

Experimental results on b→sll decays

UK Flavour Workshop, September 2013 Mitesh Patel (Imperial College London) On behalf of the LHCb Collaboration

The interest in b \rightarrow sll decays

- Standard Model has no tree level Flavour Changing Neutral Currents (FCNC)
- FCNC only occur as loop processes, proceed via penguin or box diagrams – sensitive to contributions from new (virtual) particles which can then be at same level as SM contributions

 \rightarrow Probe masses > E_{CM} of the accelerator

• e.g. $B_d^0 \rightarrow K^{*0}\gamma$ decay

A historical example $- B_d^0 \rightarrow K^{*0}\gamma$

- In SM: occurs through a dominating W-t loop
- Possible NP diagrams :
- Observed by CLEO in 1993, two years before the direct observation of the top quark
 - BR was expected to be (2-4)×10⁻⁴
 - \rightarrow measured BR = (4.5±1.7)×10⁻⁴

LHCb data-taking

- In total have recorded 3fb⁻¹ at instantaneous luminosities of up to 4×10³² cm⁻²s⁻¹ (twice the design value!) – results that follow from 1fb⁻¹
- While data-taking from 2015 onward will add substantial luminosity, will not be the step-change from higher √s anticipated at the central detectors – need 2018 upgrade for that step-change

 $B_d^0 \rightarrow K^{*0} \mu \mu$

- Flavour changing neutral current \rightarrow loop
- Sensitive to interference between $O_{7\gamma}$, $O_{9,10}$ and their primed counterparts
- Decay described by three angles, θ_{I} , θ_{K} and ϕ , and $q^{2} = m^{2}_{\mu\mu}$, self-tagging \rightarrow angular analysis allows to probe helicity
- Exclusive decay → theory uncertainty from form factors
- Theorists construct angular observables in which uncertainties cancel to some extent

$B_d^0 \rightarrow K^{*0} \mu \mu$ – angular analysis

• Full angular distribution can be simplified by applying "folding" technique: $\varphi \to \varphi + \pi$ for $\varphi < 0$:

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi\,\mathrm{d}q^{2}} \propto I_{1}^{s}\sin^{2}\theta_{K} + I_{1}^{c}\cos^{2}\theta_{K} + \left(I_{2}^{s}\sin^{2}\theta_{K} + I_{2}^{c}\cos^{2}\theta_{K}\right)\cos2\theta_{\ell} + I_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + I_{4}\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi + I_{5}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + \left(I_{6}^{s}\sin^{2}\theta_{K} + I_{6}^{c}\cos^{2}\theta_{K}\right)\cos\theta_{\ell} + I_{7}\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + I_{8}\sin2\theta_{K}\sin2\theta_{\ell}\sin\phi + I_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin2\phi$$

- Fitting this angular distribution allows access to angular observables where the hadronic uncertainties are under control :
 - F_L, the fraction of K^{*0} longitudinal polarisation
 - A_{FB}, the forward-backward asymmetry and zero-crossing point
 - $S_3 \propto A_T^2(1-F_L)$, the asymmetry in K^{*0} transverse polarisation
 - A₉, a T-odd CP asymmetry

$B_d^0 \rightarrow K^{*0} \mu \mu$ – angular analysis

• Full angular distribution can be simplified by applying "folding" technique: $\phi \rightarrow \phi + \pi$ for $\phi < 0$:

$$\begin{aligned} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} &\propto F_L\cos^2\theta_K + \frac{3}{4}(1-F_L)(1-\cos^2\theta_K) + \\ F_L\cos^2\theta_K(2\cos^2\theta_\ell) + \\ \frac{1}{4}(1-F_L)(1-\cos^2\theta_K)(2\cos^2\theta_\ell-1) + \\ S_3(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos2\phi + \\ \frac{4}{3}A_{FB}(1-\cos^2\theta_K)\cos\theta_\ell + \\ A_9(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\sin2\phi \end{aligned}$$

- Fitting this angular distribution allows access to angular observables where the hadronic uncertainties are under control :
 - F_L, the fraction of K^{*0} longitudinal polarisation
 - A_{FB}, the forward-backward asymmetry and zero-crossing point
 - $S_3 \propto A_T^2(1-F_L)$, the asymmetry in K^{*0} transverse polarisation
 - A₉, a T-odd CP asymmetry

