Charm CP violation & mixing

Mat Charles (Oxford & UPMC)

- Mixing & time-dependent searches for indirect CPV
- Time-integrated searches for direct CPV

Mixing & indirect CPV

• Old news:

- LHCb & CDF measurements of mixing in $D^0 \rightarrow K^+ \pi^-$ (WS)
- BABAR & Belle measurements of mixing & CPV in $D^0 \rightarrow h^+ h^-$

• New news:

- LHCb measurement of CPV in $D^0 \rightarrow h^+ h^-$
- LHCb measurement of mixing & CPV in $D^0 \rightarrow K^+ \pi^-$ (WS)
- Belle measurement of mixing & CPV in $D^0 \rightarrow K_S h^+ h^-$

Neutral mesons have no conserved quantum number - can have mixing between $|M^0\rangle$ and $|\overline{M}^0\rangle$ Mixing occurs $\vec{k}_{s}^{0} = (22) +$ $\begin{array}{l} \text{Tir} \underline{\textbf{Decomptise}} \text{ into } \underset{l}{\overset{n}\underline{M}} \text{ sets } \overset{l}{\overset{m}\underline{M}} \overset{0}{\overset{m}\underline{M}} \text{ sets } \overset{l}{\overset{m}\underline{M}} \overset{0}{\overset{m}\underline{M}} \overset{l}{\overset{m}\underline{M}} \overset{m}{\overset{m}\underline{M}} \overset{m}{$ $\begin{array}{c} 2 \text{x2 hermitian matrices} \\ \text{Masselferstates:} \end{array} \overset{\text{Mesons decay!}}{|M_{1,2}(t=0)\rangle} \end{array}$... and we can invert to get $|\underline{M}_{1,2}^{0}\rangle \equiv p|M^{0}\rangle \pm q|M^{0}\rangle$ given $m_{1,2}$, $\Gamma_{1,2}$, q/p...**Beopagate** event by separate mass $m_{1,2}$ and width $\Gamma_{1,2}$: $|M(t)| M = \frac{1}{2n} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{i} \left(\frac{m_{1}}{2} - \frac{i}{e} \left[\frac{1}{2} \right]^{i} \left(\frac{m_{1}}{2} - \frac{i}{e} \left[\frac{m_{1}}{2} \right]^{i} \left(\frac{m_{1}}{2} - \frac{i}{e} \right]^{i} \left(\frac{m_{1}}{2} - \frac{i}{e} \left[\frac{m_{1}}{2} \right]^{i} \left(\frac{m_{1}}{2} - \frac{i}{e} \right]^{i} \left(\frac{m_{1}}{2} - \frac{i$ $\operatorname{Brian}_{\overline{M}(t)} \stackrel{\text{Petersen1}}{=} \frac{1}{2a} \left[e^{-i(m_1 - \frac{i}{2}\Gamma_1)t}(p|M\rangle + q|\overline{M}\rangle) - e^{-i(m_2 - \frac{i}{2}\Gamma_2)t}(p|M\rangle - q|\overline{M}\rangle) \right]$

Cartoon of mixing

For convenience, define:

6

Mixing in charmed mesons

Charm mixing small compared to other mesons in SM:

Contributes mainly to x

Intermediate b: CKM-suppressed Intermediate d,s: GIM-suppressed

$$x \propto rac{(m_s^2-m_d^2)^2}{m_c^2} \sim 10^{-5}$$
 Tiny!

Mixing via hadronic intermediate states (long-range) $\overline{D}^{0} \underbrace{ \overline{D}^{0}}_{\text{etc}} \underbrace{ \overset{K^{+}K^{-}}{\pi^{+}\pi^{-}\pi^{-}\pi^{0}}}_{\text{etc}} D^{0}$

Non-perturbative; hard to predict SM contribution.

