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The goal

NLOPS H:

NLO 0-jet inc obs
LO  1-jet inc obs
PS  everything else

NLOPS HJ:

Unphysical 0-jet inc obs
NLO 1-jet inc obs
LO  2-jet inc obs
PS  everything else

< 4 yrs ago NLOPS limited to colourless F.S.’s [at Born level]

Since then aMC@NLO, POWHEG and SHERPA all have NLOPS for 
colourless + 0,1 [2] jets e.g. 

Degree of complementarity alone already begs for way to 
consistently combine colourless + jets NLOPS simulations

I.E. NLO extension of CKKW LOPS merging algorithm
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NLOPS H jet:

NLO 0-jet inc obs
LO  1-jet inc obs
PS  everything else

NLOPS HJ:

Unphysical 0-jet inc obs
NLO 1-jet inc obs
LO  2-jet inc obs
PS  everything else

The goal

Merged / matched NLOPS H ∪ HJ:

NLO 0-jet inc obs
NLO 1-jet inc obs
LO  2-jet inc obs
PS  everything else

You would like to combine strengths, somehow.

And you’d like it for free, of course. No hidden charges. 
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Preliminary #1/3: HJ Powheg

Powheg defines underlying Born [U.B.] vars ����specifying pp → HJ 
2 → 2 kinematics

Roughly speaking event generation happens in three steps:

1. U.B. config. is generated acc. to NLO dσ/d���

2. Hardest radn attached by unitary PS-type mechanism to the 
U.B. kinematic [incl. relevant HJ →HJJ Sudakov suppression]

3. Subsequent softer emissions generated by feeding these 
hardest radn events to a [vetoed] parton shower

NLO dσ/d����is divergent & unphysical for pT → 0 ; regulated by an 
unphysical gen. cut well below experimental jet pT  threshold
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By HJ-MiNLO we mean improvement of the NLO xsec determining the 
starting U.B. config. [i.e. modify step 1 on last slide]

In a nutshell MiNLO adds Sudakov resummation to HJ U.B. configs 

MiNLO recipe applied to the NLO HJ goes   

Again, with MiNLO, the initial U.B. pp → HJ kinematic goes from 
being divergent as pT → 0 to having physical Sudakov suppression

Preliminary #2/3: HJ-MiNLO

(b) Match to the Sudakov form factor

The NLO Hj cross section is multiplied by the product of a Sudakov form fac-
tor with a ratio of coupling constants αS (pT) /αS (Q), and the related O

(
α4

S

)

subtraction terms, necessary to maintain NLO accuracy in the presence of these
factors, are inserted:

dσM

dp2Tdy
= ∆2 (Q, pT)

αS (pT)

αS (Q)

[
dσ

dp2Tdy
+

dσ

dp2Tdy
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LO

αNLO
S

[
A1L

2 + 2B1L− b0L
]]

, (2.3)

wherein dσ|
LO

denotes the leading order part of the Hj NLO cross section, with
b0 the usual leading order beta function coefficient (12πb0 = 11CA − 2nf). The
Sudakov form factor is given by

log∆ (Q, pT) = −
∫ Q2

p2T

dq2

q2

∞∑

i=1

αi
S (q)

[
Ai log

Q2

q2
+Bi

]
, (2.4)

with the Ai and Bi coefficients recorded in Sect. 2 of Ref. [41]. Together, steps
2 and 3 amount to matching the NLO Hj computation to the all orders resum-
mation of Sudakov logartihms implicit in the PDFs and form factor ∆ (Q, pT).

3. Derive the pT → 0 divergent behaviour of the Hj-Minlo cross section

Separating out the pieces of dσM which originate from dσS and dσF , one can rewrite
it as follows

dσM

dp2Tdy
=

dσMS

dp2Tdy
+

dσMF

dp2Tdy
, (2.5)

with the leading pT → 0 part given by

dσMS

dp2Tdy
= ∆2 (Q, pT)

N

p2T

2∑

r=1

1∑

s=0

αr
S rEs L

s + {i ↔ j} , (2.6)

and the subleading part given by Eq. (2.3) excepting the replacements dσM → dσMF

on the left- and dσ → dσF on the right-hand side. In Eq. (2.6) the two powers of αS

inside N are evaluated at the scale Q and the remainder at pT. After a lengthy (but
straightforward) computation the rEs coefficients are determined as

1E1 = A1 fi fj , (2.7)

1E0 = B1 fi fj + [Pik ⊗ fk] fj , (2.8)

2E1 = A2 fi fj + 2A1

[
C(1)

ik ⊗ fk
]
fj , (2.9)

2E0 = B2 fi fj + 2B1

[
C(1)

ik ⊗ fk
]
fj +

[
P (2)
ik ⊗ fk

]
fj (2.10)

+
[
C(1)

ik ⊗ fk
]
[Pjl ⊗ fl] +

[
C(1)

ik ⊗ Pkl ⊗ fl
]
fj − b0

[
C(1)

ik ⊗ fk
]
fj ,
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Sudakov
form factor

Resum b0
logs in αS

Maintain F.O.
expansion to NLO

NLO xsec
μR = Q
μF = pT

the conventional NLO Hj calculation, so as to yield equally accurate predictions for in-
clusive Higgs production observables. To limit overlap with Ref. [41] we give the minimal
instructions needed for the reader to rederive the proof and appreciate its salient features,
in particular we choose not to revisit renormalization and factorization scale variations. As
noted in the introduction, this feature underpins the promotion of the Hj-Minlo simula-
tion from Nlops to Nnlops, the mechanism for which is presented and discussed in the
second half of this section.

