

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Vector-boson production plus N-jets

K. Bierwagen II. Institut of Physics, Georg-August-Universität Göttingen

on behalf of the ATLAS Collaboration

IPPP2013, Durham

July 18, 2013

Bundesministerium für Bildung und Forschung

V+jets in ATLAS

18.07.2013

		ATLAS public results, \sqrt{s} =7 TeV
Z + jets	4.6 fb ⁻¹	JHEP 07 (2013) 032
W + jets	36 pb ⁻¹	Phys. Rev. D85 (2012) 092002
R jets	36 pb ⁻¹	Phys. Lett. B708 (2012) 221-224
Z + b jets	36 pb ⁻¹	Phys. Lett. B706 (2012) 295-313
W + b jets	4.6 fb ⁻¹	JHEP 06 (2013) 084
W + c jets	4.6 fb ⁻¹	ATLAS-CONF-2013-0045
W + 2 jets DPI	36 pb ⁻¹	New J. Phys. 15 (2013) 033038

Z + light jets

Extraction of cross section

- Event selection
- Subtraction of backgrounds
 - Main backgrounds:
 - Multi-jets from data (0.4%-1.5%)
 - Ttbar from data (0.2%-26%)
 - Diboson (0.2%-1.2%)
- Unfolding method: iterative (Bayes) method (Nucl. Instrum. Meth. A 362 (1995) 487
 Trainings sample: ALPGEN+HERWIG
- Differential measurements on dressed level separately for electron and muon channel
- For combination individual results extrapolated to common phase space region

Leptons:pT> 20 GeV, |eta| < 2.5, add photons in $\Delta R<0.1$ Z -Boson :Opposite sign leptons, 66 < m(II) < 116 GeVJets:antikt, R=0.4, pT > 30 GeV, |y| < 4.4, $\Delta R(j,I) < 0.5$

$Z(\rightarrow ee)$	≥ 1 jet	≥ 2 jets	≥ 3 jets	≥ 4 jets	$p_{\rm T}^{jet} \ (30 - 500 {\rm ~GeV})$
Electron reconstruction	2.8%	2.8%	2.8%	2.8%	2.6-2.9%
Jet energy scale, resolution	7.4%	10.1%	13%	17%	4.3-9.0%
Backgrounds	0.26%	0.34%	0.44%	0.50%	0.21 - 3.2%
Unfolding	0.22%	0.94%	1.2%	1.9%	1.4-6.8%
Total	7.9%	10.5%	13%	17%	5.5 - 12.0%
$Z(\rightarrow \mu\mu)$	≥ 1 jet	≥ 2 jets	$\geq 3 \text{ jets}$	≥ 4 jets	$p_{\rm T}^{jet} \ (30 - 500 \ {\rm GeV})$
$Z(\rightarrow \mu\mu)$ Muon reconstruction	$\geq 1 \text{ jet}$ 0.86%	≥ 2 jets 0.87 %	≥ 3 jets 0.87 %	$\geq 4 \text{ jets}$ 0.88 %	$\frac{p_{\rm T}^{jet} \ (30 - 500 \ {\rm GeV})}{0.8 - 1.0\%}$
$Z(\rightarrow \mu\mu)$ Muon reconstruction Jet energy scale, resolution	≥ 1 jet 0.86 % 7.5 %	≥ 2 jets 0.87 % 9.9 %	$\geq 3 \text{ jets}$ 0.87 % 13%	$\geq 4 \text{ jets}$ 0.88 % 16%	$\begin{array}{c} p_{\rm T}^{jet} \ (30-500 \ {\rm GeV}) \\ 0.8-1.0\% \\ 3.2-8.7\% \end{array}$
$Z(\rightarrow \mu\mu)$ Muon reconstruction Jet energy scale, resolution Backgrounds	≥ 1 jet 0.86 % 7.5 % 0.093 %	$\geq 2 \text{ jets}$ 0.87 % 9.9 % 0.20 %	$\geq 3 \text{ jets}$ 0.87 % 13% 0.41 %	$\geq 4 \text{ jets}$ 0.88 % 16% 0.66 %	$\begin{array}{c} p_{\rm T}^{jet} \ (30-500 \ {\rm GeV}) \\ \hline 0.8-1.0\% \\ \hline 3.2-8.7\% \\ \hline 0.1-1.9\% \end{array}$
$Z(\rightarrow \mu\mu)$ Muon reconstruction Jet energy scale, resolution Backgrounds Unfolding	$ \ge 1 \text{ jet} \\ 0.86 \% \\ 7.5 \% \\ 0.093 \% \\ 0.30 \% $	$\geq 2 \text{ jets}$ 0.87 % 9.9 % 0.20 % 0.68 %	$\geq 3 \text{ jets}$ 0.87 % 13% 0.41 % 0.52 %	$\geq 4 \text{ jets}$ 0.88 % 16% 0.66 % 1.3 %	$\begin{array}{c} p_{\rm T}^{jet} \; (30-500 \; {\rm GeV}) \\ \hline 0.8-1.0\% \\ \hline 3.2-8.7\% \\ \hline 0.1-1.9\% \\ \hline 0.5-6.2\% \end{array}$

