Theory prediction of $B_s \rightarrow \mu^+ \mu^$ and NP in the Z-Penguin

Durham Flavour Meeting IPPP Durham 6 September 2013

Based on work with Christoph Bobeth, Emanuel Stamou and Joachim Brod and Sandro Casagrande Martin Gorbahn University of Liverpool

$B_s \rightarrow \mu^+ \mu^-$

B_s is pseudoscalar – no photon penguin $Q_{A} = (\bar{b}_{L}\gamma_{\mu}q_{L})(\bar{l}\gamma_{\mu}\gamma_{5}l)$

Dominant operator (SM) Wilson helicity suppression $\left(\propto \frac{m_1^2}{M_B^2}\right)$

Effective Lagrangian in the SM (NP + chirality flipped):

$$\mathcal{L}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} \frac{\alpha \pi V_{\text{tb}}^* V_{\text{ts}}}{\sin^2 \theta_W} \left(C_S Q_S + C_P Q_P + C_A Q_A \right) + \text{h.c.}$$

Scalar operators: $Q_S = m_b(\bar{b}_R q_L)(\bar{l}l)$ $Q_P = m_b(\bar{b}_R q_L)(\bar{l}\gamma_5 l)$

Alternative normalisation [Misiak `11]:

 $\mathcal{L}_{eff} = G_F^2 \mathcal{M}_W^2 V_{tb}^* V_{ts} \left(C_A Q_A + C_S Q_S + C_P Q_P \right) + h.c.$

Theory Status (SM)

Standard Model: Scalar Operators are highly suppressed

C_A is known at NLO in QCD [Buras, Buchalla; Misiak, Urban `99]

 $C_A(m_t / M_W)^{NLO} = 1.0113 C_A(m_t / M_W)^{LO}$ - for QCD MS-bar $m_t = m_t(m_t)$

The matrix-element $\langle Q_A \rangle$ is given through the precisely known decay constant f_{Bs} $(f_{Bs}=225(5)MeV [Dowdall ^13] - average = 225(3)MeV$

twisted mass $N_f=2: f_{Bs}=228(8)MeV$ [Carrosa `13])

There will be non-perturbative correction for $\alpha_e \neq 0$

Theory Status (SM)

Soft photon corrections [Buras, Guadagnoli, Isidori `12]: → cut on the invariant mass of the lepton pair suppresses the direct photon emission → bremsstrahlung affects the branching ratio → experimentalists simulate the signal fully inclusive of bremsstrahlung and remove this correction

Theory Status (SM)

Soft photon corrections [Buras, Guadagnoli, Isidori `12]: → cut on the invariant mass of the lepton pair suppresses the direct photon emission → bremsstrahlung affects the branching ratio → experimentalists simulate the signal fully inclusive of bremsstrahlung and remove this correction

The B_s system has a non-zero decay width difference: → instantaneous ≠ time integrated branching ratio [de Bruyn, Fleischer et. al. `12]

 \rightarrow correction factor can be extracted from experiment \rightarrow B_s mixing allows for additional observables beyond the branching ratio [de Bruyn, Fleischer et. al. `12, Buras et. al. `13]

Electroweak Corrections

$$\mathcal{L}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} \frac{\alpha \pi V_{\text{tb}}^* V_{\text{ts}}}{\sin^2 \theta_W} C_A Q_A + \text{h.c.}$$

 $G_F \alpha / \sin^2 \theta_W$ does not renormalise under QCD: can be factored out for QCD calculation

Only $G_F \alpha / \sin^2 \theta_W C_A(m_t/M_W)$ invariant under electroweak scheme change

This combination should always give the same result if we use the same input (G_F , α , M_Z , M_t , M_H) up to higher order corrections

Renormalisation of G_F

We identify G_F with the measured muon lifetime and its theory prediction $G_{\mu}=G_{\mu}{}^{(0)}+G_{\mu}{}^{(1)}+...$

G_F can be combined or factored out of the Wilson coefficient

$$\mathcal{H}_{eff} = \tilde{C} \ Q = G_F C \ Q$$

Since G_F is now an observable and C dimensionless the vacuum expectation dependence cancels in C:

$$C^{(0)} = \frac{\tilde{C}^{(0)}}{G_{\mu}^{(0)}}, \quad C^{(EW)} = \frac{\tilde{C}^{(EW)}}{G_{\mu}^{(0)}} - \frac{\tilde{C}^{(0)}G_{\mu}^{(EW)}}{\left(G_{\mu}^{(0)}\right)^{2}}$$

but other parameters are not so easily fixed from experiment

Electroweak Scheme Uncertainties

$$\mathcal{L}_{eff} = \frac{G_F}{\sqrt{2}} \frac{\alpha \pi V_{tb}^* V_{ts}}{\sin^2 \theta_W} C_A(\frac{m_t}{M_W}) Q_A + h.c.$$