2.1 NLO inclusive Higgs boson production from NLO Higgs-plus-jet production

The proof that the Minlo Higgs boson plus jet computation yields predictions which are
NLO accurate in the description of both inclusive and jet-associated observables, comprises
of four steps.

1. Establish the pT → 0 divergent behaviour of the NLO Hj cross section

The NLO cross section for the Hj process, differential in the Higgs boson’s rapid-
ity, y, and transverse momentum, pT, is expressed as the sum of a pT → 0 divergent
part, dσS , and a finite remainder, dσF ,

dσ

dp2Tdy
=

dσS

dp2Tdy
+

dσF

dp2Tdy
. (2.1)

The singular part is given in the literature [42] as a sum over terms of the form
αr

SL
s/p2T, where L = log Q2

p2T
and Q2 is the virtuality of the boson:

dσS

dp2Tdy
=

N

p2T

2∑

r=1

2r−1∑

s=0

(αS

2π

)r

rDs L
s , (2.2)

Conventionally dσS is defined to vanish for pT > Q, i.e. dσ = dσF in this region. The
constant factor N is such that when it multiplies the PDFs the result is equal to the
leading order cross section for the H process differential in y. This formula exactly
describes the NLO Hj cross section in the pT → 0 limit.

2. Improve the NLO Hj cross section following the Minlo prescription

(a) Apply µR and µF scale choices

All instances of µR and µF are replaced by Q and pT, respectively. Furthermore,
the additional power of αS in the NLO terms is replaced by αNLO

S = αS(pT). The
choice of factorisation scale effectively absorbs a couple of µF-dependent terms
in Eq. (2.2) into the PDFs.

– 4 –

Monday, 15 July 13



1

2

4

20 40 60 80 100
p

H

T
[GeV]

R
at
io

H PWG
HJ RUN
HJ FXD

The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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Preliminary #3/3: HJ-NLO v [old] HJ-MiNLO

H  PWG: gg → Higgs at NLO Powheg+Pythia
HJ RUN: NLO HJ jet with μR = μF = pT,H
HJ FXD: NLO HJ jet with μR = μF = MH
The ref. line for ratios is NLO gg → H Powheg+Pythia
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HJ-MiNLO agrees w.other HJ NLO calcs at high pT as promised 
HJ-MiNLO within 40% of NLOPS H simulation in deep Sudakov region 
HJ-MiNLO scale uncertainty doesn’t shrink towards low pT
‘Normal’ bands shrink to 0 by having first Sudakov log only
Shrinking envelope as pT → 0 surely a bad sign
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procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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Inclusion of Sudakov resummation means removal of generation 
cuts and physical behaviour all over phase space 

MiNLO X+jets computatns therefore also gives sensible predictns 
for fully incl. obs. [where conventional NLO X+jets gives garbage]

Quantify ‘sensible’ : 2nd MiNLO paper showed HJ-MiNLO different 
to NLO for incl. obs. by O(aS1.5) terms relative to LO H prod.

In particular, 2nd MiNLO shows by including B2 coefficient in 
Sudakov HJ-MiNLO gets promoted to NLO accuracy for incl. obs.

Next slides show how this comes about 
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the conventional NLO Hj calculation, so as to yield equally accurate predictions for in-
clusive Higgs production observables. To limit overlap with Ref. [41] we give the minimal
instructions needed for the reader to rederive the proof and appreciate its salient features,
in particular we choose not to revisit renormalization and factorization scale variations. As
noted in the introduction, this feature underpins the promotion of the Hj-Minlo simula-
tion from Nlops to Nnlops, the mechanism for which is presented and discussed in the
second half of this section.

2.1 NLO inclusive Higgs boson production from NLO Higgs-plus-jet production

The proof that the Minlo Higgs boson plus jet computation yields predictions which are
NLO accurate in the description of both inclusive and jet-associated observables, comprises
of four steps.

1. Establish the pT → 0 divergent behaviour of the NLO Hj cross section

The NLO cross section for the Hj process, differential in the Higgs boson’s rapid-
ity, y, and transverse momentum, pT, is expressed as the sum of a pT → 0 divergent
part, dσS , and a finite remainder, dσF ,

dσ

dp2Tdy
=

dσS

dp2Tdy
+

dσF

dp2Tdy
. (2.1)

The singular part is given in the literature [42] as a sum over terms of the form
αr

SL
s/p2T, where L = log Q2

p2T
and Q2 is the virtuality of the boson:

dσS

dp2Tdy
=

N

p2T

2∑

r=1

2r−1∑

s=0

(αS

2π

)r

rDs L
s , (2.2)

Conventionally dσS is defined to vanish for pT > Q, i.e. dσ = dσF in this region. The
constant factor N is such that when it multiplies the PDFs the result is equal to the
leading order cross section for the H process differential in y. This formula exactly
describes the NLO Hj cross section in the pT → 0 limit.