JES dominant component to total uncertainty

in particular in forward region: JES uncertainty 20%-30%

JES uncertainty reduced in cross section ratios for successive multiplicities: 3-4%

Results on Particle Level

- Cross sections quoted for dressed electrons and particle level jets in fiducial acceptance region
- Unfolded data compared to:
 - BlackHat+SHERPA fixed-order NLO pQCD
 - ALPGEN+HERWIG+JIMMY (Z+0-5p), AUET2 tune, CTEQ6L PDF
 - SHERPA 1.4 MENIoPS (Z+0-5p), CT10 PDF
 - MC@NLO (DY) + HERWIG AUET2 tune, CT10 PDF

Differential cross sections normalised to inclusive cross section:

 \rightarrow Cancel uncertainties on electron reconstruction and integrated luminosity

- Motivation:
 - Test of perturbative QCD (IS/FS QCD radiation, potentially sensitive to α_{c})
 - Background for studies of the Higgs boson and BSM physics (jet-binned results, jet vetos)
- Observables:
 - Inclusive jet multiplicity (less problematic from theoretical point of view)
 - Exclusive jet multiplicity (expected to follow two benchmark patterns)
 - Jet multiplicity ratios (allows more precise tests of SM)

Benchmark patterns:

- QED: Abelian-type splittings $\rightarrow R_{(n+1)/n} \sim \frac{1}{n}$

(Poisson scaling)

(staircase scaling)

- QCD: Non-Abelian splittings $\rightarrow^{R_{(n+1)/n}} \sim const$

For large scale differences in QCD staircase scaling is expected to

revert to Poisson scaling (E. Gerwick et al, JHEP 1210 (2012) 162)

Results – Inclusive Jet Multiplicity

inclusive jet multiplicity ratio

inclusive jet multiplicity

• NLO pQCD, ME+PS: consistent with data

• MC@NLO: HERWIG PS fails to model jet multiplicities

18.07.2013

• Cross section for exclusive Z+1-4 jets well modelled by fixed-order NLO pQCD

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN RESULTS – E

Results – Exclusive Multiplicity Ratio

 Change of scaling pattern in general well modeled by nominal pQCD and ME+PS

- Motivation:
 - Test of limitations of ME+PS generators and fixed order pQCD in regions where large logarithmic corrections and EW NLO corrections are expected to become important

A. Denner et al, JHEP06 (2011) 069, 7TeV: A. Mueck

factorize for pT(Z), exclusive pT(jet)

- Observables:
 - Jet transverse momenta (1st, 2nd, 3rd and 4th jet)
 - Jet p_{T} ratio
 - Transverse momentum of the Z boson

GEORG-AUGUST-UNIVERSITÄT Göttingen

Results – Transverse Momenta

- ALPGEN: overestimates cross section for large p_T
- missing NLO EW and NLO QCD corrections
- MC@NLO: underestimates cross section