	MS-bar	OS	unct. $B_s \mu^+ \mu^-$
$\sin \theta_W$	0.231	0.223	4 %
m _t (QCD-MS-bar)	163,5 GeV	164,8 GeV	1 %

Electroweak scheme shift larger then present pure theory error

[Buras, Guadagnoli, Isidori `12]: Follow [Brod, MG, Stamou] and use MS-bar θ_W plus renormalise the masses on-shell (hybrid)

Box contributions contribute differently to l^+l^- modes than to vv. Are both box and penguin corrections tiny in the hybrid scheme?

Renormalisation Schemes

Calculate in the MS-bar scheme using tadpole counterterms to produce gauge independence for intermediate results fit g₁, g₂, v, λ, m_t from data (G_F, α, M_Z, M_t, M_H)

Use OS scheme: Determine M_W including loop corrections from input – then $\sin^2\theta_W = 1 - M_W^2 / M_Z^2$

Tree level
$$M_W^2 = M_Z^2 \left(\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha_e^{OS}}{\sqrt{2}G_F M_Z^2}}\right) = 80.94^2 GeV^2$$

Add finite sin θ_W , m_t and M_W counterterms to $C_A^{(EW)}$

NLO predictions should agree up to residual scheme uncertainties if we use the same input data.

Matching Correction for C_A There are sizeable shifts and reduction of scale dependence

if we go from 1-loop to 2-loop

There are sizeable shifts and reduction of scale dependence

if we go from 1-loop to 2-loop

largest shift in the on-shell scheme

There are sizeable shifts and reduction of scale dependence

if we go from 1-loop to 2-loop

largest shift in the on-shell scheme

large scale dependence for the MS-bar scheme

There are sizeable shifts and reduction of scale dependence

if we go from 1-loop to 2-loop

largest shift in the on-shell scheme

large scale dependence for the MS-bar scheme

and the hybrid scheme

There are sizeable shifts and reduction of scale dependence

if we go from 1-loop to 2-loop

largest shift in the on-shell scheme

large scale dependence for the MS-bar scheme

and the hybrid scheme

 $G_{F^2}M_{W^2}$ removes `artificial´ scale (and parameter

Renormalisation Group Equation

Log enhanced QED corrections known [Bobeth, Gambino, MG, Haisch `03; Huber et. al. `05, Misiak `11]

Study residual scale dependence for the G_{F^2} M_{W^2} normalised results

 $G_F^2 M_W^2 C(\mu_0)$ is scale dependent, while $U(M_Z, \mu_0) G_F^2 M_W^2 C(\mu_0)$ is only residually scale dependent.

Wilson Coefficient at mb

The log enhanced QED corrections further reduce the modulus of the Wilson coefficient

Varying μ_b in U(μ_b , m_t) G_F² M_W² C(m_t) gives a measure of uncertainty regarding the contributions of virtual QED corrections at m_b.

LO analysis: Multiply μ_b uncertainty by 2

there are also uncertainties from non-perturbative QED corrections

O(3.X%) reduction of BR for $s_W(M_Z)$ and masses OS

Comparison with Experiment

Time integration results in another shift

 $\overline{\mathcal{B}}_{B_s} = 1.096(17) \times \mathcal{B}_{B_s}^{(0)}$

Comparison with Experiment

Time integration results in another shift

 $\overline{\mathcal{B}}_{B_s} = 1.096(17) \times \mathcal{B}_{B_s}^{(0)}$

Introduces experimental uncertainty in theory prediction

 $B(B_s \rightarrow \mu^+ \mu^-)_{t \text{ int}} = 3.69(22)$

NNLO QCD matching will reduce perturbative uncertainty

Comparison with Experiment

Time integration results in another shift

 $\overline{\mathcal{B}}_{B_s} = 1.096(17) \times \mathcal{B}_{B_s}^{(0)}$

Introduces experimental uncertainty in theory		$Br(B_s \rightarrow \mu^+ \mu^-)$
prediction	CMS	3.0 ^{+0.9} - _{0.8} (stat) ^{+0.6} - _{0.4} (syst) 10 ⁻⁹
$B(B_s \rightarrow \mu^+ \mu^-)_{t int} = 3.69(22)$	LHCb	2.9 ^{+1.1} -1.0 (stat) ^{+0.3} -0.1 (syst) 10 ⁻⁹
NNLO QCD matching will reduce perturbative	Combi- nation	2.9(7) 10 -9 [EPS 13 Hansmann-Menzemer]
uncertainty		

