 ps�1 for ` = e,

15.3 ± 2.4 ± 3.4 ps�1 for ` = µ,

12.5 ± 1.9 ± 2.7 ps�1 for ` = ⌧.

(42)

Here, the first uncertainty originates from the form factors, and the second uncertainty originates from the use of the
static approximation for the b-quark. With future experimental data, Eq. (42) can be used to determine |Vub|.

VI. DISCUSSION

We have obtained precise lattice QCD results for the ⇤Q ! p form factors defined in the heavy-quark limit. These
results are valuable in their own right, as they can be compared to model-dependent studies performed in the same
limit, and eventually to future lattice QCD calculations at the physical b quark mass. For the ⇤b ! p `

�
⌫̄` di↵erential

decay rate, the static approximation introduces a systematic uncertainty that is of order ⇤
QCD

/mb ⇠ 10% at zero
recoil and grows as the momentum of the proton in the ⇤b rest frame is increased. The total uncertainty for the
integral of the di↵erential decay rate from q

2 = 14GeV2 to q

2

max

= (m
⇤b �mN )2, which is the kinematic range where

we have lattice data, is about 30%. Using future experimental data, this will allow a novel determination of the CKM
matrix element |Vub| with about 15% theoretical uncertainty (the experimental uncertainty will also contribute to
the overall extraction). The theoretical uncertainty is already smaller than the di↵erence between the values of |Vub|
extracted from inclusive and exclusive B meson decays [Eqs. (1) and (2)], and can be reduced further by performing
lattice QCD calculations of the full set of ⇤b ! p form factors at the physical value of the b-quark mass. In such
calculations, the b quark can be implemented using for example a Wilson-like action [41–43], lattice nonrelativistic
QCD [44], or higher-order lattice HQET [45]. Once the uncertainty from the static approximation is eliminated,
other systematic uncertainties need to be reduced. In the present calculation, the second-largest source of systematic

hp(p0, s0)| s̄�Q |⇤Q(v,0, s)i = ū(p0, s0)[F1(p
0·v)+ /vF2(p

0·v)]�U(v, s)

In the static limit, 10 form factors reduce to 2

(using Static+DWF on nf=2+1 
RBC-UKQCD)

With expt data, could lead to  
|Vub|with 15% theory error

Λb ➙ p l ν : shed light on |Vub| from B ➙ X l ν vs. B ➙ π l ν ???



Summary

✤ First unquenched LQCD calculations of b ➙ s form factors 

✤ These reduce uncertainties in f.f., especially at large q2

✤ Pseudoscalar mesons: Precise short distance, LHCb observation 
of resonance

✤ Vector mesons: complement sum rule calculations, many 
observables, final results soon

✤ Baryons: systematically improvable uncertainties, hint of high q2 
resonance


