

Searches of beyond-DGLAP dynamics with multi-jets at CMS

Grigory Safronov (ITEP, Moscow)

for the CMS Collaboration

Grigory Safronov

Introduction

Experimental capabilities

- Dataset
- Jet reconstruction
- Jet trigger
- Measurements
 - Cross section of inclusive forward jet production
 - Cross section of simultaneous production of forward and central jet
 - Inclusive and exclusive dijet production ratios
 - Azimuthal decorrelation of Mueller-Navelet jets
- Summary

Introduction

pQCD resummation \rightarrow parton showers (PS)

DGLAP PS regime: $\sqrt{s} \sim p_{T} > \Lambda_{QCD}$ Strong ordering of emissions in pT	Measure high pT leading jets
BFKL PS regime (QCD high energy limit): $\sqrt{s} \gg p_T > \Lambda_{_{QCD}}$ Strong ordering of emissions in y Random walk of emissions in pT	Low pT allows to approach BFKL limit and open the phase space for multiple emissions with similar pT
BFKL prediction: $\hat{\sigma}$	$\approx e^{A\Delta y} \approx \hat{s}^A$

Experimental requirements for the beyond-DGLAP searches: Large rapidity coverage Capabilities for jet measurements at low pT

Introduction

Observables covered in this talk

Forward jet differential cross-section An access to $x_1 << x_2$, sensitive to low-x gluon densities

Forward-central dijet production cross-section Jets with large rapidity separation cross-section

Inclusive and exclusive dijet production ratio Higher order radiation at large rapidity intervals

Mueller-Navelet dijet decorrelations Higher order radiation at large rapidity intervals

All observables are corrected for the detector effects and compared to various Monte Carlo and analytic predictions

CMS detector

Available data

LHC pp runs: ~30 fb⁻¹ is collected in 2010 - 2013

pp data at 7, 8 and 2.76 TeV is available

Grigory Safronov

Available data

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

Analyses presented here use 2010 data <PU> ~ 2.2, integrated luminosity 44.2pb⁻¹

Much benefit from dedicated LHC pp runs @ low pileup (not covered here) 8 and 2.76 TeV datasets are available (O(10pb⁻¹) each)

Jet reconstruction

Several jet reconstruction techniques

- Calorimeter jets
- → "Jet Plus Track" jets
- → Particle Flow jets

MC and data driven jet energy scale (JES) calibration techniques

- Uncertainty of calibration
 < 10% for pT > 30 GeV
- → Uncertainty grows as pT decreases

JES uncertainty - leading source of experimental uncertainty

Presented analyses use jets clustered from calorimeter energy Anti-kT, R=0.5 clustering algorithm

Jet triggers

CMS preliminary, 11 nb⁻¹ √s = 7 TeV Jet triggers are based on Trigger Efficiency 23 38 67 |y| < 0.5 uncorrected calorimeter energy deposits 0.8 0.6 Lowest available trigger threshold pT > 15 GeV MinBias Turn-on point depends on η and 0.4 Jet6u type of the jet Jet15u > 100% efficiency in full 0.2 Jet30u acceptance for calojets with Anti-k_T R=0.5 JPT pT > 35 GeV 20 30 100 200 1000 p_{_} (GeV)

Presented analyses use triggers requiring one or two jets with uncorrected ET > 15 GeV

Measurements

Grigory Safronov

All predictions agree with the data within uncertainties

NLO prediction (NLOJET++) is above by \sim 20% but still within uncertainties

Best description – POWHEG (+ PYTHIA6)

Grigory Safronov

Forward-central jet cross-section

Leading jet selection

Similar experimental systematics

Grigory Safronov

Forward-central jet cross-section

10.1007/JHEP06(2012)036

CMS-PAS-FWD-10-006

PYTHIA6, PYTHIA8 and CASCADE problem with central normalization and forward shape

HERWIG6, HERWIG++ and HEJ best agreement with data

POWHEG matched to PYTHIA and HERWIG disagree with the data

Grigory Safronov

Jets with large rapidity separation

Mueller-Navelet jets – pair above threshold with the largest rapidity separation in the event

- Rapidity ordered selection defines the phase space for BFKL-type parton shower
- No pT ordering

Observables sensitive to higher order QCD radiation between MN jets:

- Inclusive to "exclusive" dijet production ratio
- Azimuthal decorrelations

Common selections for both analyses:

Require single primary vertex (\sim 1/3 of 2010 data)

Calorimeter **jet pT > 35 GeV**, **|η| < 4.7**

Rapidity separation coverage of the measurement: **∆y** < **9.4** → Combination of inclusive and forward-backward jet triggers

Systematic uncertainties

Dominated by JES and unfolding uncertainties

Pileup influence is reduced (or even removed) by single vertex requirement

Measurement of ratios of dijet production ratios as a function of rapidity separation

Mueller-Navelet

 $R^{\rm MN} = \sigma^{\rm MN} / \sigma^{\rm excl}$

 $R^{\rm incl} = \sigma^{\rm incl} / \sigma^{\rm excl}$

inclusive

 $\sigma^{
m incl}~$ - inclusive selection, no veto, all pairwise combinations $R^{
m incl}$ is proposed in 10.1103/PhysRevD.53.6

Properties of observables:

