MEPS	MEPS@NLO	Conclusions

Resummation properties of MEPS@NLO

Marek Schönherr

Institute for Particle Physics Phenomenology

Durham, 15/07/2013

LHCphenOnet

Marek Schönherr

$$\langle O \rangle^{\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\mathrm{B}(\Phi_B) \left[\Delta^{(\mathcal{K})}(t_c, \mu_Q^2) \,O(\Phi_B) + \int_{t_c}^{\mu_Q^2} \mathrm{d}\Phi_1 \mathcal{K}(\Phi_1) \,\Delta^{(\mathcal{K})}(t, \mu_Q^2) \,O(\Phi_R) \right]$$

- ullet splitting kernel $\mathcal{K}(\Phi_1) \propto rac{lpha_s}{t} \, P(z)$, $\Phi_1 = \{t,z,\phi\}$
- Sudakov form factor

$$\Delta^{(\mathcal{K})}(t,t') = \exp\left[-\int_{t}^{t'} \mathrm{d}\Phi_1 \,\mathcal{K}(\Phi_1)\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- parton shower starting scale μ_Q plays role of resummation scale, at LO commonly identified with μ_F to recover PDF evolution
- resummation in evolution variable t,
 - c_1 correctly described, c_2 at most in $N_c \rightarrow \infty$ approximation
- $lpha_s o lpha_s(k_\perp)$ catches dominant terms of higher log. order
 - \Rightarrow crucial in defining "parton shower accuracy"

Resummation properties of parton showers

$$\langle O \rangle^{\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\mathrm{B}(\Phi_B) \left[\Delta^{(\mathcal{K})}(t_c, \mu_Q^2) \,O(\Phi_B) + \int_{t_c}^{\mu_Q^2} \mathrm{d}\Phi_1 \mathcal{K}(\Phi_1) \,\Delta^{(\mathcal{K})}(t, \mu_Q^2) \,O(\Phi_R) \right]$$

- splitting kernel $\mathcal{K}(\Phi_1) \propto \frac{\alpha_s}{t} P(z)$, $\Phi_1 = \{t, z, \phi\}$
- Sudakov form factor

$$\Delta^{(\mathcal{K})}(t,t') = \exp\left[-\int_{t}^{t'} \mathrm{d}\Phi_1 \,\mathcal{K}(\Phi_1)\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- parton shower starting scale μ_Q plays role of resummation scale, at LO commonly identified with μ_F to recover PDF evolution
- resummation in evolution variable t,
 - c_1 correctly described, c_2 at most in $N_c
 ightarrow \infty$ approximation
- $lpha_s o lpha_s(k_\perp)$ catches dominant terms of higher log. order
 - \Rightarrow crucial in defining "parton shower accuracy"

$$\langle O \rangle^{\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\mathrm{B}(\Phi_B) \left[\Delta^{(\mathcal{K})}(t_c, \mu_Q^2) \,O(\Phi_B) + \int_{t_c}^{\mu_Q^2} \mathrm{d}\Phi_1 \mathcal{K}(\Phi_1) \,\Delta^{(\mathcal{K})}(t, \mu_Q^2) \,O(\Phi_R) \right]$$

- splitting kernel $\mathcal{K}(\Phi_1) \propto \frac{\alpha_s}{t} P(z)$, $\Phi_1 = \{t, z, \phi\}$
- Sudakov form factor

$$\Delta^{(\mathcal{K})}(t,t') = \exp\left[-\int_{t}^{t'} \mathrm{d}\Phi_1 \,\mathcal{K}(\Phi_1)\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- parton shower starting scale μ_Q plays role of resummation scale, at LO commonly identified with μ_F to recover PDF evolution
- resummation in evolution variable t,
 - c_1 correctly described, c_2 at most in $N_c \to \infty$ approximation
- $\alpha_s
 ightarrow lpha_s(k_{\perp})$ catches dominant terms of higher log. order
 - \Rightarrow crucial in defining "parton shower accuracy"