Currently: $|x| \le 0.01$, $|y| \le 0.01 - less tiny!$

e.g. <u>PRD 69,114021</u> (Falk, Grossman, Ligeti, Nir & Petrov)

CP violation

3 types of CP violation: In decay: amplitudes for a process and its conjugate differ In mixing: rate of D⁰ → D⁰ and D⁰ → D⁰ differ In interference between mixing and decay diagrams

- In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates
 - Perhaps $O(10^{-3})$ for CPV parameters => $O(10^{-5})$ for observables like A_{Γ}
- Direct CP violation can be larger in SM, very dependent on final state (therefore we must search wherever we can)
 - Negligible in Cabibbo-favoured modes (SM tree dominates everything)
 - In generic singly-Cabibbo-suppressed modes: up to $O(10^{-3})$ plausible
- Both can be enhanced by NP, in principle up to O(%)

Bianco, Fabbri, Benson & Bigi, Riv. Nuovo. Cim 26N7 (2003) Grossman, Kagan & Nir, PRD 75, 036008 (2007) Bigi, arXiv:0907.2950

Bobrowski, Lenz, Riedl & Rorhwild, JHEP 03 009 (2010) Bigi, Blanke, Buras & Recksiegel, JHEP 0907 097 (2009)

CPV in charm not yet discovered

Direct

Indirect

Mixing and indirect CPV

- \bullet D⁰ mesons undergo mixing like K⁰, B⁰, B_s⁰
- But unlike the others, D^0 mixing is small.
 - Mixing parameters x, y order of 10^{-2}
- First seen by BABAR & Belle in 2007
- Now well-established: multiple results exclude no-mixing hypothesis by > 5σ
- Smallness of mixing parameters makes CP asymmetries doubly small, e.g.

 $2A_{\Gamma} = (|q/p| - |p/q|) y \cos \phi - (|q/p| + |p/q|) x \sin \phi$ (neglecting direct CPV) Mixing parameters O(10⁻²)

Observable asymmetry $< 10^{-4}$ in SM

Mixing via CP eigenstates

Define $y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$ $\tau(K^+K^-) \rightarrow K^-K^+$: CP-even eigenstate

y_{CP} related to y and CP parameters by: $y_{CP} = y \cos \phi - \frac{1}{2} A_M x \sin \phi$ $A_M \neq 0$: CPV in mixing (asymmetry in R_M between D⁰ and D⁰) $\cos \phi \neq 1$: CPV in interference between mixing and decay

CP observable A_{Γ} defined as:

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^- K^+) - \tau(D^0 \to K^- K^+)}{\tau(\overline{D}^0 \to K^- K^+) + \tau(D^0 \to K^- K^+)}$$

 $2A_{\Gamma} = \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \frac{y}{\cos \phi} - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{x}{\sin \phi}$

(neglecting direct CPV)

$$egin{aligned} y_{CP} &= (+1.11 \pm 0.22 \pm 0.11)\% \ A_{\Gamma} &= (-0.03 \pm 0.20 \pm 0.08)\% \end{aligned}$$

977 fb⁻¹ preliminary arXiv:1212.3478

New LHCb measurement

- New result at CHARM on 2011 data (1fb⁻¹)
- Uses two complementary methods:
 - Multidimensional fit to { m(h⁺h⁻), Δ m, t, ln(IP χ^2) } floating A_Γ directly
 - Divide into bins of t, fit D^{0}/\overline{D}^{0} ratio in each bin separately
- First method is more sophisticated (uses swimming) and ultimately has better precision -- but more moving parts
- Second method simpler

$$A_{\Gamma}(K^{+}K^{-}) = (-0.35 \pm 0.62 \pm 0.12) \times 10^{-3}$$
$$A_{\Gamma}(\pi^{+}\pi^{-}) = (+0.33 \pm 1.06 \pm 0.14) \times 10^{-3}$$
$$Ifb^{-1} \text{ preliminary}$$

No sign of indirect CPV in this analysis.

