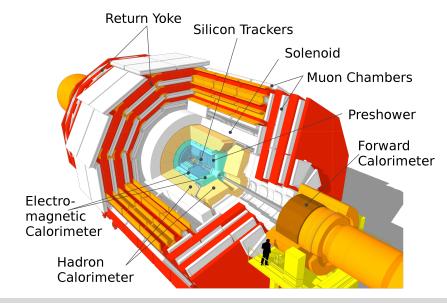


Top Production with N-jets and with Jet-Vetoes at the CMS Experiment

Jet Vetoes and Jet Multiplicity Observables at the LHC - Durham - July 2013

Alexis Descroix on behalf of the CMS Collaboration | 17/07/2013

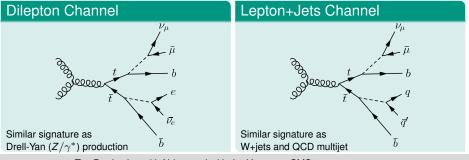

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)

Introduction

- At the LHC a large fraction of top quark pair events (tt
) are produced with additional jets
- Investigating these processes is very interesting
 - Test perturbative QCD at top quark energy scale
 - Constrain modeling uncertainties in MC
 - Anomalous tt + jets production can be sign of new physics
 - Background to tt production with Higgs or with other bosons and BSM
- This presentation gives an overview of measurements of tt events with jets at CMS:
 - Measurement of the jet multiplicity in tt events
 - Investigation of the properties of additional jets:
 - Kinematic properties of additional jets
 - Veto on additional jets
 - Measurement of the additional parton multiplicity

The Compact Muon Solenoid Experiment

Alexis Descroix Top Production with N-jets and with Jet-Vetoes at CMS


Investigated Processes: tt Events

- tt produced at LHC mostly with gluons in initial state
- Top quarks decay almost always into a *W* boson and a bottom quark

✓: easy

X: challenging

- tt decay signature depends on decays of both W bosons
 - Dilepton channel: *ee*, *eμ*, and μμ two prompt leptons *✓*, two unmeasured neutrinos *X*
 - Lepton+Jets channel: *e*+jets and µ+jets one prompt lepton ✓, 4 jets X

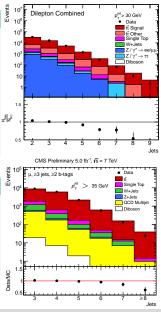
Alexis Descroix Top Production with N-jets and with Jet-Vetoes at CMS 17/07/2013 4/25

Analyzed Samples

- Datasets from 2011 (7 TeV, 5.0 fb⁻¹) and 2012 (8 TeV, 19.6 fb⁻¹)
- Simulation of standard tt sample with LO generator:
 - Matrix element from MADGRAPH (tt̄ + 0,1,2,3 jets)
 - Interfaced via MLM with PYTHIA for parton showering
 - Fact./renorm. scale: $Q^2 = m_t^2 + \sum p_T^2$
- Comparison available with NLO tī generators:
 - POWHEG+PYTHIA
 - MC@NLO+HERWIG
- Modeling/correction of dominant backgrounds with data-driven methods: Drell-Yan (dilepton), W+jets and QCD multijet (lepton+jets)
- Other backgrounds well modeled with MC:
 - MADGRAPH+PYTHIA (W+jets, and Drell-Yan)
 - POWHEG+PYTHIA (single top)
 - PYTHIA (diboson and QCD multijet)

5/25

Event Selection

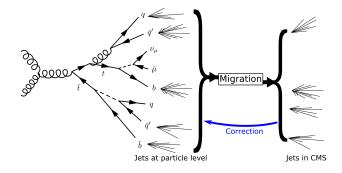

Dilepton Channel

- \geq 2 leptons with opposite charge (p_T > 20 GeV)
- QCD veto, if $m_{\ell\ell} < 20 \text{ GeV}$
- \geq 2 jets (p_T > 30 GeV), one identified as b-jet
- *ee* and $\mu\mu$ case: $E_T^{miss} > 40$ GeV and $|m_{\ell\ell} m_Z| > 15$ GeV
- Kinematic reconstruction of tī system

Lepton+Jets Channel

- Only one lepton (p_T > 30 GeV) + veto against additional leptons (looser cuts)
- \geq 3(4) jets with p_T > 35(30) GeV
- 2 selected jets identified as b-jets

CMS Preliminary, 19.6 fb⁻¹ at √s = 8 TeV


17/07/2013

6/25

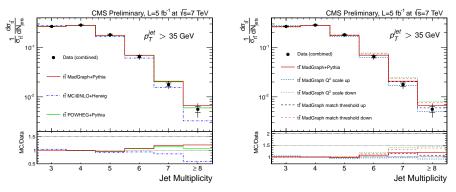
MEASUREMENT OF THE DIFFERENTIAL CROSS-SECTION AS A FUNCTION OF THE NUMBER OF JETS

Correction Back to Particle Level

- Subtract background from data $\rightarrow N_{data}^{i} N_{bkg}^{i}$
- Migration from particle level to detector level to be corrected