2

$$\langle O \rangle^{\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\mathrm{B}(\Phi_B) \left[\Delta^{(\mathcal{K})}(t_c, \mu_Q^2) \,O(\Phi_B) + \int_{t_c}^{\mu_Q^2} \mathrm{d}\Phi_1 \mathcal{K}(\Phi_1) \,\Delta^{(\mathcal{K})}(t, \mu_Q^2) \,O(\Phi_R) \right]$$

- splitting kernel $\mathcal{K}(\Phi_1) \propto \frac{\alpha_s}{t} P(z)$, $\Phi_1 = \{t, z, \phi\}$
- Sudakov form factor

$$\Delta^{(\mathcal{K})}(t,t') = \exp\left[-\int_{t}^{t'} \mathrm{d}\Phi_1 \,\mathcal{K}(\Phi_1)\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- parton shower starting scale μ_Q plays role of resummation scale, at LO commonly identified with μ_F to recover PDF evolution
- resummation in evolution variable t,

 c_1 correctly described, c_2 at most in $N_c \rightarrow \infty$ approximation

- $lpha_s o lpha_s(k_\perp)$ catches dominant terms of higher log. order
 - \Rightarrow crucial in defining "parton shower accuracy"

$$\langle O \rangle^{\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\mathrm{B}(\Phi_B) \left[\Delta^{(\mathcal{K})}(t_c, \mu_Q^2) \,O(\Phi_B) + \int_{t_c}^{\mu_Q^2} \mathrm{d}\Phi_1 \mathcal{K}(\Phi_1) \,\Delta^{(\mathcal{K})}(t, \mu_Q^2) \,O(\Phi_R) \right]$$

- splitting kernel $\mathcal{K}(\Phi_1) \propto \frac{\alpha_s}{t} P(z)$, $\Phi_1 = \{t, z, \phi\}$
- Sudakov form factor

$$\Delta^{(\mathcal{K})}(t,t') = \exp\left[-\int_{t}^{t'} \mathrm{d}\Phi_1 \,\mathcal{K}(\Phi_1)\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- parton shower starting scale μ_Q plays role of resummation scale, at LO commonly identified with μ_F to recover PDF evolution
- resummation in evolution variable t,

 c_1 correctly described, c_2 at most in $N_c \rightarrow \infty$ approximation

+ $\alpha_s \rightarrow \alpha_s(k_\perp)$ catches dominant terms of higher log. order

 \Rightarrow crucial in defining "parton shower accuracy"

Parton shower MEPS MCNLO MEPSOLO Conclusion
Resummation properties of MEPS

$$= \int d\Phi_n B_n \left[\Delta_n^{(\mathcal{K})}(t_c, \mu_Q^2) O_n + \int_{t_c}^{\mu_Q^2} d\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) \Theta(Q_{cut} - Q) O_{n+1} \right] + \int d\Phi_{n+1} B_{n+1} = \Theta(Q - Q_{cut}) \times \left[\Delta_{n+1}^{(\mathcal{K})}(t_c, t_{n+1}) O_{n+1} + \int_{t_n}^{t_{n+1}} d\Phi_1 \mathcal{K}_{n+1} \Delta_{n+1}^{(\mathcal{K})}(t_{n+2}, t_{n+1}) O_{n+2} \right]$$

- LOPs for n-jet process restricted to region $Q < Q_{\rm cut}$
- LOPs for n + 1-jet process with additional Sudakov wrth n-jet process
 - ightarrow implements correct resummation behaviour wrt. incl. sample
- truncated showering to account for mismatch of t and Q Nason JHEP11(2004)040