Mixing via wrong-sign decays

D⁰ → K⁺ π⁻ simplest, but can also use Kππ⁰, Kπππ, etc
 different strong phases; also coherence term for multi-body final states

Recent LHCb & CDF mixing results

- Divide data into bins of time
- Fit D^0/\overline{D}^0 ratio in each bin separately
- Beautiful, clean method -- v. robust against systematics

New HFAG averages

CPV-allowed plot, no mixing (x,y) = (0,0) point: $\Delta \chi^2 > 300$ No CPV (|q/p|, φ) = (1,0) point: $\Delta \chi^2 = 1.479$, CL = 0.48, consistent with no CPV

Alan Schwartz, CHARM 2013

Before & after CHARM

Same scale for both plots. New LHCb results greatly shrink allowed region.

Time-dependent Dalitz plot

- For $KS\pi\pi$, many paths open -- and they interfere:
 - CF decay to flavour-specific final state (e.g. $K^{*-}\pi^+$)
 - DCS decay to flavour-specific final state (e.g. $K^{*+} \pi^{-}$)
 - Mixing + CF decay to flavour-specific final state (e.g. $K^{*+}\pi^{-}$)
 - Decay to CP eigenstate (e.g. $K_S \rho^0$)
- Amplitude analysis gives relative phases, so can get x, y directly (not just x', y')

у_{С.} А

Brand new Belle result

- New at CHARM: time-dependent amplitude analysis
 - P-, D-wave contributions modeled as BWs (isobar-style)
 - $\bullet\,\pi\pi$ S-wave modeled with K-matrix
 - $\bullet\,K\pi$ S-wave modeled with LASS parameterization

921 fb⁻¹ preliminary Not yet included in HFAG average

Fit case	Parameter	Fit new result	Belle 2007
$\mathbf{N}_{\mathbf{O}}$ $\mathbf{C}\mathbf{D}\mathbf{V}$	x(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$	$0.80 \pm 0.29^{+0.09+0.10}_{-0.07-0.14}$
NO OF V	y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06}$	$0.33 \pm 0.24^{+0.08+0.06}_{-0.12-0.08}$
No dODV	q/p	$0.90\substack{+0.16+0.05+0.06\\-0.15-0.04-0.05}$	$0.86^{+0.30+0.06}_{-0.29-0.03} \pm 0.08$
	$\arg q/p(^{o})$	$-6 \pm 11^{+3+3}_{-3-4}$	$-14^{+16+5+2}_{-18-3-4}$

stat, sys, model errors

No sign of indirect CPV in this analysis.

Direct CPV

- Cocktail of new & recent results:
 - BABAR: $D_{(s)}^+ \rightarrow K_S h^+$
 - Belle: $D^+ \rightarrow K_S K^+$
 - •LHCb: $D_s^+ \rightarrow K_S \pi^+ \& D^+ \rightarrow \varphi \pi^+$
 - BABAR: $D^+ \rightarrow K^- K^+ \pi^+$
 - •LHCb: $D^0 \rightarrow K^- K^+ \pi^- \pi^+, \pi^- \pi^+ \pi^- \pi^+$
 - ΔA_{CP}

 $D_{(s)}^+ \rightarrow K_S h^+$

 $D_{(s)}^+ \rightarrow K_S h^+$

	$D^+ \to K_S K^+$	$D_s^+ \to K_S \pi^+$]
BABAR	$(+0.46 \pm 0.36 \pm 0.25)\%$	$(+0.3 \pm 2.0 \pm 0.3)\%$	SCS
Belle	$(+0.08 \pm 0.28 \pm 0.14)\%$	$(+5.45 \pm 2.50 \pm 0.33)\%$	
LHCb		$(+0.61 \pm 0.83 \pm 0.14)\%$	

	$D^+ \to K_S \pi^+$	$D_s^+ \to K_S K^+$	
BABAR		$(+0.28 \pm 0.23 \pm 0.24)\%$	CF
Belle	$(-0.024 \pm 0.094 \pm 0.067)\%$	$(+0.12\pm0.36\pm0.22)\%$	

No sign of direct CPV in these analyses.