2. Improve the NLO Hj cross section following the Minlo prescription

(a) Apply µR and µF scale choices

All instances of µR and µF are replaced by Q and pT, respectively. Furthermore,
the additional power of αS in the NLO terms is replaced by αNLO

S = αS(pT). The
choice of factorisation scale effectively absorbs a couple of µF-dependent terms
in Eq. (2.2) into the PDFs.
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(b) Match to the Sudakov form factor

The NLO Hj cross section is multiplied by the product of a Sudakov form fac-
tor with a ratio of coupling constants αS (pT) /αS (Q), and the related O

(
α4

S

)

subtraction terms, necessary to maintain NLO accuracy in the presence of these
factors, are inserted:

dσM

dp2Tdy
= ∆2 (Q, pT)

αS (pT)

αS (Q)

[
dσ

dp2Tdy
+

dσ

dp2Tdy

∣∣∣∣
LO

αNLO
S

[
A1L

2 + 2B1L− b0L
]]

, (2.3)

wherein dσ|
LO

denotes the leading order part of the Hj NLO cross section, with
b0 the usual leading order beta function coefficient (12πb0 = 11CA − 2nf). The
Sudakov form factor is given by

log∆ (Q, pT) = −
∫ Q2

p2T

dq2

q2

∞∑

i=1

αi
S (q)

[
Ai log

Q2

q2
+Bi

]
, (2.4)

with the Ai and Bi coefficients recorded in Sect. 2 of Ref. [41]. Together, steps
2 and 3 amount to matching the NLO Hj computation to the all orders resum-
mation of Sudakov logartihms implicit in the PDFs and form factor ∆ (Q, pT).

3. Derive the pT → 0 divergent behaviour of the Hj-Minlo cross section

Separating out the pieces of dσM which originate from dσS and dσF , one can rewrite
it as follows

dσM

dp2Tdy
=

dσMS

dp2Tdy
+

dσMF

dp2Tdy
, (2.5)

with the leading pT → 0 part given by

dσMS

dp2Tdy
= ∆2 (Q, pT)

N

p2T

2∑

r=1

1∑

s=0

αr
S rEs L

s + {i ↔ j} , (2.6)

and the subleading part given by Eq. (2.3) excepting the replacements dσM → dσMF

on the left- and dσ → dσF on the right-hand side. In Eq. (2.6) the two powers of αS

inside N are evaluated at the scale Q and the remainder at pT. After a lengthy (but
straightforward) computation the rEs coefficients are determined as

1E1 = A1 fi fj , (2.7)

1E0 = B1 fi fj + [Pik ⊗ fk] fj , (2.8)

2E1 = A2 fi fj + 2A1

[
C(1)

ik ⊗ fk
]
fj , (2.9)

2E0 = B2 fi fj + 2B1

[
C(1)

ik ⊗ fk
]
fj +

[
P (2)
ik ⊗ fk

]
fj (2.10)

+
[
C(1)

ik ⊗ fk
]
[Pjl ⊗ fl] +

[
C(1)

ik ⊗ Pkl ⊗ fl
]
fj − b0

[
C(1)

ik ⊗ fk
]
fj ,
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All μR’s replaced by Q

the conventional NLO Hj calculation, so as to yield equally accurate predictions for in-
clusive Higgs production observables. To limit overlap with Ref. [41] we give the minimal
instructions needed for the reader to rederive the proof and appreciate its salient features,
in particular we choose not to revisit renormalization and factorization scale variations. As
noted in the introduction, this feature underpins the promotion of the Hj-Minlo simula-
tion from Nlops to Nnlops, the mechanism for which is presented and discussed in the
second half of this section.

2.1 NLO inclusive Higgs boson production from NLO Higgs-plus-jet production

The proof that the Minlo Higgs boson plus jet computation yields predictions which are
NLO accurate in the description of both inclusive and jet-associated observables, comprises
of four steps.

1. Establish the pT → 0 divergent behaviour of the NLO Hj cross section

The NLO cross section for the Hj process, differential in the Higgs boson’s rapid-
ity, y, and transverse momentum, pT, is expressed as the sum of a pT → 0 divergent
part, dσS , and a finite remainder, dσF ,

dσ

dp2Tdy
=

dσS

dp2Tdy
+

dσF

dp2Tdy
. (2.1)

The singular part is given in the literature [42] as a sum over terms of the form
αr

SL
s/p2T, where L = log Q2

p2T
and Q2 is the virtuality of the boson:

dσS

dp2Tdy
=

N

p2T

2∑

r=1

2r−1∑

s=0

(αS

2π

)r

rDs L
s , (2.2)

Conventionally dσS is defined to vanish for pT > Q, i.e. dσ = dσF in this region. The
constant factor N is such that when it multiplies the PDFs the result is equal to the
leading order cross section for the H process differential in y. This formula exactly
describes the NLO Hj cross section in the pT → 0 limit.