Parton shower MEPS MCNLO MEPSNLO Conclusions

$$\begin{aligned} \langle O \rangle^{\text{MEPS}} = \int d\Phi_n \ B_n \bigg[\Delta_n^{(\mathcal{K})}(t_c, \mu_Q^2) O_n \\ &+ \int_{t_c}^{\mu_Q^2} d\Phi_1 \ \mathcal{K}_n \ \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \bigg] \\ &+ \int d\Phi_{n+1} \ B_{n+1} \qquad \Theta(Q - Q_{\text{cut}}) \\ &\times \bigg[\Delta_{n+1}^{(\mathcal{K})}(t_c, t_{n+1}) O_{n+1} + \int_{t_c}^{t_{n+1}} d\Phi_1 \ \mathcal{K}_{n+1} \ \Delta_{n+1}^{(\mathcal{K})}(t_{n+2}, t_{n+1}) O_{n+2} \bigg] \end{aligned}$$

- LOPs for n-jet process restricted to region $Q < Q_{\rm cut}$
- LOPs for n + 1-jet process with additional Sudakov wrt. n-jet process
- truncated showering to account for mismatch of t and Q Nason JHEP11(2004)040

Parton shower MEPS (O)^{MEPS}

$$= \int d\Phi_n B_n \left[\Delta_n^{(\mathcal{K})}(t_c, \mu_Q^2) O_n + \int_{t_c}^{\mu_Q^2} d\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \right] + \int d\Phi_{n+1} B_{n+1} \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\text{cut}}) \times \left[\Delta_{n+1}^{(\mathcal{K})}(t_c, t_{n+1}) O_{n+1} + \int_{t_c}^{t_{n+1}} d\Phi_1 \mathcal{K}_{n+1} \Delta_{n+1}^{(\mathcal{K})}(t_{n+2}, t_{n+1}) O_{n+2} \right]$$

- LOPs for n-jet process restricted to region $Q < Q_{\rm cut}$
- LOPs for n + 1-jet process with additional Sudakov wrt. n-jet process \rightarrow implements correct resummation behaviour wrt. incl. sample

Parton shower	MEPS	MC@NL0	MEPS@NLO	Conclusions
Resumma	tion prope	erties of M	ePs	
/ MEPs				
	$\left[\begin{array}{c} (K) \\ \end{array} \right] $			
$=\int\mathrm{d}\Phi_n\;\mathrm{B}_n$	$\begin{bmatrix} \Delta_n^{(\kappa)}(t_c, \mu_Q^2) C \end{bmatrix}$	\mathcal{O}_n		
	$+\int_{t_c}^{\mu_Q^2}\mathrm{d}\Phi_1\mathcal{H}$	$\mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_0^2)$	$\left[Q_{Q}\right)\Theta(Q_{cut}-Q)O_{n+1}$	
$+\int\mathrm{d}\Phi_{n+}$	${}_1 \operatorname{B}_{n+1} \Delta_n^{(\mathcal{K})}(t_n$	$(\mu_{+1}, \mu_Q^2) \Theta(Q - Q)$	$Q_{cut})$	
×	$\left[\Delta_{n+1}^{(\mathcal{K})}(t_c, t_{n+1})\right]$	$(1) O_{n+1} + \int_{t_c}^{t_{n+1}} $	$\mathrm{d}\Phi_1 \mathcal{K}_{n+1} \Delta_{n+1}^{(\mathcal{K})}(t_{n+2},$	t_{n+1}) O_{n+2}

- LOPs for n-jet process restricted to region $Q < Q_{\rm cut}$
- LOPs for n + 1-jet process with additional Sudakov wrt. n-jet process \rightarrow implements correct resummation behaviour wrt. incl. sample