$B_d^0 \rightarrow K^{*0} \mu \mu - angular observables$

Good agreement with SM predictions

Theory pred : C. Bobeth *etal.*, JHEP 07 (2011) 067 [CMS: CMS-PAS-BPH-11-009 (5.2 fb⁻¹; ATLAS: ATLAS-CONF-2013-038 (4.9 fb⁻¹); BELLE: Phys. Rev. Lett. 103 (2009) 171801 (605 fb⁻¹; BABAR: Phys. Rev. D73 (2006) 092001 (208 fb⁻¹); CDF: Phys. Rev. Lett 108 (2012) 081807 (6.8 fb⁻¹) (results from CDF Public Note 10894 (9.6 fb⁻¹) not included) ; LHCb: JHEP08 (2013) 131 (1 fb⁻¹)]

A_{CP} in $B_d^0 \rightarrow K^{*0} \mu \mu$

- Have also measured A_{CP} in $B_d{}^0 {\rightarrow} K^{*0} \mu \mu$
 - Use B_d⁰→K*⁰J/ψ control channel, which has same final state, to cancel detector and production asymmetries
 - Use fits to both magnetic field polarities to reduce detector effects

$B_s^0 \rightarrow \phi \mu \mu$ angular analysis

10

Angular distribution and BF of $B^+{\longrightarrow}K^+{\mu}{\mu}$

[JHEP 02 (2013) 105]

- Have measured angular observables and differential BF in $B^+ \rightarrow K^+ \mu \mu$
- BF normalised to $B^+ \rightarrow K^+ J/\psi$,

- B(B⁺ \rightarrow K⁺ $\mu\mu$) = (4.36±0.15±0.18)×10⁻⁷ cf. world average (4.8±0.4)×10⁻⁷

• Differential BF :

Angular distribution and BF of $B^+{\rightarrow}K^+{\mu}{\mu}$

[JHEP 02 (2013) 105]

• Angular distribution is governed by a single angle, described by

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{\mathrm{d}\cos\theta_I} = \frac{3}{4} (1 - F_\mathrm{H}) (1 - \cos^2\theta_I) + \frac{1}{2} F_\mathrm{H} + A_\mathrm{FB} \cos\theta_I$$

- Fit for F_H and the dimuon system forward-backward asymmetry A_{FB}
- In SM, $A_{FB}=0$ and $F_{H}\sim 0$
- Measured A_{CP} = 0.000±0.033(stat.)±0.005(syst.)±0.007(K⁺J/ ψ) [arXiv:1308.1340]

Di- μ resonance in B⁺ \rightarrow K⁺ $\mu\mu$

- Resonance in di-µ system observed at high q² in B⁺→K⁺µµ above open charm threshold (3fb⁻¹)
- Little known about these resonances
 info from BES [PLB660 (2008) 315]
- Unconstrained fit \rightarrow resonance matches measurements of $\psi(4160)$
- Fit allowing parameters to float within Gaussian uncertainties of BES
- First observation of ψ (4160) $\rightarrow \mu\mu$

[arXiv:1307.7595]

BF of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

[JHEP 12 (2012) 125]

- The B⁺ $\rightarrow \pi^{+}\mu^{+}\mu^{-}$ decay is b \rightarrow d process cf. b \rightarrow s decay B⁺ $\rightarrow K^{+}\mu^{+}\mu^{-}$
- In SM, BF suppressed by $|V_{ts}/V_{td}|^2$
- With 1.0 fb⁻¹ LHCb finds 25.3^{+6.7}_{-6.4} B⁺→π⁺μ⁺μ⁻ signal events
 5.2σ excess above background

• $B(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = (2.3 \pm 0.6(stat) \pm 0.1(syst)) \times 10^{-8}$, within 1σ of SM pred.