New Physics

Sensitive to new scalar flavour changing interactions

Precision probe of the Z-Penguin

MSSM: MFV and Large tan β

$$\begin{split} & \text{MSSM at tree level:} \\ & \text{H}_d \leftrightarrow d_R \qquad \text{H}_u \leftrightarrow u_R \\ & -\mathcal{L} = Y^d_{ij}\text{H}_d\bar{d}^i_Rq^j + Y^u_{ij}\text{H}_u\bar{u}^i_Rq^j + \text{h.c.} \end{split}$$

Flavour Violation at large tan β

Note, that the tan β sensitivity of the MSSM is unique:

MSSM Higgs sector at $v_d = 0$: a symmetry $Q(H_d) = 1, \ Q(b_R) = 1$ forbids the operator This protects ΔM_s . Contribution of symmetry-breaking terms small [MG, Jäger, Nierste, Trine '09] $(\bar{b}_R s_L)(\bar{b}_R s_L)$

Z-Penguin and Beyond

 $\sum_{i} V_{is}^* V_{id} F(x_i) = V_{tb}^* V_{ts} (F(x_t) - F(x_c)) \stackrel{x_t \to \infty}{=} V_{tb}^* V_{ts} x_t$ To get a finite result $M_W = M_Z \cos(\theta_w)$ has to hold

Involves the Z-Boson coupling to 1, up and 2, down-quarks and 3 W-Bosons as well as 4, W-Boson couplings to quarks

Can we study all standard model extensions at once?

Generic Extensions

Let us consider a theories with arbitrary number of W^{\pm}

$$\mathcal{L}_{3} = \sum_{f_{1}f_{2}\nu_{1}\sigma} g^{\sigma}_{\nu_{1}\bar{f}_{1}f_{2}} V_{\nu_{1},\mu} \bar{f}_{1}\gamma^{\mu} P_{\sigma}f_{2} + \sum_{\nu_{1}\nu_{2}\nu_{3}} g_{\nu_{1}\nu_{2}\nu_{3}} \left[V_{1}, V_{2}, V_{3} \right]$$
$$\left[V_{1}, V_{2}, V_{3} \right] = \frac{i}{6} \left(V_{1,\mu} V_{2,\nu} \, \partial^{[\mu} V_{3}^{\nu]} + V_{3,\mu} V_{1,\nu} \, \partial^{[\mu} V_{2}^{\nu]} + V_{2,\mu} V_{3,\nu} \, \partial^{[\mu} V_{1}^{\nu]} \right)$$

We assume a perturbative unitary theory (vector-bosons are R_{ξ} -gauge fixed)

Fixes Goldstone-Boson interactions

Generic Result

 $\sum_{f_1\nu_1\nu_2} k^{\sigma}_{f_1\nu_1\nu_2} C_0\left(m_{f_1}, M_{\nu_1}, M_{\nu_2}\right) + \tilde{k}^{\sigma}_{f_1\nu_1\nu_2}\left(\tilde{C_0}\left(m_{f_1}, M_{\nu_1}, M_{\nu_2}\right) + \frac{1}{2}\right) + k'^{\sigma}_{f_1\nu_1\nu_2} +$

 $\sum_{f_1 f_2 \nu_1} k_{f_1 f_2 \nu_1}^{\sigma} C_0\left(m_{f_1}, m_{f_2}, M_{\nu_1}\right) + \tilde{k}_{f_1 f_2 \nu_1}^{\sigma} \left(\tilde{C}_0\left(m_{f_1}, m_{f_2}, M_{\nu_1}\right) - \frac{1}{2}\right) + k_{f_1 f_2 \nu_1}^{\prime \sigma}$