• truncated showering to account for mismatch of t and Q Nason JHEP11(2004)040

Parton shower	MEPS	MC@NLO	MEPS@NLO	Conclusions
Resumma	tion prope	erties of M	EPs	
MEPs				
	$\left[\Lambda(\mathcal{K})(r-2) \right]$	<u>,</u>		
$=\int \mathrm{d}\Phi_n \mathrm{B}_n$	$\begin{bmatrix} \Delta_n^{(ic)}(t_c, \mu_Q^2) C \\ 2 \end{bmatrix}$	\mathcal{O}_n	-	
	$+\int_{t_c}^{\mu_Q^2}\mathrm{d}\Phi_1\mathcal{H}$	$\mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2)$	$\Theta(Q_{cut}-Q)O_{n+1}$	
$+\int\mathrm{d}\Phi_{n+}$	${}_1 \operatorname{B}_{n+1} \Delta_n^{(\mathcal{K})}(t_n$	$(\mu_{+1}, \mu_Q^2) \Theta(Q - Q)$	(cut)	
×	$\left[\Delta_{n+1}^{(\mathcal{K})}(t_c, t_{n+1})\right]$	1) $O_{n+1} + \int_{t_c}^{t_{n+1}}$	$\mathrm{d}\Phi_1 \mathcal{K}_{n+1} \Delta_{n+1}^{(\mathcal{K})}(t_{n+2},$	t_{n+1}) O_{n+2}

- LOPs for n-jet process restricted to region $Q < Q_{\rm cut}$
- LOPs for n + 1-jet process with additional Sudakov wrt. n-jet process \rightarrow implements correct resummation behaviour wrt. incl. sample
- truncated showering to account for mismatch of t and Q $_{\rm Nason JHEP11(2004)040}$

Resummation properties of MEPS

Two instructive ways of rewriting $\langle O \rangle^{MEPS}$: **1) composite emission kernel for ME and PS region** $\langle O \rangle^{MEPS}$

$$\begin{split} &= \int \mathrm{d}\Phi_n \; \mathbf{B}_n \left[\Delta_n^{(\mathcal{K})}(t_0, \mu_Q^2) \, O_n \right. \\ &\quad + \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \left(\mathcal{K}_n \, \Theta(Q_{\mathsf{cut}} - Q) + \frac{\mathbf{B}_{n+1}}{\mathbf{B}_n} \, \Theta(Q - Q_{\mathsf{cut}}) \right) \\ &\quad \times \; \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) \, O_{n+1} \right] \end{split}$$

+
$$\int \mathrm{d}\Phi_{n+1} \,\mathrm{B}_{n+1} \,\Theta(t_{n+1} - \mu_Q^2) \,O_{n+1}$$

- α_s scales in $B_n \cdot K_n$ and B_{n+1} must be the same to retain resummation properties of the parton shower
- necessity to interprete B_{n+1} as PS splitting on top of B_n

Resummation properties of MEPS

Two instructive ways of rewriting $\langle O \rangle^{MEPS}$: 2) standard parton shower and correction terms

 $= \int d\Phi_n B_n \left[\Delta_n^{(\mathcal{K})}(t_c, \mu_Q^2) O_n + \int_{t_c}^{\mu_Q^2} d\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) O_{n+1} \right] \\ + \int d\Phi_n \int_{t_c}^{\mu_Q^2} d\Phi_1 \Big[B_{n+1} - B_n \cdot \mathcal{K}_n \Big] \Theta(Q - Q_{\mathsf{cut}}) \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) O_{n+1} \\ + \int d\Phi_{n+1} B_{n+1} \Theta(t_{n+1} - \mu_Q^2) O_{n+1}$

- α_s scales in $B_n \cdot \mathcal{K}_n$ and B_{n+1} must be the same for second line not to spoil resummation properties of the parton shower (first line)
- necessity to interprete B_{n+1} as PS splitting on top of $B \rightarrow$ need to use inverse parton shower

