NLOPS H from NLOPS HJ-MiNLO

P.Nason C.Oleari G.Zanderighi E.Re KH

JHEP 1210 (2012) 155, JHEP 1305 (2013) 082

Outline

- The goal
- Preliminary ideas:
 - 1 HJ Powheg
 - 2 HJ-MiNLO
 - 3 HJ NLO v HJ-MiNLO
- NLOPS H from NLOPS HJ-MiNLO
- Results
- Conclusion

The goal

- < 4 yrs ago NLOPS limited to colourless F.S.'s [at Born level]</p>
- Since then aMC@NLO, POWHEG and SHERPA all have NLOPS for colourless + 0,1 [2] jets e.g.
- NLOPS H:
 - NLO Ø-jet inc obs
 - LO 1-jet inc obs
 - PS everything else

- NLOPS HJ:
 - Unphysical 0-jet inc obs
 - NLO 1-jet inc obs
 - LO 2-jet inc obs
 - PS everything else
- Degree of complementarity alone already begs for way to consistently combine colourless + jets NLOPS simulations
- I.E. NLO extension of CKKW LOPS merging algorithm

The goal

- You would like to combine strengths, somehow.
- NLOPS H jet:

NLO 0-jet inc obs

PS everything else

LO 1-jet inc obs

- NLOPS HJ:
 - Unphysical 0-jet inc obs
 - NLO 1-jet inc obs
 - 🔍 LO 2-jet inc obs 🔍
 - PS everything else
- Merged / matched NLOPS H U HJ:
 - NLO 0-jet inc obs
 - 🕨 NLO 1-jet inc obs – – – –
 - 🕨 LO 2-jet inc obs ┥ 🗕 🗛
 - PS everything else

And you'd like it for free, of course. No hidden charges.

Outline

The goal

- Preliminary ideas:
 - 1 HJ Powheg
 - 2 HJ-MiNLO
 - 3 HJ NLO v HJ-MiNLO
- NLOPS H from NLOPS HJ-MiNLO
- Results
- Conclusion

Preliminary #1/3: HJ Powheg

- Powheg defines underlying Born [U.B.] vars ϕ_B specifying pp \rightarrow HJ 2 \rightarrow 2 kinematics
- Roughly speaking event generation happens in three steps:
 - 1. U.B. config. is generated acc. to NLO $d\sigma/d\varphi_B$
 - 2. Hardest radⁿ attached by unitary PS-type mechanism to the U.B. kinematic [incl. relevant HJ →HJJ Sudakov suppression]
 - 3. Subsequent softer emissions generated by feeding these hardest radⁿ events to a [vetoed] parton shower
- NLO $d\sigma/d\phi_B$ is divergent & unphysical for $p_T \rightarrow 0$; regulated by an unphysical gen. cut well below experimental jet p_T threshold

Preliminary #2/3: HJ-MiNLO

- By HJ-MiNLO we mean improvement of the NLO xsec determining the starting U.B. config. [i.e. modify step 1 on last slide]
- In a nutshell MiNLO adds Sudakov resummation to HJ U.B. configs
- MiNLO recipe applied to the NLO HJ goes $L = \log \frac{Q^2}{p_T^2}$ $\frac{d\sigma_M}{dp_T^2 dy} = \Delta^2 (Q, p_T) \frac{\alpha_S(p_T)}{\alpha_S(Q)} \left[\frac{d\sigma}{dp_T^2 dy} + \frac{d\sigma}{dp_T^2 dy} \Big|_{LO} \alpha_S^{NLO} \left[A_1 L^2 + 2B_1 L - b_0 L \right] \right]$ Sudakov Resum b₀ form factor logs in α_S NLO xsec Maintain F.O. $\mu_R = Q$ expansion to NLO $\mu_F = p_T$
- Again, with MiNLO, the initial U.B. $pp \rightarrow HJ$ kinematic goes from being divergent as $p_T \rightarrow 0$ to having physical Sudakov suppression

____Preliminary #3/3: HJ-NLO v [old] HJ-MiNLO

- H PWG: gg → Higgs at NLO Powheg+Pythia
- HJ RUN: NLO HJ jet with $\mu_R = \mu_F = p_{T,H}$
- Solutions HJ FXD: NLO HJ jet with $\mu_R = \mu_F = M_H$
- ▶ The ref. line for ratios is NLO $gg \rightarrow H$ Powheg+Pythia