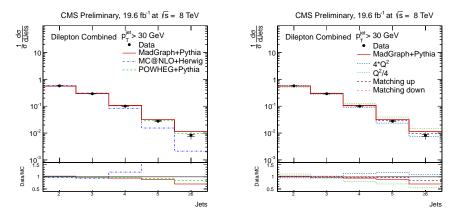
Invert migration effects back to particle level with MADGRAPH $ightarrow N'_{t\bar{t}}$

Correction within the visible phase-space

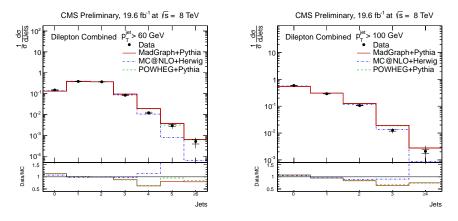

Differential Cross-Section and Theory Comparisons

Calculation of the differential cross-section

 $\frac{1}{\sigma_{t\bar{t}}}\frac{d\sigma_{t\bar{t}}}{dN_{jets}} = \frac{1}{\sigma_{t\bar{t}}}\frac{N_{t\bar{t}}^{i}}{\mathcal{L}}, \text{ with measured cross-section: } \sigma_{t\bar{t}}$


- Normalization to $\sigma_{t\bar{t}}$ reduces systematic uncertainty
- Combine results and compare to predictions from:
 - POWHEG+PYTHIA
 - MC@NLO+HERWIG
 - MADGRAPH+PYTHIA with Q^2 scale varied to $4 \cdot Q^2$ and $1/4 \cdot Q^2$
 - MADGRAPH+PYTHIA with matrix-element/parton-showering matching threshold varied to 40 and 10 GeV (nominal is 20 GeV)
- Systematic uncertainties estimated by repeating the measurement with varied assumptions on sources, most important ones are:
 - Jet energy uncertainties
 - Modeling uncertainties (Q² scale, matching threshold, and hadronization uncertainty)

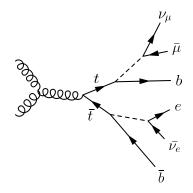
Differential Cross-Section in Lepton+Jets Channel (7 TeV)


- Good agreement of data with predictions from MADGRAPH+PYTHIA and POWHEG+PYTHIA
- MC@NLO+HERWIG: jet multiplicity lower than data
- МАDGRAPH+РYTHIA: best description for larger Q²/match threshold

Differential Cross-Section in Dilepton Channel (8 TeV)

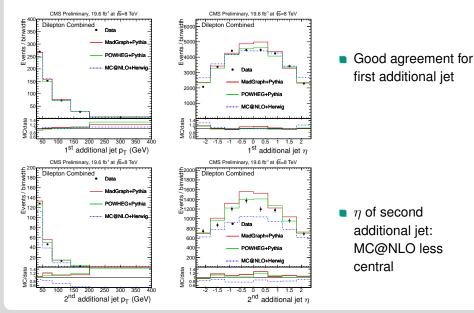
Consistent with results in dilepton and lepton+jets channels at 7 TeV

Differential Cross-Section in Dilepton Channel (8 TeV) with Higher Jet p_T Threshold



Different behavior of MC@NLO confirmed at higher jet p_T

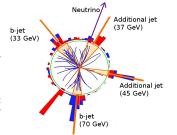
KINEMATICS OF ADDITIONAL JETS - DILEPTON CHANNEL


Definition of Additional Jets in Dilepton Channel

- The kinematic reconstruction of the tt system assigns the jets from the tt decay
 - Kinematic constraints allow to solve the two-neutrino ambiguity
 - Jet assignment is not straightforward ⇒ choice made with b-jet identification and neutrino energy spectrum

- Study of kinematic properties of additional jets:
 - Subtract background from data, no correction back to particle level
 - MC distribution scaled with measured tt cross-section

Kinematics of Additional Jets

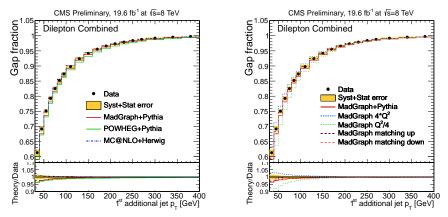

Alexis Descroix

Top Production with N-jets and with Jet-Vetoes at CMS

VETO ON ADDITIONAL JETS - DILEPTON CHANNEL

Definition of Veto on Additional Jets

- A veto variable is calculated: gap fraction $f(p_T) = \frac{N(p_T)}{N_{total}}$
- N(p_T): number of selected events <u>without</u> any additional jet fulfilling a kinematic veto on p_T
- N_{total}: total number of selected events
- Veto on p_T of the 1st, the 2nd and the scalar sum of all additional jets