Results – Transverse Momenta

 $Z p_{T}, N_{iet} = 1$

 $Z/\gamma^*(\rightarrow l^+l)+1$ jet (l=e, μ)

ALPGEN

SHERPA

300

350

400

450

p[∥]_⊤ [GeV]

MC@NLO

✓● Data 2011 (\s = 7 TeV) =

- ALPGEN: overestimates cross section for large p_T
- missing NLO EW and NLO QCD corrections
- Deviation mainly due to higher order QCD effects

- Motivation:
 - Typical signatures of Higgs boson production and BSM physics are characterised by high energetic well separated forward jets
 - Excellent knowlegde of angular distributions can be used to distinguish signal from background
- Observables:
 - Absolute jet rapidity (1st, 2nd, 3rd and 4th jet)
 - Invariant dijet mass
 - Angular separations between the leading jets ($|\Delta y|$, $|\Delta \phi|$, ΔR)
- Challenges:
 - Jet energy scale (JES), especially in the forward region

Results – Angular Distributions

Leading jet rapidity

2nd leading jet rapidity

- SHERPA and NLO fixed-order pQCD overestimate cross section in forward region
- MC@NLO predicts too broad rapidity distribution

18.07.2013

Results – Dijet Quantities

Invariant dijet mass

Absolute rapidity difference

- Tendencies observed in y distributions are reflected in dijet distributions
- BH+SHERPA/data: good agreement

18.07.2013

- Motivation:
 - Higgs boson production via vector boson fusion (VBF) is characterised by high energetic well separated forward jets and reduced central activity
 - Excellent knowlegde of distributions after
 VBF preselection can be used to distinguish signal from background
- VBF preselection:
 - m_{ii} > 350 GeV
 - |∆y^{jj}| >3.0
- Observables
 - Exclusive jet multiplicity
 - 3rd jet transverse momentum
 - 3rd jet absolute rapidity
 - Survival efficiency of a 3rd jet

18.07.2013

Results – Distributions after VBF Cuts

3^{rd} leading jet p_{T}

3rd leading jet rapidity

- Good agreement between predictions and data up to 70 GeV
- For larger values a lack of data is observed

18.07.2013

Results – Distributions after VBF Cuts

Exclusive jet multiplicity ratio

18.07.2013

W + heavy flavour

- Motivation:
 - Test of pQCD predictions:
 - LO 2→2 process CKM supressed
 - Competing flavour shemes: 4FNS vs 5FNS
 - Massive vs massless quarks
 - Irreducible background to Higgs boson associated production (VH) with H→bb decays, single top production and BSM physics
- Observables:
 - Jet multiplicity
 - Transverse momentum of the leading b-jet

 W+b cross section with exactly one or two b-jets (particle level)

Requirement	Cut
Lepton transverse momentum	$p_{\rm T}^{\ell} > 25~{\rm GeV}$
Lepton pseudorapidity	$ \eta^\ell < 2.5$
Neutrino transverse momentum	$p_{\rm T}^{\nu} > 25 { m ~GeV}$
W transverse mass	$m_{\rm T}(W) > 60 { m ~GeV}$
Jet transverse momentum	$p_{\rm T}^j > 25 { m ~GeV}$
Jet rapidity	$ y^{j} < 2.1$
Jet multiplicity	$n \leq 2$
<i>b</i> -jet multiplicity	$n_b = 1$ or $n_b = 2$
Jet-lepton separation	$\Delta R(\ell, {\rm jet}) > 0.5$

- b jets: jet-b-hadron matching ΔR <0.3, p₁(b)>5 GeV
- Main Backgrounds: W+c, W+light, ttbar, single top
- Signal extraction:
 - Maximum likelihood fit to btagger distribution (CombNN)
 - Separate b-jets from c-jets and light jets
 - Unfold to particle level

Signal fraction ~ 20%

Experimental uncertainties:

- Statistical: 7-20%
- Systematics: 20-25%
 - (JES, JER, MC modelling)

18.07.2013

Unfolded data compared to theoretical predictions from:

