electroweak (VBF) production of the Z boson and jets at CMS

Paolo Azzurri - INFN Pisa

Jet Vetoes and Jet Multiplicity Observables at the LHC

IPPP Durham, July 18th 2013

outline

*VBF & EWK Z + 2 jets final states *Analysis ingredients & strategy *Central rapidity gap hadronic activity *Z+2 jets radiation patterns *Signal yield measurements

YBE Z Brocess

d u W^{-} W^{+} u ud

features of a VBF Z are:

- Central Z decay associated with energetic forward-backward jets
- A large n separation between the jets
- A large invariant dijet mass
- Pure EWK process: suppressed color exchange between the tagging quarks
- \rightarrow low hadronic activity in the central part of the detector

YBF Z candidate

YBF & EWK Z/x*(→**II**) ± 2 jets

many other pure EWK processes lead to the lljj final state

strong negative interference effects (EWK gauge cancellations)

EWK pp> lljj cross section @7TeV with: pT(j)>10 GeV $|\eta(j)|<7 m(jj)>120 m(ll)>50 \sigma(7TeV) = 0.243 pb / lepton flavor (mjj>120, excludes WZ,ZZ)$

P. Azzurri - EWK (VBF) Z+2jets @CMS

YBF & EWK $Z/\chi^* \ge || \pm 2jets$

pp> lljj cross sections @7TeV with: pT(j)>10 GeV |n(j)|<7 m(jj)>120 m(ll)>50

YBF & EWK $Z/\chi^* \ge || \pm 2jets$

di-parton eta opening

di-parton invariant mass

VBF & EWK Z/y*>II + 2jets

di-lepton azimuthal opening

Rrell-Yan Z/X* Blus two jets

mixed QCD+EWK processes

$\sigma(7\text{TeV}) = 3.048 \text{ nb}$ for all ll(+jets) with m(ll)>50

Motivations

- find evidence for the presence of a purely electroweak production of Z+jets
- benchmark for other VBF analyses (Higgs) and VV scattering
- use selected Z+2jets events to study the central hadronic activity as a probe for rapidity gaps and jet vetoes
 - Chehime, Zeppenfeld: Phys.Rev.D 47, 3898 (1993)
 - Baur, Zeppenfeld: arXiv:hep-ph/9309227 (1993)
 - Rainwater, Szalapski, Zeppenfeld: Phys.rev.D 54, 6680 (1996)
 - Green: arXiv:hep-ex/0502009 (2005)
 - Govoni, Mariotti: arXiv:1001.4357 (2010)

Analysis Strategy

- Signal is generally covered by the DY background (tough to find selections of Z+2jets phase space with S/B>0.1)
 - Use different techniques to extract signal
 - Confirm signal in ee and $\mu\mu$ modes
 - Use different methods of jet reconstruction

Analyzed ~5/fb of pp collision data at 7 TeV (2011)

Exent Selection

Isolated leptons

- p_T > 20 GeV, |η| < 2.4
- |m_{ll} -m _z| < 15 GeV(μμ) 20 GeV (ee)

PF and JPT Jets : with $|\eta(j)| < 3.6$ Cuts optimized to maximize cut & count significance S/sqrt(B)pT(j1)>65 GeVpT(j2)>40 GeV(TJ1) $|y^*| = |y_2-0.5(y_{j1}+y_{j2})| < 1.2$ (YZ)m(jj)>600 GeV(TJ2)

data/MC measured corrections applied

P. Azzurri - EWK (VBF) Z+2jets @CMS

Jets p_T spectra

dijet n opening and Z pT

200

300 400

1000

 $P_{T}^{\mu\mu}$ [GeV]

DY

Uttbar Utbar VZ ZZ WW EW • Data

Exent Yields

Selection	Jet type	Data	EW ℓℓjj	DY $\ell\ell jj$	tŧ	WW	WZ	ZZ
$Z_{\mu\mu}$		1.7×10^{6}	460	1.7×10^{6}	1400	300	1300	850
requirement TJ1	JPT	25000	290	26000	690	5.2	180	120
-	PF	26000	280	26000	680	5.3	170	110
requirement YZ	JPT	15000	210	16000	590	3.4	98	83
	PF	16000	200	16000	580	3.4	93	76
requirement TJ2	JPT	600	74	600	14	0	2.2	1.3
_	PF	640	72	610	14	0	2.4	1.2

selection	data	EW ℓℓjj	DY $\ell\ell$ jj	tī	WW	WZ	ZZ
Z _{ee}	1.5×10^{6}	410	1.5×10^{6}	1600	340	1100	720
requirement TJ1	24000	270	23000	880	6.0	150	97
requirement YZ	15000	200	15000	760	3.7	90	68
requirement TJ2	560	67	550	17	0.3	2.5	1.0

guark (gluon jet tagging

approximately half of the jets in DY + Jets events are gluon originated : we make use of the following jet composition / shape variables to separate them from the signal quark-induced jets