2. Improve the NLO Hj cross section following the Minlo prescription

(a) Apply µR and µF scale choices

All instances of µR and µF are replaced by Q and pT, respectively. Furthermore,
the additional power of αS in the NLO terms is replaced by αNLO

S = αS(pT). The
choice of factorisation scale effectively absorbs a couple of µF-dependent terms
in Eq. (2.2) into the PDFs.
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2. Improve the NLO HJ xsec according to MiNLO prescription

Multiply NLO HJ xsec by Sudakov [includes B2]

(b) Match on to pT space Sudakov form factor

Multiply NLO HJ xsec by ratio 

Subtract their αS expansions maintaining NLO F.O. expansion

This gives HJ-MiNLO xsec, exactly, no approximations:

   [ i.e. add into NLO HJ pT resummation ]

(b) Match to the Sudakov form factor

The NLO Hj cross section is multiplied by the product of a Sudakov form fac-
tor with a ratio of coupling constants αS (pT) /αS (Q), and the related O

(
α4

S

)

subtraction terms, necessary to maintain NLO accuracy in the presence of these
factors, are inserted:

dσM

dp2Tdy
= ∆2 (Q, pT)

αS (pT)

αS (Q)

[
dσ

dp2Tdy
+

dσ

dp2Tdy

∣∣∣∣
LO

αNLO
S

[
A1L

2 + 2B1L− b0L
]]

, (2.3)

wherein dσ|
LO

denotes the leading order part of the Hj NLO cross section, with
b0 the usual leading order beta function coefficient (12πb0 = 11CA − 2nf). The
Sudakov form factor is given by

log∆ (Q, pT) = −
∫ Q2

p2T

dq2

q2

∞∑

i=1

αi
S (q)

[
Ai log

Q2

q2
+Bi

]
, (2.4)

with the Ai and Bi coefficients recorded in Sect. 2 of Ref. [41]. Together, steps
2 and 3 amount to matching the NLO Hj computation to the all orders resum-
mation of Sudakov logartihms implicit in the PDFs and form factor ∆ (Q, pT).

3. Derive the pT → 0 divergent behaviour of the Hj-Minlo cross section

Separating out the pieces of dσM which originate from dσS and dσF , one can rewrite
it as follows

dσM

dp2Tdy
=

dσMS

dp2Tdy
+

dσMF

dp2Tdy
, (2.5)

with the leading pT → 0 part given by

dσMS

dp2Tdy
= ∆2 (Q, pT)

N

p2T

2∑

r=1

1∑

s=0

αr
S rEs L

s + {i ↔ j} , (2.6)

and the subleading part given by Eq. (2.3) excepting the replacements dσM → dσMF

on the left- and dσ → dσF on the right-hand side. In Eq. (2.6) the two powers of αS

inside N are evaluated at the scale Q and the remainder at pT. After a lengthy (but
straightforward) computation the rEs coefficients are determined as

1E1 = A1 fi fj , (2.7)

1E0 = B1 fi fj + [Pik ⊗ fk] fj , (2.8)

2E1 = A2 fi fj + 2A1

[
C(1)

ik ⊗ fk
]
fj , (2.9)

2E0 = B2 fi fj + 2B1

[
C(1)

ik ⊗ fk
]
fj +

[
P (2)
ik ⊗ fk

]
fj (2.10)

+
[
C(1)

ik ⊗ fk
]
[Pjl ⊗ fl] +

[
C(1)

ik ⊗ Pkl ⊗ fl
]
fj − b0

[
C(1)

ik ⊗ fk
]
fj ,
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3. Establish leading pT → 0 behaviour of HJ-MiNLO xsec

Write HJ-MiNLO xsec as sum of pT → 0 leading & subleading parts

Plug exp. for sing. part of NLO HJ,     , into HJ-MiNLO one,      

Subleading part also from plugging      into      expression on 

last slide [not singular, O(aS3) before & after pT integratn].
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Note r=2, s=0,1 not 0,1,2,3 : r=2, s=2,3 absorbed in Sud. & PDFs

NLOPS H from NLOPS HJ-MiNLO: 3/5

the conventional NLO Hj calculation, so as to yield equally accurate predictions for in-
clusive Higgs production observables. To limit overlap with Ref. [41] we give the minimal
instructions needed for the reader to rederive the proof and appreciate its salient features,
in particular we choose not to revisit renormalization and factorization scale variations. As
noted in the introduction, this feature underpins the promotion of the Hj-Minlo simula-
tion from Nlops to Nnlops, the mechanism for which is presented and discussed in the
second half of this section.

2.1 NLO inclusive Higgs boson production from NLO Higgs-plus-jet production

The proof that the Minlo Higgs boson plus jet computation yields predictions which are
NLO accurate in the description of both inclusive and jet-associated observables, comprises
of four steps.

1. Establish the pT → 0 divergent behaviour of the NLO Hj cross section

The NLO cross section for the Hj process, differential in the Higgs boson’s rapid-
ity, y, and transverse momentum, pT, is expressed as the sum of a pT → 0 divergent
part, dσS , and a finite remainder, dσF ,

dσ

dp2Tdy
=

dσS

dp2Tdy
+

dσF

dp2Tdy
. (2.1)

The singular part is given in the literature [42] as a sum over terms of the form
αr

SL
s/p2T, where L = log Q2

p2T
and Q2 is the virtuality of the boson:

dσS

dp2Tdy
=

N

p2T

2∑

r=1

2r−1∑

s=0

(αS

2π

)r

rDs L
s , (2.2)

Conventionally dσS is defined to vanish for pT > Q, i.e. dσ = dσF in this region. The
constant factor N is such that when it multiplies the PDFs the result is equal to the
leading order cross section for the H process differential in y. This formula exactly
describes the NLO Hj cross section in the pT → 0 limit.