Monte Carlo	Process	Proton model	Precision	Parton shower, underlying event	Double parton interactions (DPI)
Alpgen/Herwig/Jimmy	W+b/c/light-jets	4 flavors	LO with NNLO k-factor = 1.2	Yes	Yes
Powheg/Pythia	W+bb	4 flavors	NLO	Yes	No
MCFM	W+b+X	4 and 5 f.	NLO	No	No

Correction	1 jet	2 jets	Multiplicative
Non-perturbative	0.92 ± 0.02 (had.) ± 0.03 (UE)	0.96 ± 0.05 (had.) ± 0.03 (UE)	
DPI [pb]	$1.02 \pm 0.05 \text{ (stat)} ^{+0.40}_{-0.29} \text{ (syst)}$	0.32 ± 0.02 (stat) $^{+0.12}_{-0.09}$ (syst)	Additivo

<u>Results:</u>

- 1 jet: consistent within 1.5σ
- 2 jets: good agreement

W + b jets - Results

W+b jets

W+b jets + single top

- ALPGEN and MCFM tend to underestimate cross section for large b-jet $\boldsymbol{p}_{_{T}}$
- Combined W+b-jets + single top cross section measurement has larger precision

- Motivation: Sensitive to strange quark PDF at x~0.01
- W+c cross section (particle level)
 - $p_T^{\ell} > 20$ GeV and $|\eta^{\ell}| < 2.5$
 - $p_{\rm T}^{\nu} > 25 {\rm ~GeV}$
 - $m_{\rm T}^W > 40 {\rm GeV}$
 - $p_{\rm T}^D > 8 \,{\rm GeV} \,\,{\rm and} \,\, |\eta^D| < 2.2,$
 - OS-SS: $W^{\pm}D^{(*)\mp} W^{\pm}D^{(*)\pm}$
- Signal extraction:
 - Charm hadrons reconstructed of four D(*)
 + hadron decay channels
 - Charge correlation lepton from W and D(*)+: OS-SS subtraction (reduce W+cc)
 - Shape of signal and combinatorial background determined from data
 - Fit of signal and background templates
 - Correction for detector effects
- Dominant experimental uncertainty: tracking efficiency ~7%

18.07.2013

OS-SS cross section

Charge asymmetry ratio $\sigma(W^+D^{(*)-}/\sigma(W^-D^{(*)+}))$

- Prefers PDFs with enhanced strange content (epWZ, NNPDF2.3coll, CT10)
- Data consistent with all PDFs studied

- V + jets constitutes important test of pQCD predictions with light and heavy quarks
- Important background for studies of the Higgs boson and searches for new physics
- Dataset of 2011 allows to measure V+jets cross section with higher precision and in new phase space regions
 - In general, good agreement between predictions and data
 - Discrepancies between predictions and data in several regions
 - Fixed-order NLO / data: missing higher order effects
 - ME+PS / data: provides input for generator tuning
 - No satisfying description of W + b process
 - W+c measurement supports symmetric light-quark sea

Back-Up

- Differential cross sections: fiducial region for dressed leptons and particle level jets Dressed leptons: photons within cone of 0.1 around lepton direction
- Unfolding method: iterative (Bayes) method (Nucl. Instrum. Meth. A 362 (1995) 487)
 - Trainings sample: ALPGEN+HERWIG+JIMMY
 - Correction for mis-matched jets and different hierarchy at reco and truth level
 - Number of iterations optimized for each distribution by minimizing X² between unfolded and truth Sherpa and MC@NLO pseudodata

$$\chi^2 = \sum_i \frac{(U_i - T_i)^2}{(\delta T_i)^2}$$

- Dominant systematic uncertainties:
 - Comparison of unfolded cross sections using Alpgen and Sherpa as training sample
 - Limited MC statistics in migration matrix