 $C_{0} \text{ is a finite loop function - only } \widetilde{C}_{0} \text{ is divergent } \sum_{f_{1}\nu_{1}\nu_{2}} \tilde{k}_{f_{1}\nu_{1}\nu_{2}}^{\sigma} + \sum_{f_{1}f_{2}\nu_{1}} \tilde{k}_{f_{1}f_{2}\nu_{1}}^{\sigma} = 0$ $\sum_{\nu_{1}} \left(-\sum_{\nu_{2}} \frac{M_{\nu_{1}}^{2} + M_{\nu_{2}}^{2} - M_{Z}^{2}}{4M_{\nu_{1}}^{2}M_{\nu_{2}}^{2}} g_{Z\nu_{1}^{+}\nu_{2}^{-}} g_{\nu_{1}^{-}\bar{b}t}^{\sigma} g_{\nu_{2}^{+}\bar{t}s}^{\sigma} - \frac{1}{2M_{\nu_{1}}^{2}} g_{Z\bar{s}s}^{\sigma} g_{\nu_{1}^{-}\bar{b}t}^{\sigma} g_{\nu_{1}^{+}\bar{t}s}^{\sigma} + \frac{1}{2M_{\nu_{1}}^{2}} g_{Z\bar{t}t}^{\sigma} g_{\nu_{1}^{-}\bar{b}t}^{\sigma} g_{\nu_{1}^{-}\bar{b}t}^{\sigma} g_{\nu_{1}^{+}\bar{t}s}^{\sigma} \right) = 0 \quad \text{(using GIM \& Universality)}$

Renormalisation

Let us consider a theories with arbitrary number of W^{\pm}

Unitarity or STIs lead to the following constraints on the couplings:

$$g_{\nu_{1}^{+}\bar{\mathrm{t}}s}^{\sigma}g_{Z\bar{\mathrm{t}}t}^{\sigma} \rightarrow \sum_{\nu_{2}} g_{Z\nu_{1}^{+}\nu_{2}^{-}}g_{\nu_{2}^{+}\bar{\mathrm{t}}s}^{\sigma} + g_{\nu_{1}^{+}\bar{\mathrm{t}}s}^{\sigma}g_{Z\bar{s}s}^{\sigma} \qquad \text{plus the one } \propto m_{t}:$$

$$g_{\nu_{1}^{+}\bar{\mathrm{t}}s}^{\sigma}g_{Z\bar{\mathrm{t}}t}^{\bar{\mathrm{t}}} \rightarrow \sum_{\nu_{2}} \frac{M_{\nu_{1}}^{2} - M_{Z}^{2}}{2M_{\nu_{2}}^{2}} g_{Z\nu_{1}^{+}\nu_{2}^{-}}g_{\nu_{2}^{+}\bar{\mathrm{t}}s}^{\sigma} + \frac{1}{2}g_{\nu_{1}^{+}\bar{\mathrm{t}}s}^{\sigma}\left(g_{Z\bar{s}s}^{\sigma} + g_{Z\bar{\mathrm{t}}t}^{\sigma}\right)$$

Which imply the finiteness of the Z-Penguin through:

$$g^{\sigma}_{\nu_{1}^{+}\bar{t}s}g^{\bar{\sigma}}_{Z\bar{t}t} \rightarrow \sum_{\nu_{2}} \frac{M^{2}_{\nu_{1}} + M^{2}_{\nu_{2}} - M^{2}_{Z}}{2M^{2}_{\nu_{2}}}g_{Z\nu_{1}^{+}\nu_{2}^{-}}g^{\sigma}_{\nu_{2}^{+}\bar{t}s} + g^{\sigma}_{\nu_{1}^{+}\bar{t}s}g^{\sigma}_{Z\bar{s}s}$$
generalisation of the SM $M_{W_{2}} = M_{Z}\cos(\theta_{w})$ renormalisation

Renormalised Result

Applying the unitarity constraints on the full result yields

$$\sum_{\nu_{1}\nu_{2}} g_{Z\nu_{1}^{+}\nu_{2}^{-}} g_{\nu_{1}^{-}\bar{b}t}^{L} g_{\nu_{2}^{+}\bar{t}s}^{L} F_{1}(m_{t}, M_{\nu_{1}}, M_{\nu_{2}}) + \sum_{\nu_{1}} g_{Z\bar{s}s}^{L} g_{\nu_{1}^{-}\bar{b}t}^{L} g_{\nu_{2}^{+}\bar{t}s}^{L} F_{0}(m_{t}, M_{\nu_{1}})$$

a finite result for the (left-handed) Z-Penguin

The result can be extended to include an arbitrary number of new scalar-bosons and fermions [Brod, MG, Casagrande]

Can be used to classify and study new physics contributions to Wilson Coefficients

Could be useful to combine indirect and direct search results

Conclusions

Electroweak scheme ambiguity removed

Corrections small w.r.t. experimental error, significant w.r.t. to theory uncertainty

 $B_s \rightarrow \mu^+ \mu^-$ can provide a precision probe of scalar, but also axial vector coupling interactions