[arXiv:1304.3035]

- Although $B(B_d^0 \rightarrow K^{*0}\gamma)$ in agreement with SM prediction there could still NP contributions giving e.g. contribution from right-handed γ
- Can explore this through angular analysis of low q² region- electron modes allows to go lower than muon equivalent with no complications from mass terms
- At present have just measured branching fraction:

 $B(B_d^{0} \rightarrow K^{*0}e^+e^-)_{30-1000 \text{ MeV/c}^2} = (3.1^{+0.9}_{-0.8}) \times 10^{-7}$

 Longer term will be able to measure the ratio between the electron and muon modes, R_K, sensitive to e.g. Higgs contributions

 $\Lambda_{\mathsf{B}}^{0} \rightarrow \Lambda^{0} \mu \mu$

[arXiv:1306.2577]

- Λ_B^0 has non-zero spin \rightarrow can allow a different probe of the helicity structure of the b \rightarrow s transition
- Observe 78±12 $\Lambda_B^0 \rightarrow \Lambda^0 \mu \mu$ decays
- Significant signal is found in the q² region above the J/ ψ resonance \rightarrow measure branching fraction
- At lower-q² values upper limits are set on the differential branching fraction

The picture from $b \rightarrow sll$ decays

- $b \rightarrow sll$ results are in excellent agreement with SM predictions
 - $B_d^{\ 0} \rightarrow K^{*0} \mu \mu$ angular analysis
 - Same techniques used for other electroweak penguin measurements A_{CP} in $B_d^0 \rightarrow K^{*0}\mu\mu$ and $B^+ \rightarrow K^+\mu\mu$, angular analysis of $B_s^0 \rightarrow \phi\mu\mu$ and $B^+ \rightarrow K^+\mu\mu$ all also show excellent agreement with SM
 - → Experimental methodology well-validated- no surprises across a range of observables and channels

 Number of theory analyses use e.g. B_d⁰→K^{*0}µµ angular observable measurements to place constraints on scale of new physics, depending on assumptions about coupling strength [...]

Impact – with tree level FV

[Altmannshofer etal., arXiv:1111.1257, JHEP 1202:106]

• Together with other EW penguin measurements, these results confirm in $\Delta F=1$ transitions the picture we have from $\Delta F=2$ (mixing):

(Analysis doesn't include $A_{CP}(B_d^{0} \rightarrow K^{*0}\mu\mu), B^{+} \rightarrow K^{+}\mu\mu, B_s^{0} \rightarrow \phi\mu\mu, ...)$

Impact – with loop CKM-like FV

[Altmannshofer etal., arXiv:1111.1257, JHEP 1202:106]

• Together with other EW penguin measurements, these results confirm in $\Delta F=1$ transitions the picture we have from $\Delta F=2$ (mixing):

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} - \sum_{j=7,9,10} rac{V_{tb}V_{ts}^*}{16\pi^2} rac{e^{i\phi_j}}{\Lambda_j^2} \mathscr{O}_j$$

 \rightarrow NP > 10TeV or NP mimics Yukawa couplings (MFV)

Isospin Asymmetry in $B \rightarrow K^{(*)}\mu^+\mu^-$

• The isospin asymmetry of $B \rightarrow K^{(*)}\mu^+\mu^-$, A_I is defined as:

$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

can be more precisely predicted than the branching fractions

• A_I is expected to be very close to zero in the SM e.g. for $B \rightarrow K^* \mu^+ \mu^-$:

Isospin Asymmetry in $B \rightarrow K^{(*)}\mu^+\mu^-$

• The isospin asymmetry of $B \rightarrow K^{(*)}\mu^+\mu^-$, A_I is defined as:

$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

can be more precisely predicted than the branching fractions

• 2012 LHCb data should allow errors to be halved

$$B_d^0 \rightarrow K^{*0} \mu \mu - new observables$$

Can make alternative transformations of full angular distribution in order to access other (form-factor insensitive) observables
 e.g. φ → -φ (if φ<0) and θ₁→π-θ₁ (if θ₁ < π/2) gives access to P₅' (or S₅)

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \overline{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{8\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \,\mathrm{d}\phi \right]$$

$$F_L \cos^2\theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + \sqrt{F_L (1 - F_L)} P_5' \sin 2\theta_K \sin \theta_\ell \cos \phi \right]$$

- Other transformations give access to P_{4,6,8}'
- Intriguing results from 1fb⁻¹ measurements of these observables...