For Central (eta <2) jets	For Transition(2< eta <3) jet and Forward (3< eta <4.7) jets
1. Axis1 (major ηφ RMS)	1. Axis1
2. Axis2 (minor $\eta \phi$ RMS)	2. Axis2
3. Pull (asymmetry)	3. Pull
4. N Chg	4. N_Chg + N_Neu
5. R ch = max(pTi ch)/sum(pTi)	5. $R = max(pTi)/sum(pTi)$
All variables with charged-PU subtraction	All variables without charged-PU subtraction

combined with a simple likelihood (no correlations exploited)

guark (gluon jet tagging

Central Jet Yetees

• Tagging jet selections:

- two leading p_T jets, p_{Tj1,j2} > p_T^{cut}
- η_{j1} η_{j2} < 0
- m_{j1j2} > m^{cut}
- $|\eta_{j1} \eta_{j2}| > \Delta \eta^{cut}$

Central Jet Veto (CJV):

• no jets p_T > 20 GeV, |η|<2.0, β > 0.2

within rapidity gap $\eta_{min}^{tag.j} < \eta < \eta_{max}^{tag.j}$

Central Jet Yetges results

Table 4: Efficiency of the central jet veto with $p_T^{l_3} > 20 \text{ GeV}$ for three different selections on the tagging jets for a pseudorapidity separation of $\Delta \eta_{j_1 j_2} > 3.5$ measured in data and predicted by the MADGRAPH simulation. The quoted uncertainty is statistical only.

$p_{\mathrm{T}}^{\mathrm{j}_{1}(\mathrm{j}_{2})}$	>25 GeV	>35 GeV	>45 GeV
data	0.78 ± 0.01	0.68 ± 0.01	0.63 ± 0.02
simulation	0.80	0.71	0.66

with a larger p_T for the two tagging jets, there is a larger probability to have additional jet(s) between them

data confirms simulation predictions

P. Azzurri - EWK (VBF) Z+2jets @CMS

Central Jet Yetoes results

Table 5: Efficiency of the central jet veto with $p_T^{j_3} > 20 \text{ GeV}$ and $p_T^{j_1(j_2)} > 30 \text{ GeV}$ for three different selections for $\Delta \eta_{j_1 j_2}$ with and without the selection on $m_{j_1 j_2}$, measured in data and predicted by the MADGRAPH simulation. The quoted uncertainty on the data efficiency is only statistical.

$\Delta \eta_{j_1 j_2}$	>2.5	>3.5	>4.5		
data	0.71 ± 0.01	0.68 ± 0.01	0.66 ± 0.02		
simulation	0.73	0.71	0.67		
with $m_{j_1 j_2} > 700 \text{GeV}$ selection					
data	0.56 ± 0.03	0.58 ± 0.03	0.62 ± 0.04		
simulation	0.56	0.57	0.58		

with a larger rapidity separation between the two tagging jets, there is a larger probability to have additional jet(s) between them...

not after a m(jj)>700 GeV cut, that makes p_T of tagging jets harder at smaller $\Delta \eta_{i1i2}$

data confirms simulation predictions

P. Azzurri - EWK (VBF) Z+2jets @CMS

track-jets gap activity

build the collection of "Extra Tracks" with

- highPurity tracks, p_T>300 MeV
- not associated to the leptons nor to the two leading jets
- make minimum $|d_z(PV)|$ when associated to the hardest PV
- $|d_z(PV)| < 2mm |d_z(PV)| < 3\sigma_z(PV)$ to the hardest PV

cluster "soft" TrackJets with the "Extra Tracks" collection with

- anti-kt 0.5
- p_T>1 GeV

Central Region defined as $\eta(\text{jet-bkw})+0.5 < \eta < \eta(\text{jet_fwd})-0.5$

charged hadronic gap activity

charged gap activity evolution

Z ± 2 jets patterns

from studies proposed in the Les Houches report http://arxiv.org/pdf/arXiv:1003.1241 (pages 72 & 130)

N(jets) is the number of jets with pT>40 GeV

Z ± 2 jets patterns

from studies proposed in the Les Houches report http://arxiv.org/pdf/arXiv:1003.1241 (pages 72 & 130)

 $\Delta \eta$ is the maximum $\Delta \eta$ among jets with pT>40 GeV

P. Azzurri - EWK (VBF) Z+2jets @CMS

good agreement with MG+PY6

IPPP Durham - July 18, 2013

Signal measurement

P. Azzurri - EWK (VBF) Z+2jets @CMS

Fit to K_{DY} (b) and K_{EWK} (s) parameters

K_{DY} and K_{EWK} are scaling factors for DY and Signal MC Contributions form top and vector boson pairs are fixed

Maximum likelihood fit with Barlow-Beeston procedure

JPT jets K_{DY} = 0.869 +/- 0.008 (stat) K_{EWK} = 1.14 +/- 0.28 (stat)

PF jets K_{DY} = 0.987 +/- 0.008 (stat) K_{EWK} = 1.14 +/- 0.30 (stat)

Fit to m(jj) distribution (dimuons)