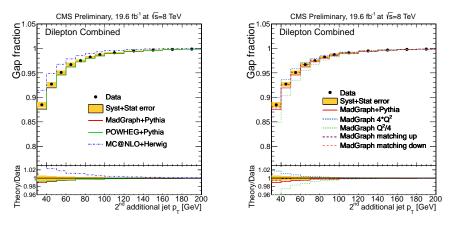

- Threshold on p_T of 1st add. jet at 40 GeV → event vetoed
- Threshold on p_T of 1st add. jet at 50 GeV → event counted
- Veto varied in a wide range of p_T
- Correction back to particle level within visible phase space

Alexis Descroix Top Production with N-jets and with Jet-Vetoes at CMS

17/25

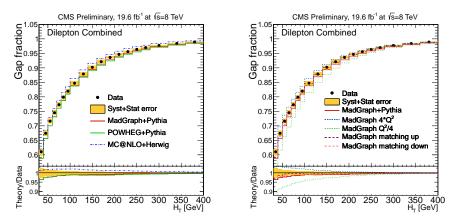
[lepp.cornell.edu]

$f(p_T)$ of First Additional Jet


- MC@NLO+HERWIG shows better agreement with data than MADGRAPH+PYTHIA and POWHEG+PYTHIA
- MADGRAPH+PYTHIA Q² scale down variation decreases agreement

18/25

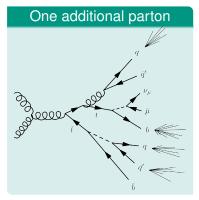
Other variations from MADGRAPH+PYTHIA describe data well


Alexis Descroix Top Production with N-jets and with Jet-Vetoes at CMS 17/07/2013

$f(p_T)$ of Second Additional Jet

- MC@NLO+HERWIG shows higher gap fraction values than data
- Better agreement with MADGRAPH+PYTHIA and POWHEG+PYTHIA
- MADGRAPH+PYTHIA Q² scale down variation shows too low values

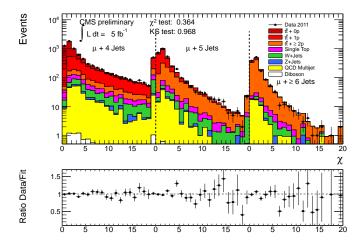
$f(H_T)$ of Additional Jets



- MC@NLO+HERWIG predictions above data, MADGRAPH+PYTHIA and POWHEG+PYTHIA predictions below data
- MADGRAPH+PYTHIA matching up agrees the best with data

MEASUREMENT OF THE DIFFERENTIAL CROSS-SECTION AS A FUNCTION OF THE NUMBER OF ADDITIONAL PARTONS -LEPTON+JETS CHANNEL

Definition of Additional Jets - Event Classification


- tī MC events are classified using MC information
- Introduce a cut on distance ΔR between jets and tt decay products:
 - two b quarks
 - two light quarks
 - prompt lepton
- Jets with $\Delta R > 0.5$ count as additional radiated partons
 - \Rightarrow classification of events in
 - tt + 0, 1 and \geq 2 additional partons
- Extracting rates of these tt
 classes from data via a template fit of χ, from event reconstruction

$$\chi = \sqrt{\left(\frac{m_{W^{had}}^{rec} - m_{W^{had}}^{true}}{\sigma_{W^{had}}}\right)^2 + \left(\frac{m_{t^{had}}^{rec} - m_{t^{had}}^{true}}{\sigma_{t^{had}}}\right)^2 + \left(\frac{m_{t^{ep}}^{rec} - m_{t^{lep}}^{true}}{\sigma_{t^{lep}}}\right)^2}$$

Top Production with N-jets and with Jet-Vetoes at CMS

Template Fit Results

- Simultaneous fit in three jet multiplicity parts, $t\bar{t}$ classes show different shapes \rightarrow separation power
- The fit performs well and checks have proved its stability

Results of Differential Cross-Section with Template Fit

- Extract results with MADGRAPH prediction for the tt classes
- Systematic uncertainties evaluated with pseudo-data, same assumed sources
- Like jet multiplicity results at 7 and 8 TeV:
 - best agreement with MADGRAPH+PYTHIA and POWHEG+PYTHIA
 - MC@NLO shows discrepancies
 - Visible sensitivity to scale and matching uncertainties

Conclusion and Outlook

- Good agreement between all measurements:
 - Multiplicity of jets and of additional partons
 - Additional jet kinematic
 - Gap fraction of additional jets
- MADGRAPH+PYTHIA predictions agree mostly well with data
- Modeling uncertainty (Q² and matching) often larger than precision ⇒ could be reduced
- MC@NLO+HERWIG produces fewer jets. Comparison with POWHEG+HERWIG required (sample now available)
- Working towards comparisons with NLO+Parton Showering multileg generators like aMC@NLO and SHERPA

Public results presented today can be found here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

- TOP-12-018 (lepton+jets channel, 7TeV)
- TOP-12-023 (dilepton channel, 7TeV)
- TOP-12-041 (dilepton channel, 8TeV)

Thanks for your attention

Alexis Descroix Top Production with N-jets and with Jet-Vetoes at CMS