$B_d^0 \rightarrow K^{*0} \mu \mu - new observables$

[arXiv:1308.1707]

• Good agreement with predictions for P_4' , P_6' , P_8' observables

ل م

0.8

0.6

0.4

0.2

-0.4

-0.6

-0.8

- 0.5% probability to see such a deviation with 24 independent measurements
- Finding a consistent NP explanation is highly non-trivial: prev. $B_d^0 \rightarrow K^{*0}\mu\mu$ observables plus $B_s^0 \rightarrow \mu\mu$, $B \rightarrow K\mu\mu$, $B \rightarrow X_s\gamma$ depend on same short-distance physics

$B_d^0 \rightarrow K^{*0} \mu \mu - theoretical view$

- Descotes-Genon *etal*. combine the LHCb measurements with constraints from B→X_sγ, B→X_sμ⁺μ⁻, B→K^{*}γ, B_s⁰→μ⁺μ⁻ [arXiv:1307.5683] _₽
- Consistent with negative NP contribution to C₉ (4.5σ from SM using low q² data (3.7σ using both high and low q² data))
- Conclude deviation observed does not create any tension with other flavour observables
- Suggest could be generated by Z'

FIG. 1: Fit to $(C_7^{\text{NP}}, C_9^{\text{NP}})$, using the three large-recoil bins for $B \to K^* \mu^+ \mu^-$ observables, together with $B \to X_s \gamma$, $B \to X_s \mu^+ \mu^-$, $B \to K^* \gamma$ and $B_s \to \mu^+ \mu^-$. The dashed contours include both large- and low-recoil bins, whereas the orange (solid) ones use only the 1-6 GeV² bin for $B \to K^* \mu^+ \mu^$ observables. The origin $C_{7,9}^{\text{NP}} = (0,0)$ corresponds to the SM values for the Wilson coefficients $C_{7\text{eff},9}^{\text{SM}} = (-0.29, 4.07)$ at $\mu_b = 4.8 \text{ GeV}.$

$B_d^0 \rightarrow K^{*0} \mu \mu - theoretical view$

- Altmannshofer, Straub [arXiv:1308.1501] :
 - Use all angular analysis results
 - Constraints from $B(B \rightarrow X_s \gamma)$ and the A_{CP} in $B \rightarrow K^* \gamma$ prevent NP contribution to C_7 , C_7 '
 - Similarly, C₉, C₉' limited by A_{FB} and B($B \rightarrow K \mu \mu$)
 - \rightarrow Best fit with modification of C₉, C₉' or C₉, C₁₀'
- Also suggest Z' explanation consistent
- MSSM
 - In large regions of parameter space easy to get large NP contributions to C₇, C₇'
 - Hard to get SUSY contributions to C₉, C₉': *"remain to a good approximation SM-like throughout the viable MSSM parameter space, even if we allow for completely generic flavour mixing in the squark section"*
- Models with composite Higgs/extra dimensions have same problem

$B_d^0 \rightarrow K^{*0} \mu \mu - theoretical view$

- arXiv:1308.1959, Gauld etal.
 - Most minimal Z' model that can address the observed anomaly
 → a model-independent triple-correlation between NP in B_d⁰→K*⁰µµ, B⁰_s-mixing, and "first-row" CKM unitarity

Conclusions

- LHCb measurements in wide-range of b→sll decays in good agreement with SM predictions
 - $A_{FB}, F_{L}, S_{3}, A_{T}^{2}, A_{T}^{Re}, A_{CP}, P_{4,6,8}' \text{ in } B_{d}^{0} \rightarrow K^{*0} \mu \mu$
 - Angular observables in $B^+{\rightarrow}K^+\mu\mu,$ BF of $B^+{\rightarrow}\pi^+\mu\mu$
 - $B_s^0 \rightarrow \phi \mu \mu$
 - ...
- Intriguing hints to explore with 3fb⁻¹ data
 - Isospin asymmetry in $B \rightarrow K^{(*)}\mu^+\mu^-$
 - P_5 ' in $B_d^0 \rightarrow K^{*0} \mu \mu$

which raise some interesting experimental issues for next generation analysis

 \rightarrow see talk of K. Petridis