2. Improve the NLO Hj cross section following the Minlo prescription

(a) Apply µR and µF scale choices

All instances of µR and µF are replaced by Q and pT, respectively. Furthermore,
the additional power of αS in the NLO terms is replaced by αNLO

S = αS(pT). The
choice of factorisation scale effectively absorbs a couple of µF-dependent terms
in Eq. (2.2) into the PDFs.
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(b) Match to the Sudakov form factor

The NLO Hj cross section is multiplied by the product of a Sudakov form fac-
tor with a ratio of coupling constants αS (pT) /αS (Q), and the related O

(
α4

S

)

subtraction terms, necessary to maintain NLO accuracy in the presence of these
factors, are inserted:

dσM

dp2Tdy
= ∆2 (Q, pT)

αS (pT)

αS (Q)

[
dσ

dp2Tdy
+

dσ

dp2Tdy

∣∣∣∣
LO

αNLO
S

[
A1L

2 + 2B1L− b0L
]]

, (2.3)

wherein dσ|
LO

denotes the leading order part of the Hj NLO cross section, with
b0 the usual leading order beta function coefficient (12πb0 = 11CA − 2nf). The
Sudakov form factor is given by

log∆ (Q, pT) = −
∫ Q2

p2T

dq2

q2

∞∑

i=1

αi
S (q)

[
Ai log

Q2

q2
+Bi

]
, (2.4)

with the Ai and Bi coefficients recorded in Sect. 2 of Ref. [41]. Together, steps
2 and 3 amount to matching the NLO Hj computation to the all orders resum-
mation of Sudakov logartihms implicit in the PDFs and form factor ∆ (Q, pT).

3. Derive the pT → 0 divergent behaviour of the Hj-Minlo cross section

Separating out the pieces of dσM which originate from dσS and dσF , one can rewrite
it as follows

dσM

dp2Tdy
=

dσMS

dp2Tdy
+

dσMF

dp2Tdy
, (2.5)

with the leading pT → 0 part given by

dσMS

dp2Tdy
= ∆2 (Q, pT)

N

p2T

2∑

r=1

1∑

s=0

αr
S rEs L

s + {i ↔ j} , (2.6)

and the subleading part given by Eq. (2.3) excepting the replacements dσM → dσMF

on the left- and dσ → dσF on the right-hand side. In Eq. (2.6) the two powers of αS

inside N are evaluated at the scale Q and the remainder at pT. After a lengthy (but
straightforward) computation the rEs coefficients are determined as

1E1 = A1 fi fj , (2.7)

1E0 = B1 fi fj + [Pik ⊗ fk] fj , (2.8)

2E1 = A2 fi fj + 2A1

[
C(1)

ik ⊗ fk
]
fj , (2.9)

2E0 = B2 fi fj + 2B1

[
C(1)

ik ⊗ fk
]
fj +

[
P (2)
ik ⊗ fk

]
fj (2.10)

+
[
C(1)

ik ⊗ fk
]
[Pjl ⊗ fl] +

[
C(1)

ik ⊗ Pkl ⊗ fl
]
fj − b0

[
C(1)

ik ⊗ fk
]
fj ,
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    are NLO corrections to the H prodn coeff. fns,    , in well 

known b-space resummation formula

where fi represents the PDF for a parton i, in colliding hadron A, carrying a mo-
mentum fraction xA at the point of annihilation where the Higgs boson is formed
(fi = fi/A (xA, pT)). The convolution operator, ⊗, is defined according to the follow-
ing relation

(f ⊗ g) (x) ≡
∫ 1

x

dz

z
f (z) g

(x
z

)
. (2.11)

The C(1)
ik terms in Eqs. (2.7-2.10) are NLO corrections to the coefficient functions, Cik,

in the well-known impact parameter space resummation formula [43], while Pik(z) de-
notes the leading order splitting function for parton k branching to a parton i with
momentum fraction z, P (2)

ik denoting its relative O (αS) corrections. The C(1)
ik and Pik

functions here are equal to those in Ref. [42] save for a factor 1/2π in the former,
by the same token, the P (2)

ik functions here are equal to those in Refs. [42] divided
by (2π)2. Given that we do not apply Taylor expansions, renormalization group or
DGLAP equations in any of the preceding steps, Eq. (2.6) describes, verbatim, the
leading pT → 0 part of the Hj-Minlo computation.