18.07.2013

- BlackHat+Sherpa fixed order NLO. Five complete sets: Z+0,1,2,3,4 jets (C.F. Berger et al, Phys.Rev. D82 (2010) 074002, H. Ita et al, Phys. Rev. D 85 (2012) 031501)
- Scale:
 - Nominal hadronization and factorization scale: $H_{T}/2$
 - Systematics: varying both scales simultaniously by factor of 2
 → 4% 13% for N_{iet} ≥ 1-4, <u>dominant uncertainty</u>
 - Exclusive distributions: I.W.Stewart, F.J. Tackmann, Phys.Rev. D 85 (2012) 034011
- PDF:
 - CT10
 - Systematics: complete PDF CTEQ10 error set, 68%CL (1% 3% for $N_{jet} \ge 1-4$)
- α_{s} uncertainty:
 - varying the input α_{s} at the Z scale by +/- 0.0012 (1% 3% for N_{iet} \geq 1-4)
- Theoretical prediction are corrected for
 - QED radiation effects:
 - Nominal correction: ALPGEN+HERWIG+PHOTOS (~2%)
 - Systematics: Sherpa 1.4 +YFS
 - non-perturbative contributions (UE, fragmentation) and DPI:
 - Nominal correction: ALPGEN+HERWIG AUET2 tune (~3%-4%)
 - Systematics: ALPGEN+Pythia6 Perugia2011 tune

Absolute azimuthal separation

Angular separation in $y-\phi$ space

- Sherpa/data: distributions too flat
- ALPGEN/data: discrepancies for large ΔR^{ij}
- BH+Sherpa/data: good agreement

- Motivation:
 - Inclusive quantities are of particular interest for BSM physics (final states with large jet activity)
 - QCD renormalisation and factorisation scale is often set to $H_{r}/2$
 - Test recent NLO fixed-order pQCD predictions
- Observables:
 - H_{τ} : scalar p_{τ} sum of all final state objects
 - S_T: scalar pT sum of all hadronic jets in final state

Results – Inclusive Quantities

H_

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

 S_{T} [GeV]

- ALPGEN, SHERPA consistent with data
- NLO fixed order Z+ \geq 1 jet underestimates large H_T, S_T
- Possible explanation: missing higher orders in QCD

18.07.2013

Results – Inclusive Quantities

H₊

- ALPGEN, SHERPA consistent with data
- NLO fixed order Z+ \geq 1 jet underestimates large H_T
- Possible explanation: missing higher orders in QCD

Results – Inclusive Quantities

H

- ALPGEN, SHERPA consistent with data
- NLO fixed order Z+ \geq 1 jet underestimates large H_T
- Possible explanation: missing higher orders in QCD

DPI in W + 2 jets

Introduction

18.07.2013

18.07.2013

Distribution of observables

W, W+2jets: using 2010 data (36 pb⁻¹)

Selection:

Leptons:
$$p_{\rm T}^{\ell} > 20 \,\text{GeV}$$
 and $|\eta| < 2.4$ ($|\eta| < 2.47$)
Etmiss, mT: $E_{\rm T}^{\rm miss} > 25 \,\text{GeV}$ and $m_{\rm T} > 40 \,\text{GeV}$
Jets: $p_{\rm T} > 20 \,\text{GeV}$ and $|y| < 2.8$, $\Delta R(\text{jl}) > 0.5$

Backgrounds:

- multi-jet: 6-14%, data driven
- EW, top: 5-8%, MonteCarlo

Signal MC:

- Alpgen+Herwig+Jimmy, AUET tune
- Sherpa 1.31

18.07.2013

Table 1. Summary of the fractional uncertainties on $f_{\rm DP}^{(D)}$			
Systematic source	Uncertainty (%))	
Theory	10		
Pile-up	13		
Jet energy scale	12) -	
Jet energy resolution	8		
Background modelling and lepton response	11		
Total systematic	24	/	
Total statistical	17		

Systematic source	Uncertainty (%)
$\sigma_{eff} = 1/f_{\mathrm{DP}}^{(\mathrm{D})} \cdot \textit{N}_{\textit{W}_{0j}}/\textit{N}_{\textit{W}+2j} \cdot \textit{N}_{W}$	$N_{2\mathrm{j}}/\mathcal{L}_{2\mathrm{j}}$
Fractional uncertainties	on

24
5
3
+33 -20
17

18.07.2013

Extraction of results

18.07.2013