 $\langle O \rangle^{\mathsf{MEPS}}$

Parton shower MEPS MEPS@NLO Resummation properties of MEPS Two instructive ways of rewriting $\langle O \rangle^{MEPs}$: 2) standard parton shower and correction terms Scales: $\langle O \rangle^{\mathsf{MEPS}}$ $= \int \mathrm{d}\Phi_n \operatorname{B}_n \left| \Delta_n^{(\mathcal{K})}(t_c, \mu_Q^2) O_n + \int_{t_c}^{\mu_Q^2} \mathrm{d}\Phi_1 \mathcal{K}_n \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) \mathcal{C}_n \right|$ $+ \int \mathrm{d}\Phi_n \int_{-\infty}^{\mu_Q^2} \mathrm{d}\Phi_1 \Big[\mathbf{B}_{n+1} - \mathbf{B}_n \cdot \mathcal{K}_n \Big] \Theta(Q - Q_{\mathsf{cut}}) \,\Delta_n^{(\mathcal{K})}(t_{n+1}) \Big] \, d\Phi_n = 0$ + $\int d\Phi_{n+1} B_{n+1} \Theta(t_{n+1} - \mu_Q^2) O_{n+1}$ • α_s scales in $B_n \cdot \mathcal{K}_n$ and B_{n+1} must be the same for second li 600 spoil resummation properties of the parton shower (first line) • necessity to interprete B_{n+1} as PS splitting on top of B \rightarrow need to use inverse parton shower $\alpha_{s}^{k+n}(\mu_{\text{eff}}) = \alpha_{s}^{k}(\mu) \,\alpha_{s}(t_{1}) \cdots \alpha_{s}(t_{n})$

Parton showerMEPSMC@NLOMEPS@NLOResummation properties of MEPSTwo instructive ways of rewriting
$$\langle O \rangle^{MEPS}$$
:2) standard parton shower and correction terms

$$= \int d\Phi_n B_n \left[\Delta_n^{(\mathcal{K})}(\mathbf{mismatch of } \mathcal{O}(\frac{1}{N_c} \alpha_s \mathbf{L}) \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) O_{n+1} \right]$$
$$+ \int d\Phi_n \int_{t_c}^{\mu_Q^2} d\Phi_1 \left[B_{n+1} - B_n \cdot \mathcal{K}_n \right] \Theta(Q - Q_{\mathsf{cut}}) \Delta_n^{(\mathcal{K})}(t_{n+1}, \mu_Q^2) O_{n+1}$$
$$+ \int d\Phi_{n+1} B_{n+1} \Theta(t_{n+1} - \mu_Q^2) O_{n+1}$$

- α_s scales in $B_n \cdot \mathcal{K}_n$ and B_{n+1} must be the same for second line not to spoil resummation properties of the parton shower (first line)
- necessity to interprete B_{n+1} as PS splitting on top of $B \rightarrow$ need to use inverse parton shower

$$\begin{split} \langle O \rangle^{\mathsf{MC@NLO}} &= \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \Biggl[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \\ &+ \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \Biggr] \\ &+ \int \mathrm{d}\Phi_R \Bigl[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Bigr] \, O(\Phi_R) \end{split}$$

- SHERPA: $D_i^{(A)} = D_i^{(S)} \Theta(\mu_Q^2 t)$ ($N_c = 3$ CS kernels) as kernels \rightarrow incorporation of subleading colour dipoles, spin-dependence
- Sudakov form factor

$$\Delta^{(\mathsf{A})}(t,t') = \exp\left[-\int_t^{t'} \mathrm{d}\Phi_1 \frac{\mathrm{D}^{(\mathsf{A})}}{\mathrm{B}}\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- c_1 and c_2 correct in $N_c = 3$
- $lpha_s o lpha_s(k_\perp)$ to catch dominant terms of higher log. order
- \Rightarrow improves accuracy of resummation for first emission

$$\begin{split} \langle O \rangle^{\mathsf{MC@NLO}} &= \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \Biggl[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \\ &+ \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \Biggr] \\ &+ \int \mathrm{d}\Phi_R \Bigl[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Bigr] \, O(\Phi_R) \end{split}$$