4. Determine the integral of the Hj-Minlo pT spectrum with O
(
α3

S

)
accuracy

It is not difficult to show that, with a fixed coupling constant, and considering just
the leading double logarithm component of the Sudakov form factor, terms of the
form

∆2 (Q, pT)
N

p2T
αr

S L
s , (2.12)

with s ≥ 2r−5, on integration over pT, give rise to O
(
α2

S

)
contributions relative to the

lowest order H production process. Taking this into account, one can utilise coupling
constant and DGLAP evolution equations to write, up to O

(
α2

S

)
ambiguities,

∫
dp2T

dσM

dp2Tdy
=

∫
dp2T

[
N

d

dp2T
∆2(Q, pT) [Cik ⊗ fk] [Cjl ⊗ fl] +

dσMF

dp2Tdy

]
. (2.13)

Considering that the C(1)
ik are essentially defined by the relation

dσ

dy
= N [Cik ⊗ fk] [Cjl ⊗ fl] +

∫
dp2T

dσF

dp2Tdy
+O

(
α4

S

)
, (2.14)

(see Refs. [42, 44]), where the left-hand side is the conventional NLO Higgs boson rapid-
ity distribution, together with the fact that the integral of the remaining part of the pT

spectrum, dσMF , is equal to that of dσF , up to relative order α2
S ambiguities,1 the pT-

integrated Hj-Minlo differential cross section, Eq. (2.13), is manifestly equal to that of
the conventional NLO inclusive H process, Eq. (2.14).

1More fastidious readers may wish to consult Sect. 3 of Ref. [41] for further detail regarding this point.
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4. Determine integral of HJ-MiNLO pT  spectrum at O(αS3) accuracy

Not hard to show w. fixed coupling & double log Sudakov terms

where fi represents the PDF for a parton i, in colliding hadron A, carrying a mo-
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w. s ≤ 2r-5 [ � N αS3L, N αS4L3, ... ] integrate to O(αS4) terms*

Knowing this can use RGE & DGLAP to write up to O(αS4) ambiguity
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NLOPS H from NLOPS HJ-MiNLO: 4/5

If no B2 in Sudakov you get extra junk on RHS ～                    
which integrates up to O(N αS1.5)
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differential in y 

5. Compare to conventional NLO

where fi represents the PDF for a parton i, in colliding hadron A, carrying a mo-
mentum fraction xA at the point of annihilation where the Higgs boson is formed
(fi = fi/A (xA, pT)). The convolution operator, ⊗, is defined according to the follow-
ing relation

(f ⊗ g) (x) ≡
∫ 1

x

dz

z
f (z) g

(x
z

)
. (2.11)

The C(1)
ik terms in Eqs. (2.7-2.10) are NLO corrections to the coefficient functions, Cik,

in the well-known impact parameter space resummation formula [43], while Pik(z) de-
notes the leading order splitting function for parton k branching to a parton i with
momentum fraction z, P (2)

ik denoting its relative O (αS) corrections. The C(1)
ik and Pik

functions here are equal to those in Ref. [42] save for a factor 1/2π in the former,
by the same token, the P (2)

ik functions here are equal to those in Refs. [42] divided
by (2π)2. Given that we do not apply Taylor expansions, renormalization group or
DGLAP equations in any of the preceding steps, Eq. (2.6) describes, verbatim, the
leading pT → 0 part of the Hj-Minlo computation.

4. Determine the integral of the Hj-Minlo pT spectrum with O
(
α3

S

)
accuracy

It is not difficult to show that, with a fixed coupling constant, and considering just
the leading double logarithm component of the Sudakov form factor, terms of the
form

∆2 (Q, pT)
N

p2T
αr

S L
s , (2.12)

with s ≥ 2r−5, on integration over pT, give rise to O
(
α2

S

)
contributions relative to the

lowest order H production process. Taking this into account, one can utilise coupling
constant and DGLAP evolution equations to write, up to O

(
α2

S

)
ambiguities,

∫
dp2T

dσM

dp2Tdy
=

∫
dp2T

[
N

d

dp2T
∆2(Q, pT) [Cik ⊗ fk] [Cjl ⊗ fl] +

dσMF

dp2Tdy

]
. (2.13)

Considering that the C(1)
ik are essentially defined by the relation

dσ

dy
= N [Cik ⊗ fk] [Cjl ⊗ fl] +

∫
dp2T

dσF

dp2Tdy
+O

(
α4

S

)
, (2.14)

(see Refs. [42, 44]), where the left-hand side is the conventional NLO Higgs boson rapid-
ity distribution, together with the fact that the integral of the remaining part of the pT

spectrum, dσMF , is equal to that of dσF , up to relative order α2
S ambiguities,1 the pT-

integrated Hj-Minlo differential cross section, Eq. (2.13), is manifestly equal to that of
the conventional NLO inclusive H process, Eq. (2.14).

1More fastidious readers may wish to consult Sect. 3 of Ref. [41] for further detail regarding this point.

– 6 –

where fi represents the PDF for a parton i, in colliding hadron A, carrying a mo-
mentum fraction xA at the point of annihilation where the Higgs boson is formed
(fi = fi/A (xA, pT)). The convolution operator, ⊗, is defined according to the follow-
ing relation

(f ⊗ g) (x) ≡
∫ 1

x

dz

z
f (z) g

(x
z

)
. (2.11)

The C(1)
ik terms in Eqs. (2.7-2.10) are NLO corrections to the coefficient functions, Cik,

in the well-known impact parameter space resummation formula [43], while Pik(z) de-
notes the leading order splitting function for parton k branching to a parton i with
momentum fraction z, P (2)

ik denoting its relative O (αS) corrections. The C(1)
ik and Pik

functions here are equal to those in Ref. [42] save for a factor 1/2π in the former,
by the same token, the P (2)

ik functions here are equal to those in Refs. [42] divided
by (2π)2. Given that we do not apply Taylor expansions, renormalization group or
DGLAP equations in any of the preceding steps, Eq. (2.6) describes, verbatim, the
leading pT → 0 part of the Hj-Minlo computation.