Preliminary #3/3: HJ-NLO v [old] HJ-MiNLO

- \bullet HJ-MiNLO agrees w.other HJ NLO calcs at high p_T as promised
- HJ-MiNLO within 40% of NLOPS H simulation in deep Sudakov region
- \diamond HJ-MiNLO scale uncertainty doesn't shrink towards low p_T
- 'Normal' bands shrink to 0 by having first Sudakov log only
- Shrinking envelope as $p_T \rightarrow 0$ surely a bad sign

Outline

- The goal
- Preliminary ideas:
 - 1 HJ Powheg
 - 2 HJ-MiNLO
 - 3 HJ NLO v HJ-MiNLO

- NLOPS H from NLOPS HJ-MiNLO
- Results
- Conclusion

NLOPS H from NLOPS HJ-MiNLO: 0/5

- Inclusion of Sudakov resummation means removal of generation cuts and physical behaviour all over phase space
- MiNLO X+jets computatⁿs therefore also gives sensible predictⁿs for fully incl. obs. [where conventional NLO X+jets gives garbage]
- Quantify 'sensible': 2nd MiNLO paper showed HJ-MiNLO different to NLO for incl. obs. by $O(a_S^{1.5})$ terms relative to LO H prod.
- In particular, 2nd MiNLO shows by including B_2 coefficient in Sudakov HJ-MiNLO gets promoted to NLO accuracy for incl. obs.
 - Next slides show how this comes about

NLOPS H from NLOPS HJ-MiNLO: 1/5

- 1. Establish $p_T \rightarrow 0$ singular behaviour of NLO HJ xsec
- Write NLO HJ xsec as sum of $p_T \rightarrow 0$ sing. & non-sing. parts

$$\frac{d\sigma}{dp_{\rm T}^2 dy} = \frac{d\sigma_{\mathcal{S}}}{dp_{\rm T}^2 dy} + \frac{d\sigma_{\mathcal{F}}}{dp_{\rm T}^2 dy}$$

Sing. part is given in literature as sum of terms ~ $\alpha_{\rm S}^r L^s / p_{\rm T}^2$ where $L = \log \frac{Q^2}{p_{\rm T}^2}$ and Q^2 is the Higgs virtuality $\frac{d\sigma_S}{dp_{\rm T}^2 dy} = \frac{N}{p_{\rm T}^2} \sum_{r=1}^2 \sum_{s=0}^{2r-1} \left(\frac{\alpha_{\rm S}}{2\pi}\right)^r r D_s L^s$ $d\sigma_S$ defined to vanish when $p_{\rm T} > Q$ i.e. $d\sigma = d\sigma_F$ there N defined s.t. at LO $d\sigma/dy = Nf_i f_j$

NLOPS H from NLOPS HJ-MiNLO: 2/5

- 2. Improve the NLO HJ xsec according to MiNLO prescription
 - [i.e. add into NLO HJ p_T resummation]
- (a) Apply μ_R and μ_F scale choices
 - All μ_F 's replaced by p_T
 - All μ_R 's replaced by Q
 - Except the one in the NLO power of $\alpha_{
 m S}$: $lpha_{
 m S}^{
 m NLO}=lpha_{
 m S}(p_{
 m T})$
 - \bullet Choice of μ_F 's absorbs couple of terms in the ${}_rD_s$'s in the PDFs

NLOPS H from NLOPS HJ-MiNLO: 2/5

- 2. Improve the NLO HJ xsec according to MiNLO prescription
 - [i.e. add into NLO HJ p_T resummation]
- (b) Match on to p_T space Sudakov form factor
 - Multiply NLO HJ xsec by Sudakov [includes B₂]

$$\log \Delta \left(Q, p_{\rm T}\right) = -\int_{p_{\rm T}^2}^{Q^2} \frac{dq^2}{q^2} \sum_{i=1}^2 \alpha_{\rm S}^i \left(q\right) \left[A_i \log \frac{Q^2}{q^2} + B_i\right]$$