PRD 87,052012 (2013) JHEP 06, 112 (2013) JHEP 1302,098 (2013) PRL 109,021601 (2012)

$D^+ \rightarrow K^- K^+ \pi^+$

- Multi-body decay -- many ways to test for CPV
- Very thorough analysis by BABAR did pretty much all of them:
 - Phase-space integrated A_{CP}
 - $\bullet\,A_{CP}$ in big regions of the Dalitz plot
 - Compare distribution with 2D bins
 - Compare distribution with Legendre polynomial moments
 - Compare distribution with model-dependent amplitude fit
- No sign of direct CPV in this analysis.

$D^+ \rightarrow K^- K^+ \pi^+$

```
Phys. Rev. D 84, 112008 (2011)
```

- LHCb studied the Dalitz plot a little while ago with 35/pb.
- Recent result with 1/fb -- but only around the phi: [HEP 1306, 112 (2013)

$D^0 \rightarrow h^- h^+ h^- h^+$

• New LHCb analysis with 1/fb, looking for distribution asymmetry with model-independent (binned) method.

With four-body final state, 5D phase space.

$D^0 \rightarrow K^- K^+ \pi^- \pi^+$				$D^0 \rightarrow \pi^- \pi^+ \pi$	$^+\pi^-$	
Bins	p-value (%)	χ^2/ndf		Bins	p-value (%)	χ^2/ndf
16	9.1	22.7/15	-	64	28.8	68.8/63
32	9.1	42.0/31		128	41.0	130.0/127
64	13.1	75.7/63		256	61.7	247.7/255

No sign of direct CPV in this analysis.

 ΛA_{CP}

Year	Expt	$A_{CP}(\pi^+\pi^-)$	$A_{CP}(K^+K^-)$	ΔA_{CP}
2008	BABAR $(386 \mathrm{fb}^{-1})$	$-0.24 \pm 0.52 \pm 0.22\%$	$+0.00\pm 0.34\pm 0.13\%$	$+0.24\pm0.62\pm0.??\%$
2008	Belle $(540 {\rm fb}^{-1})$	$+0.43\pm0.52\pm0.12\%$	$-0.43 \pm 0.30 \pm 0.11\%$	$-0.86\pm0.61\pm0.??\%$
2012	LHCb prompt (0.04fb^{-1})			$-0.28\pm0.70\pm0.25\%$
2012	$CDF (5.9 fb^{-1})$	$+0.22\pm0.24\pm0.11\%$	$-0.24\pm0.22\pm0.09\%$	$-0.46 \pm 0.33 \pm 0.??\%$
2012	LHCb prompt (0.6fb^{-1})			$-0.82\pm0.21\pm0.11\%$
2012	$CDF (9.7 fb^{-1})$			$-0.62\pm 0.21\pm 0.10\%$
2012	Belle $(1.0 \mathrm{ab^{-1}})$	$+0.55\pm0.36\pm0.09\%$	$-0.32\pm0.21\pm0.09\%$	$-0.87 \pm 0.43 \pm 0.06\%$
2013	LHCb prompt (1.0fb^{-1})			$-0.34 \pm 0.15 \pm 0.10\%$
2013	LHCb SL $(1.0 {\rm fb}^{-1})$			$+0.49 \pm 0.30 \pm 0.14\%$

See <u>HFAG site</u> for full list of references.

- Main news this year comes from LHCb:
 - Update of 0.6/fb D*+-tagged analysis to 1.0/fb (with substantial reprocessing)
 - New 1.0/fb muon-tagged analysis
- New central value much closer to zero.