4. Determine the integral of the Hj-Minlo pT spectrum with O
(
α3

S

)
accuracy

It is not difficult to show that, with a fixed coupling constant, and considering just
the leading double logarithm component of the Sudakov form factor, terms of the
form

∆2 (Q, pT)
N

p2T
αr

S L
s , (2.12)

with s ≥ 2r−5, on integration over pT, give rise to O
(
α2

S

)
contributions relative to the

lowest order H production process. Taking this into account, one can utilise coupling
constant and DGLAP evolution equations to write, up to O

(
α2

S

)
ambiguities,

∫
dp2T

dσM

dp2Tdy
=

∫
dp2T

[
N

d

dp2T
∆2(Q, pT) [Cik ⊗ fk] [Cjl ⊗ fl] +

dσMF

dp2Tdy

]
. (2.13)

Considering that the C(1)
ik are essentially defined by the relation

dσ

dy
= N [Cik ⊗ fk] [Cjl ⊗ fl] +

∫
dp2T

dσF

dp2Tdy
+O

(
α4

S

)
, (2.14)

(see Refs. [42, 44]), where the left-hand side is the conventional NLO Higgs boson rapid-
ity distribution, together with the fact that the integral of the remaining part of the pT

spectrum, dσMF , is equal to that of dσF , up to relative order α2
S ambiguities,1 the pT-

integrated Hj-Minlo differential cross section, Eq. (2.13), is manifestly equal to that of
the conventional NLO inclusive H process, Eq. (2.14).

1More fastidious readers may wish to consult Sect. 3 of Ref. [41] for further detail regarding this point.

– 6 –

And      equals        up to O(αS4) terms

where fi represents the PDF for a parton i, in colliding hadron A, carrying a mo-
mentum fraction xA at the point of annihilation where the Higgs boson is formed
(fi = fi/A (xA, pT)). The convolution operator, ⊗, is defined according to the follow-
ing relation

(f ⊗ g) (x) ≡
∫ 1

x

dz

z
f (z) g

(x
z

)
. (2.11)

The C(1)
ik terms in Eqs. (2.7-2.10) are NLO corrections to the coefficient functions, Cik,

in the well-known impact parameter space resummation formula [43], while Pik(z) de-
notes the leading order splitting function for parton k branching to a parton i with
momentum fraction z, P (2)

ik denoting its relative O (αS) corrections. The C(1)
ik and Pik

functions here are equal to those in Ref. [42] save for a factor 1/2π in the former,
by the same token, the P (2)

ik functions here are equal to those in Refs. [42] divided
by (2π)2. Given that we do not apply Taylor expansions, renormalization group or
DGLAP equations in any of the preceding steps, Eq. (2.6) describes, verbatim, the
leading pT → 0 part of the Hj-Minlo computation.

4. Determine the integral of the Hj-Minlo pT spectrum with O
(
α3

S

)
accuracy

It is not difficult to show that, with a fixed coupling constant, and considering just
the leading double logarithm component of the Sudakov form factor, terms of the
form

∆2 (Q, pT)
N

p2T
αr

S L
s , (2.12)

with s ≥ 2r−5, on integration over pT, give rise to O
(
α2

S

)
contributions relative to the

lowest order H production process. Taking this into account, one can utilise coupling
constant and DGLAP evolution equations to write, up to O

(
α2

S

)
ambiguities,

∫
dp2T

dσM

dp2Tdy
=

∫
dp2T

[
N

d

dp2T
∆2(Q, pT) [Cik ⊗ fk] [Cjl ⊗ fl] +

dσMF

dp2Tdy

]
. (2.13)

Considering that the C(1)
ik are essentially defined by the relation

dσ

dy
= N [Cik ⊗ fk] [Cjl ⊗ fl] +

∫
dp2T

dσF

dp2Tdy
+O

(
α4

S

)
, (2.14)

(see Refs. [42, 44]), where the left-hand side is the conventional NLO Higgs boson rapid-
ity distribution, together with the fact that the integral of the remaining part of the pT

spectrum, dσMF , is equal to that of dσF , up to relative order α2
S ambiguities,1 the pT-

integrated Hj-Minlo differential cross section, Eq. (2.13), is manifestly equal to that of
the conventional NLO inclusive H process, Eq. (2.14).

1More fastidious readers may wish to consult Sect. 3 of Ref. [41] for further detail regarding this point.

– 6 –

where fi represents the PDF for a parton i, in colliding hadron A, carrying a mo-
mentum fraction xA at the point of annihilation where the Higgs boson is formed
(fi = fi/A (xA, pT)). The convolution operator, ⊗, is defined according to the follow-
ing relation

(f ⊗ g) (x) ≡
∫ 1

x

dz

z
f (z) g

(x
z

)
. (2.11)

The C(1)
ik terms in Eqs. (2.7-2.10) are NLO corrections to the coefficient functions, Cik,

in the well-known impact parameter space resummation formula [43], while Pik(z) de-
notes the leading order splitting function for parton k branching to a parton i with
momentum fraction z, P (2)

ik denoting its relative O (αS) corrections. The C(1)
ik and Pik

functions here are equal to those in Ref. [42] save for a factor 1/2π in the former,
by the same token, the P (2)

ik functions here are equal to those in Refs. [42] divided
by (2π)2. Given that we do not apply Taylor expansions, renormalization group or
DGLAP equations in any of the preceding steps, Eq. (2.6) describes, verbatim, the
leading pT → 0 part of the Hj-Minlo computation.