- igodows Multiply NLO HJ xsec by ratio $\left.lpha_{
 m S}\left(p_{
 m T}
 ight)/lpha_{
 m S}\left(Q
 ight)$
- \bullet Subtract their α_{S} expansions maintaining NLO F.O. expansion
- This gives HJ-MiNLO xsec, exactly, no approximations:

$$\frac{d\sigma_{\mathcal{M}}}{dp_{\mathrm{T}}^2 dy} = \Delta^2 \left(Q, p_{\mathrm{T}}\right) \frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{\alpha_{\mathrm{S}}\left(Q\right)} \left[\frac{d\sigma}{dp_{\mathrm{T}}^2 dy} + \frac{d\sigma}{dp_{\mathrm{T}}^2 dy} \right|_{\mathrm{LO}} \alpha_{\mathrm{S}}^{\mathrm{NLO}} \left[A_1 L^2 + 2B_1 L - b_0 L \right] \right]$$

NLOPS H from NLOPS HJ-MiNLO: 3/5

- 3. Establish leading $p_T \rightarrow 0$ behaviour of HJ-MiNLO xsec
- Write HJ-MiNLO xsec as sum of $p_T \rightarrow 0$ leading & subleading parts

$$\frac{d\sigma_{\mathcal{M}}}{dp_{\mathrm{T}}^2 dy} = \frac{d\sigma_{\mathcal{MS}}}{dp_{\mathrm{T}}^2 dy} + \frac{d\sigma_{\mathcal{MF}}}{dp_{\mathrm{T}}^2 dy}$$

) Plug exp. for sing. part of NLO HJ, $d\sigma_{\mathcal{S}}$, into HJ-MiNLO one, $d\sigma_{\mathcal{M}}$

$$\frac{d\sigma_{\mathcal{MS}}}{dp_{\mathrm{T}}^2 dy} = \Delta^2 \left(Q, p_{\mathrm{T}}\right) \frac{N}{p_{\mathrm{T}}^2} \sum_{r=1}^2 \sum_{s=0}^1 \alpha_{\mathrm{S}\,r}^r E_s L^s + \{i \leftrightarrow j\}$$

• Subleading part also from plugging $d\sigma_{\mathcal{F}}$ into $d\sigma_{\mathcal{M}}$ expression on last slide [not singular, O(a_s³) before & after p_T integratⁿ].

Note r=2, s=0,1 not 0,1,2,3 : r=2, s=2,3 absorbed in Sud. & PDFs

Monday, 15 July 13

NLOPS H from NLOPS HJ-MiNLO: 3/5

- 3. Establish leading $p_T \rightarrow 0$ behaviour of HJ-MiNLO xsec
- In full the four coefficients are $_{1}E_{1} = A_{1} f_{i} f_{j}$ $_{1}E_{0} = B_{1}f_{i}f_{j} + [P_{ik} \otimes f_{k}]f_{j},$ $_{2}E_{1} = A_{2} f_{i} f_{j} + 2A_{1} \left| C_{ik}^{(1)} \otimes f_{k} \right| f_{j},$ $_{2}E_{0} = B_{2}f_{i}f_{j} + 2B_{1}\left[C_{ik}^{(1)} \otimes f_{k}\right]f_{j} + \left[P_{ik}^{(2)} \otimes f_{k}\right]f_{j}$ $+ \left[C_{ik}^{(1)} \otimes f_k \right] \left[P_{jl} \otimes f_l \right] + \left[C_{ik}^{(1)} \otimes P_{kl} \otimes f_l \right] f_j - b_0 \left[C_{ik}^{(1)} \otimes f_k \right] f_j$ $C_{ik}^{\left(1
 ight)}$ are NLO corrections to the H prod^ coeff. f^s, C_{ik} , in well known b-space resummation formula $\bullet \ P_{ik}^{(2)}$ are NLO corrections to the relevant AP splitting f^s, $P_{ik}(z)$
- $d\sigma_{\mathcal{MS}}$ is exactly the leading $p_T \rightarrow 0$ part of HJ-MiNLO jet xsec

NLOPS H from NLOPS HJ-MiNLO: 4/5

- 4. Determine integral of HJ-MiNLO p_T spectrum at $O(\alpha_s^3)$ accuracy
- Not hard to show w. fixed coupling & double log Sudakov terms

$$\Delta^2 \left(Q, p_{\rm T} \right) \, \frac{N}{p_{\rm T}^2} \, \alpha_{\rm S}^r \, L^s$$

w. s \leq 2r-5 [\propto N α_s^3 L, N α_s^4 L³, ...] integrate to O(α_s^4) terms^{*}