LHCb-CONF-2013-003

28 **UPMC**

Bottom line:

$\Delta A_{CP} = -0.34 \pm 0.15 \pm 0.10\%$

Preliminary

Source	Uncertainty
Fiducial cut	0.02%
Peaking background	0.04%
Fit model	0.03%
Multiple candidates	0.01%
Reweighting	0.01%
Soft pion IP_{χ^2}	0.08%
Total	0.10%

OXFORD LHCb: <u>Phys. Lett. B723 (2013) 33</u>

LHCb Ifb⁻¹ muon-tagged

Bottom line:

$\Delta A_{CP} = +0.49 \pm 0.30 \pm 0.14\%$

	Absolute
Source of uncertainty	uncertainty
Production asymmetry:	
Difference in b -hadron mixture	0.02%
Difference in B decay time acceptance	0.02%
Production and detection asymmetry:	
Different weighting	0.05%
Background from real D^0 mesons:	
Mistag asymmetry	0.02%
Background from fake D^0 mesons:	
D^0 mass fit model	0.05%
Low-lifetime background in $D^0 \to \pi^- \pi^+$	0.11%
Λ_c^+ background in $D^0 \to K^- K^+$	0.03%
Quadratic sum	0.14%

Summary

- Lots of new developments -- especially at LHCb...
 - new indirect CPV results bring its statistical muscle to bear
 - plethora of direct CPV searches
- ... but also nice results still coming in from e⁺ e⁻ machines.
- After ΔA_{CP} excitement, data depressingly consistent with SM
- But: most LHCb analyses haven't yet used full 3/fb
- ... and before long we'll have new data:
 - Post-LSI run for LHCb (and, later, upgrade)
 - Belle-II
 - Data still coming in from **BES-III**
 - Encouraging noises on tau-charm factory

Hmm...

LHCb Ifb⁻¹ results

- Two analyses on the full |fb⁻¹ 2011 dataset:
 - One D*+-tagged, extending previous 0.6 fb⁻¹ analysis
 - One using $\overline{B} \rightarrow D^0 \mu^- \overline{\nu}$ [X], entirely new
- The two analyses are essentially independent:
 - Almost no overlap in data samples, so statistically independent
 - Tagging method and associated systematics entirely different
 - Blinded and analyzed separately.
- Will first discuss D*+-tagged analysis (main focus on what changed since previous), then muon-tagged.

LHCb-CONF-2013-003

• What's new?

- Reprocessing of dataset (from scratch) with improved alignment, calibration, software.
 - Not done specifically for this analysis -- part of long-planned data processing strategy
- Added 0.4 fb⁻¹ of data
- Replace kinematic binning with weighting à la CDF
- Added constraint requiring tagging slow pion to originate at PV.

• What's new?

- Reprocessing of dataset (from scratch) with improved alignment, calibration, software.
 - Not done specifically for this analysis -- part of long-planned data processing strategy
- Added 0.4 fb⁻¹ of data
- Replace kinematic binning with weighting à la CDF
- Added constraint requiring tagging slow pion to originate at PV.

This has a big effect, especially on the RICH hadron ID.

- About 15% of previous signal lost for both KK and $\pi\pi$
- About 17%, 34% new signal gained for KK, $\pi\pi$
- ... and of course quite a lot of churn in the background.

Differences compatible with statistical fluctuations, and the subsample that's common to both processings has almost identical values for ΔA_{CP} in each.

 $-0.82 \pm 0.21\% \rightarrow -0.55 \pm 0.21\%$

• What's new?

- Reprocessing of dataset (from scratch) with improved alignment, calibration, software.
 - Not done specifically for this analysis -- part of long-planned data processing strategy
- Added 0.4 fb⁻¹ of data
- Replace kinematic binning with weighting à la CDF
- Added constraint requiring tagging slow pion to originate at PV.

In the new 0.4 fb⁻¹ alone: $\Delta A_{CP} = -0.28 \pm 0.26\%$

 $-0.55 \pm 0.21\% \rightarrow -0.45 \pm 0.16\%$

• What's new?