4. Determine the integral of the Hj-Minlo pT spectrum with O
(
α3

S

)
accuracy

It is not difficult to show that, with a fixed coupling constant, and considering just
the leading double logarithm component of the Sudakov form factor, terms of the
form

∆2 (Q, pT)
N

p2T
αr

S L
s , (2.12)

with s ≥ 2r−5, on integration over pT, give rise to O
(
α2

S

)
contributions relative to the

lowest order H production process. Taking this into account, one can utilise coupling
constant and DGLAP evolution equations to write, up to O

(
α2

S

)
ambiguities,

∫
dp2T

dσM

dp2Tdy
=

∫
dp2T

[
N

d

dp2T
∆2(Q, pT) [Cik ⊗ fk] [Cjl ⊗ fl] +

dσMF

dp2Tdy

]
. (2.13)

Considering that the C(1)
ik are essentially defined by the relation

dσ

dy
= N [Cik ⊗ fk] [Cjl ⊗ fl] +

∫
dp2T

dσF

dp2Tdy
+O

(
α4

S

)
, (2.14)

(see Refs. [42, 44]), where the left-hand side is the conventional NLO Higgs boson rapid-
ity distribution, together with the fact that the integral of the remaining part of the pT

spectrum, dσMF , is equal to that of dσF , up to relative order α2
S ambiguities,1 the pT-

integrated Hj-Minlo differential cross section, Eq. (2.13), is manifestly equal to that of
the conventional NLO inclusive H process, Eq. (2.14).

1More fastidious readers may wish to consult Sect. 3 of Ref. [41] for further detail regarding this point.

– 6 –

NLOPS H from NLOPS HJ-MiNLO: 5/5

Considering     are [essentially by definition] related to the 

conventional NLO xsec differential in y as
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Left NLO H PWG uncertainty w. HJ-MiNLO inset as green +’s

Right HJ-MiNLO uncertainty w. NLO H inset in red +’s

7 pt independent μR , μF scale variation bands

Results: NLOPS H v NLOPS HJ-MiNLOHJ-MINLO-NEW

10−2

10−1

100

101

d
σ
/d

y H
[p

b
]

ra
ti

o

yH

d
σ
/d

y H
[p

b
]

ra
ti

o

H+Pythia
HJ+Pythia

0.5
1.0
1.5

-4 -3 -2 -1 0 1 2 3 4

10−2

10−1

100

101

d
σ
/d

y H
[p

b
]

ra
ti

o

0.5
1.0
1.5

-4 -3 -2 -1 0 1 2 3 4
yH

d
σ
/d

y H
[p

b
]

ra
ti

o

HJ+Pythia
H+Pythia
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• envelope of the scale-variation bands obtained by varying the scale factor parameters by a

factor of 2
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Again, central values in good agreement

HJ-MiNLO is NLO for HJ and H inclusive

Powheg H only NLO for H inclusive

HJ-MiNLO band expectedly smaller at high pT

HJ-MINLO-NEW
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• central values of the H and HJ-MINLO generator in very good agreement

• the HJ-MINLO generator has a smaller scale-variation band: the HJ-MINLO generator

achieves NLO accuracy for one-jet inclusive distributions, while the H generator is only tree-

level accurate.
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HJ-MiNLO band widens at pT ; approaching strong coupling

H band not realistic as pT→0 ; reflects tot. x-sec unc.

Different shape as pT→0 due to different Sudakovs: extra NNLL 
terms in HJ-MiNLO, finite ones in Powheg H

Results: NLOPS H v NLOPS HJ-MiNLOHJ-MINLO-NEW
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• the scale uncertainty band of HJ-MINLO widens at small transverse momentum

– approaching of the strong coupling regime

– for pH
T < mH, the H result does not show a realistic scale uncertainty (S-type events)

• difference in shape in the very small transverse-momentum region, due to different NNLL

and non-singular contributions in the two Sudakov form factors.
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• the scale uncertainty band of HJ-MINLO widens at small transverse momentum

– approaching of the strong coupling regime

– for pH
T < mH, the H result does not show a realistic scale uncertainty (S-type events)

• difference in shape in the very small transverse-momentum region, due to different NNLL

and non-singular contributions in the two Sudakov form factors.
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Conclusion

NLOPS acc. for H all from within NLOPS HJ-MiNLO: no merging

NLO H xsec present in NLO HJ via factorisation of 0- &  1-loop 
MEs in [multiple] soft / coll. limits [see e.g. dFG NPB 2001]

This is v.new, still only getting started really ...

much to investigate understand better: extensions, 
uncertainties, resummation, does it generalise, &c &c

NLOPS HJ:

Unphysical 0-jet inc obs
NLO 1-jet inc obs
LO  2-jet inc obs
PS  everything else

HJ-MiNLO ⊇ H:

NLO 0-jet inc obs
NLO 1-jet inc obs
LO  2-jet inc obs
PS  everything else
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