- Remove PDF contributions
- Experimental systematic uncertainties are decreased

Dijet production ratios

 $R^{\rm MN} = \sigma^{\rm MN}$.excl

Best description of the data is given by PYTHIA6 and PYTHIA8

Herwig++ shows larger growth with increase of rapidity separation

BFKL inspired models CASCADE and HEJ overestimate data

Dijet production ratios

 $R^{\rm incl} = \sigma^{\rm incl} / \sigma^{\rm excl}$

Conclusion: both ratios are well described by DGLAP-based PS models

10.1140/epjc/s10052-012-2216-6 CMS-PAS-FWD-10-014

Grigory Safronov

MN azimuthal decorrelations

CMS measurement

Extends to **Ay** < **9.4** Symmetric **pT** > **35 GeV**

Observables Azimuthal angle separation Δφ in Δy bins Average cosines C_1, C_2, C_3 as a function of Δy Ratios C_2/C_1, C_3/C_2

First presented at DIS13

Shapes of $\Delta \phi$ distributions

PYTHIA6 and PYTHIA8 show too strong decorrelation

SHERPA underestimates decorrelation

HERWIG++ is consistent with the data

2

JetLHC2013 - IPPP Durham - July 13

Average cosines of $n(\pi-\Delta\phi)$

First 3 coefficients of Fourrier transform of A ϕ **distribution** Equal to average cosines: C_n = $<\cos(n(\pi - \Delta \phi))>$

BFKL NLL predictions (valid from ▲y=4) provided by
B. Ducloué, L. Szymanowski, S. Wallon, [10.1007/JHEP05(2013)096] Parton level predictions, negligible hadronization effect

Average cosines of $n(\pi - \Delta \phi)$

CMS Preliminary, $\sqrt{s} = 7$ TeV, Ldt = 5 pb⁻¹

CMS Preliminary, $\sqrt{s} = 7$ TeV, Ldt = 5 pb⁻¹

1.4

^() Î Sherpa 1.4 DATA **C2** 🐼 BFKL NLL+ Cascade 2 < 1.2 < **Mueller-Navelet dijets** <cos(2(π) 9.0 cos(2(π $P_{T} > 35 \text{ GeV}, |y| < 4.7$ **Mueller-Navelet dijets** $P_{\tau} > 35 \text{ GeV}, |y| < 4.7$ CASCADE predicts too 0.6 strong radiation • DATA 0.4 Pythia 6 Z2 0.4 Pythia 8 4C Correlation in SHERPA Herwig++ 2.5 0.2 0.2 and NLL BFKL is stronger than in data 8 8 $\Delta \mathbf{y}$ $\Delta \mathbf{y}$ CMS Preliminary, $\sqrt{s} = 7$ TeV, Ldt = 5 pb⁻¹ CMS Preliminary, $\sqrt{s} = 7$ TeV, Ldt = 5 pb⁻¹ **PYTHIA and HERWIG ^((**) Sherpa 1.4 DATA DATA describe the data Pythia 6 Z2 Cascade 2 BFKL NLL+ ⊲ 1.2 well Pythia 8 4C cos(3(π 8.0 Herwig++ 2.5 **Mueller-Navelet dijets** $P_{\tau} > 35 \text{ GeV}, |y| < 4.7$ 0.6 0.4 0.4 **Mueller-Navelet dijets** 0.2 P_T > 35 GeV, |y| < 4.7 **C**3 0.2 8 Δ y 8 $\Delta \mathbf{y}$

CMS-PAS-FWD-12-002

Grigory Safronov

Cosine ratios

Ratios of cosines as proposed in **10.1016/j.nuclphysb.2007.03.050**

DGLAP contributions cancel

More stable calculations in NLL BFKL

PYTHIA6, 8 show better agreement than HERWIG++

SHERPA overestimate C2/C1, Consistent with C3/C2

NLL BFKL is consistent with ratios

CMS-PAS-FWD-12-002

Grigory Safronov

AO and MPI study

AO and MPI were studied in PYTHIA6 (switched off and on)

Angular ordering in parton shower is essential for good data description

Grigory Safronov

JetLHC2013 - IPPP Durham – July 13

CMS-PAS-FWD-12-002

MN azimuthal decorrelations

SUMMARY

- For the first time decorrelations are measured up to $\Delta y = 9.4$
- Best description of all observables is given by HERWIG++
- PYTHIA6, PYTHIA8 and SHERPA do not describe all observables
- Cosine ratios are well described by NLL BFKL calculation
- Angular ordering has large impact on decorrelation (in PYTHIA6)

Conclusion: No clear evidence for BFKL dynamics

SUMMARY

pT-ordered selections

Inclusive forward jet cross-section:

 All theory predictions agree with the data (DGLAP-based MC, BFKL/CCFM-based MC, NLO DGLAP)

Forward-central jet cross-sections

→ Best description is given by HERWIG++, HERWIG6, HEJ

y-ordered selections

Inclusive to exclusive dijet production ratios

- PYTHIA6 and PYTHIA8 predictions are with the experimental uncertainties
- → HERWIG++, HEJ, CASCADE fail to describe

Mueller-Navelet jets angular decorrelations

- Best description is given by HERWIG++
- NLL BFKL predictions provide good description of cosines ratios

General conclusion: No clear evidence for high energy limit asymptotics