- Reprocessing of dataset (from scratch) with improved alignment, calibration, software.
 - Not done specifically for this analysis -- part of long-planned data processing strategy
- Added 0.4 fb⁻¹ of data
- Replace kinematic binning with weighting à la CDF
- Added constraint requiring tagging slow pion to originate at PV.

Both methods valid, but weighting allows us to do reduce the number of fits by a large factor.

Change in method turns out to make almost no difference to the value for ΔA_{CP} .

 $-0.45 \pm 0.16\% \rightarrow -0.45 \pm 0.17\%$

• What's new?

- Reprocessing of dataset (from scratch) with improved alignment, calibration, software.
 - Not done specifically for this analysis -- part of long-planned data processing strategy
- Added 0.4 fb⁻¹ of data
- Replace kinematic binning with weighting à la CDF
- Added constraint requiring tagging slow pion to originate at PV.

Statistical precision improves due to better S/B. Expected movement in central value 0.05% from statistics, so this is about a 2σ effect.

 $-0.45 \pm 0.17\% \rightarrow -0.34 \pm 0.15\%$

- What's new?
 - Reprocessing of dataset (from scratch) with improved alignment, calibration, software.
 - Not done specifically for this analysis -- part of long-planned data processing strategy
 - Added 0.4 fb⁻¹ of data
 - Replace kinematic binning with weighting à la CDF
 - Added constraint requiring tagging slow pion to originate at PV.

Overall:

Several changes, each moving the central value consistent with statistics and by at most 2σ ... but all pushing in the same direction. Consistent with original result being a fluctuation and now seeing regression towards a smaller (zero?) value.

Bottom line:

$\Delta A_{CP} = -0.34 \pm 0.15 \pm 0.10\%$

Preliminary

Source	Uncertainty
Fiducial cut	0.02%
Peaking background	0.04%
Fit model	0.03%
Multiple candidates	0.01%
Reweighting	0.01%
Soft pion IP_{χ^2}	0.08%
Total	0.10%

LHCb Ifb⁻¹ muon-tagged

 Same general idea as past D*+-tagged analyses, but instead look for charm from semileptonic B decays:

Much smaller production rate (σ_{bb}/σ_{cc} ~ 1/20) but partly balanced by higher trigger efficiency
 displaced high-pt muon, secondary D⁰ on avg higher in pt than prompt

OXFORD LHCb: Phys. Lett. B723 (2013) 33

LHCb Ifb⁻¹ muon-tagged

• Analysis principles the same, but a few differences:

- Fit mass of D⁰ candidates
- Correct for mis-tag rate, using CF mode as control.
 - Mistag rate is small and precisely known: (0.982 ± 0.012)%
 - Helpfully, most sources of confusion/background give the correct tag.
 - $\bullet\,Note$ that this cancels in ΔA_{CP}
- Weight based on different kinematic variables (no D*+)
- Some nice features of muon tag -- triggering is simpler, kinematics of tag track are friendlier
- Different backgrounds -- mostly from misreconstructed B decays

OXFORD LHCb: <u>Phys. Lett. B723 (2013) 33</u>

LHCb Ifb⁻¹ muon-tagged

Bottom line:

$\Delta A_{CP} = +0.49 \pm 0.30 \pm 0.14\%$

	Absolute
Source of uncertainty	uncertainty
Production asymmetry:	
Difference in b -hadron mixture	0.02%
Difference in B decay time acceptance	0.02%
Production and detection asymmetry:	
Different weighting	0.05%
Background from real D^0 mesons:	
Mistag asymmetry	0.02%
Background from fake D^0 mesons:	
D^0 mass fit model	0.05%
Low-lifetime background in $D^0 \to \pi^- \pi^+$	0.11%
Λ_c^+ background in $D^0 \to K^- K^+$	0.03%
Quadratic sum	0.14%

LHCb: <u>Phys. Lett. B723 (2013) 33</u>

LHCb Ifb⁻¹ combined

• Naive LHCb combination (assuming negligible indirect CPV):

• The results are 2.2σ apart (compatible at 3% level)