Systematic Uncertainties

Source of uncertainty	Uncertainty			
Theoretical uncertainties				
Background modeling	0.20			
Signal modeling	0.05			
tt cross section	0.02			
Diboson cross sections	0.01			
Total	0.21			
Experimental uncertainties				
JES+JER	0.44			
Pileup modeling	0.05			
MC statistics	0.14			
Dimuon selection	0.02			
Total	0.47			
Luminosity	0.02			

BRT discrimination

To enhance the signal / background separation makes use of the following variables

- p_T(Z)
- η(Ζ)
- p_T(jet1)
- p_T(jet2)
- Δφ(Z,jet1)
- Δφ(Z,jet2)

- Δφ(jet1,jet2)
- Δη(jet1, jet2)
- η(jet1)+η(jet2)
- M(jet1+jet2)
- gLike(jet1)
- gLike(jet2)

Preselection cuts: |m(ll)-m_z|<15-20 GeV

p_T(jet1)>65 GeV

p_T(jet2)>40GeV

BRT discrimination

PF jets K_{DY} = 0.957 +/- 0.010 (stat) K_{EWK} = 1.17 +/- 0.27 (stat) JPT jets K_{DY} = 0.905+/- 0.006 (stat) K_{EWK} = 0.90 +/- 0.19 (stat) PF jets K_{DY} = 0.937 +/- 0.007 (stat) K_{EWK} = 0.85 +/- 0.18 (stat)

BRT fit systematic uncertainties

* // *					
Source of uncertainty	Uncertainty				
-	$\mu^+\mu^-$ channel	e ⁺ e ⁻ channel			
Theoretical	Theoretical uncertainties				
Background modeling	0.15	0.16			
Signal modeling	0.05	0.05			
tt cross section	0.03	0.03			
Diboson cross sections	0.02	0.02			
Total	0.16	0.17			
Experiment	al uncertainties				
JES+JER	0.22	0.29			
Pileup modeling	0.03	0.03			
MC statistics	0.13	0.19			
Gluon-quark discriminator	not used	0.02			
Dilepton selection	0.02	0.02			
Total	0.26	0.35			
Luminosity	0.02	0.03			

Conclusions

*measured the EWK (VBF) production of Z + 2 jets in the di-muon and di-electron channels at 7 TeV defined with M(jj)>120 M(ll)>50 pT(j)>25 |n(j)|<4:</p>

 $\sigma^{EW}(pp-eejj)(7 \text{ TeV}) = 190\pm44(\text{stat})\pm57(\text{exp.syst})\pm27(\text{th.syst})\pm4(\text{lumi}) \text{ fb}$ $\sigma^{EW}(pp-eujj)(7 \text{ TeV}) = 146\pm31(\text{stat})\pm42(\text{exp.syst})\pm26(\text{th.syst})\pm3(\text{lumi}) \text{ fb}$

combined

 $\sigma^{EW}(pp->lljj)(7 \text{ TeV}) = 154\pm24(stat)\pm46(exp.syst)\pm27(th.syst)\pm3(lumi) \text{ fb}$

in agreement with VBFNLO $\sigma^{EW}(pp->lljj)(7 \text{ TeV}) = 166 \text{ fb}$ (157 fb@LO)

Conclusions

*Produced results on the hadronic activity in the gap between the two tagging jets with measurements of

- 1) jet vetoes efficiencies and
- 2) soft track-jet activity.

Observed good agreement with the predictions from the DY+jets simulation.

*Performed radiation pattern measurements following Les Houches report prescriptions: found good agreement with ME+PS (MadGraph+Pythia) predictions

* Thanks for your attention !

Backup

YBF Higgs(120) - EW Zjj - RY Zjj

P. Azzurri - EWK (VBF) Z+2jets @CMS

Signal significance

y* & Ag distributions

P. Azzurri - EWK (VBF) Z+2jets @CMS

IPPP Durham - July 18, 2013

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP/2013-060 2013/06/03

CMS-FSQ-12-019

Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production of a Z with two jets in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*

Abstract

The first measurement of the electroweak production cross section of a Z boson with two jets (Zjj) in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ is presented, based on a data sample recorded by the CMS experiment at the LHC with an integrated luminosity of 5 fb⁻¹. The cross section is measured for the $\ell\ell j$ ($\ell = e, \mu$) final state in the kinematic region $m_{\ell\ell} > 50 \text{ GeV}, m_{jj} > 120 \text{ GeV}$, transverse momenta $p_T^j > 25 \text{ GeV}$ and pseudorapidity $|\eta^j| < 4.0$. The measurement, combining the muon and electron channels, yields $\sigma = 154 \pm 24 \text{ (stat.)} \pm 46 \text{ (exp. syst.)} \pm 27 \text{ (th. syst.)} \pm 3 \text{ (lum.)}$ fb, in agreement with the theoretical cross section. The hadronic activity, in the rapidity interval between the jets, is also measured. These results establish an important foundation for the more general study of vector boson fusion processes, of relevance for Higgs boson searches and for measurements of electroweak gauge couplings and vector boson scattering.

Submitted to the Journal of High Energy Physics

Reference

P. Azzurri - EWK (VBF) Z+2jets @CMS