• Knowing this can use RGE & DGLAP to write up to $O(\alpha_s^4)$ ambiguity

$$\int dp_{\rm T}^2 \, \frac{d\sigma_{\mathcal{M}}}{dp_{\rm T}^2 dy} = \int dp_{\rm T}^2 \, \left[N \, \frac{d}{dp_{\rm T}^2} \, \Delta^2(Q, p_{\rm T}) \, \left[C_{ik} \otimes f_k \right] \, \left[C_{jl} \otimes f_l \right] + \frac{d\sigma_{\mathcal{MF}}}{dp_{\rm T}^2 dy} \right]$$

If no B₂ in Sudakov you get extra junk on RHS $\sim \Delta^2 (Q, p_T) \frac{N}{p_T^2} \alpha_s^2 B_2$ which integrates up to O(N $\alpha_s^{1.5}$)

* Can also do running α_s upper bound w. saddle point approx to integral

- 5. <u>Compare to conventional NLO</u>
- Onsidering C_{ik} are [essentially by definition] related to the conventional NLO xsec differential in y as

$$\frac{d\sigma}{dy} = N \left[C_{ik} \otimes f_k \right] \left[C_{jl} \otimes f_l \right] + \int dp_{\rm T}^2 \frac{d\sigma_{\mathcal{F}}}{dp_{\rm T}^2 dy} + \mathcal{O}\left(\alpha_{\rm S}^4\right)$$

-) And $d\sigma_{\mathcal{F}}$ equals $d\sigma_{\mathcal{MF}}$ up to O($lpha_{
 m S}^4$) terms
- The p_T -integrated MiNLO xsec

$$\int dp_{\rm T}^2 \frac{d\sigma_{\mathcal{M}}}{dp_{\rm T}^2 dy} = \int dp_{\rm T}^2 \left[N \frac{d}{dp_{\rm T}^2} \Delta^2(Q, p_{\rm T}) \left[C_{ik} \otimes f_k \right] \left[C_{jl} \otimes f_l \right] + \frac{d\sigma_{\mathcal{MF}}}{dp_{\rm T}^2 dy} \right]$$

is the same, up to $O(\alpha_S{}^4)$ terms as the conventional NLO xsec differential in y

Outline

- The goal
- Preliminary ideas:
 - 1 HJ Powheg
 - 2 HJ-MiNLO
 - 3 HJ NLO v HJ-MiNLO
- NLOPS H from NLOPS HJ-MiNLO

- Results
- Conclusion

Results: NLOPS H v NLOPS HJ-MiNLO

Left NLO H PWG uncertainty w. HJ-MiNLO inset as green +'s

- Right HJ-MiNLO uncertainty w. NLO H inset in red +'s
- > 7 pt independent μ_R , μ_F scale variation bands

Results: NLOPS H v NLOPS HJ-MiNLO

- Again, central values in good agreement
- HJ-MiNLO is NLO for HJ and H inclusive
- Powheg H only NLO for H inclusive
- ho HJ-MiNLO band expectedly smaller at high p_T

Results: NLOPS H v NLOPS HJ-MiNLO

HJ-MiNLO band widens at p_T; approaching strong coupling

- ▶ H band not realistic as $p_T \rightarrow 0$; reflects tot. x-sec unc.
- Different shape as p_T→0 due to different Sudakovs: extra NNLL terms in HJ-MiNLO, finite ones in Powheg H

Conclusion

- NLOPS HJ:
 - Unphysical 0-jet inc obs
 - NLO 1-jet inc obs
 - LO 2-jet inc obs
 - PS everything else

HJ-MiNLO ⊇ H:

- NLO 0-jet inc obs
- NLO 1-jet inc obs
- LO 2-jet inc obs
- PS everything else
- NLOPS acc. for H all from within NLOPS HJ-MiNLO: no merging
- NLO H xsec present in NLO HJ via factorisation of 0- & 1-loop MEs in [multiple] soft / coll. limits [see e.g. dFG NPB 2001]
- This is v.new, still only getting started really ... much to investigate understand better: extensions, uncertainties, resummation, does it generalise, &c &c