- SHERPA: $D_i^{(A)} = D_i^{(S)} \Theta(\mu_Q^2 t)$ ($N_c = 3$ CS kernels) as kernels \rightarrow incorporation of subleading colour dipoles, spin-dependence
- Sudakov form factor

$$\Delta^{(\mathsf{A})}(t,t') = \exp\left[-\int_t^{t'} \mathrm{d}\Phi_1 \,\frac{\mathrm{D}^{(\mathsf{A})}}{\mathrm{B}}\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- c_1 and c_2 correct in $N_c = 3$
- $lpha_s o lpha_s(k_\perp)$ to catch dominant terms of higher log. order
- improves accuracy of resummation for first emission

$$\begin{split} \langle O \rangle^{\mathsf{MC@NLO}} &= \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \Bigg[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \\ &+ \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \Bigg] \\ &+ \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R) \end{split}$$

- SHERPA: $D_i^{(A)} = D_i^{(S)} \Theta(\mu_Q^2 t)$ ($N_c = 3$ CS kernels) as kernels \rightarrow incorporation of subleading colour dipoles, spin-dependence
- Sudakov form factor

$$\Delta^{(\mathsf{A})}(t,t') = \exp\left[-\int_t^{t'} \mathrm{d}\Phi_1 \frac{\mathrm{D}^{(\mathsf{A})}}{\mathrm{B}}\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- c_1 and c_2 correct in $N_c = 3$
- $lpha_s o lpha_s(k_\perp)$ to catch dominant terms of higher log. order
- improves accuracy of resummation for first emission

$$\begin{split} \langle O \rangle^{\mathsf{MC@NLO}} &= \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \Bigg| \Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \\ &+ \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \Bigg] \\ &+ \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R) \end{split}$$

- SHERPA: $D_i^{(A)} = D_i^{(S)} \Theta(\mu_Q^2 t)$ ($N_c = 3$ CS kernels) as kernels \rightarrow incorporation of subleading colour dipoles, spin-dependence
- Sudakov form factor

$$\Delta^{(\mathsf{A})}(t,t') = \exp\left[-\int_t^{t'} \mathrm{d}\Phi_1 \frac{\mathrm{D}^{(\mathsf{A})}}{\mathrm{B}}\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- c_1 and c_2 correct in $N_c = 3$
- $\alpha_s \rightarrow \alpha_s(k_\perp)$ to catch dominant terms of higher log. order

\Rightarrow improves accuracy of resummation for first emission

$$\begin{split} \langle O \rangle^{\mathsf{MC@NLO}} &= \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \Biggl[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \\ &+ \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \Biggr] \\ &+ \int \mathrm{d}\Phi_R \Bigl[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Bigr] \, O(\Phi_R) \end{split}$$

- SHERPA: $D_i^{(A)} = D_i^{(S)} \Theta(\mu_Q^2 t)$ ($N_c = 3$ CS kernels) as kernels \rightarrow incorporation of subleading colour dipoles, spin-dependence
- Sudakov form factor

$$\Delta^{(\mathsf{A})}(t,t') = \exp\left[-\int_t^{t'} \mathrm{d}\Phi_1 \,\frac{\mathrm{D}^{(\mathsf{A})}}{\mathrm{B}}\right] = \exp\left[c_1 \alpha_s L^2 + c_2 \alpha_s L + \dots\right]$$

- c_1 and c_2 correct in $N_c = 3$
- + $\alpha_s \rightarrow \alpha_s(k_\perp)$ to catch dominant terms of higher log. order

\Rightarrow improves accuracy of resummation for first emission

	MePs	Mc@Nlo	MEPs@NLO	Conclusions
Decultor =				

Results – $\mathrm{p} \mathrm{ar{p}} ightarrow \mathrm{tt} + \mathsf{jets}$

Importance of

- $N_c = 3$ colour coherence vs.
- $N_c \rightarrow \infty$ colour coherence
 - small effect on standard (rapidity blind) observables, e.g. $p_{\perp,t\bar{t}}$ \rightarrow some destructive interference at large $p_{\perp,t\bar{t}}$

 large effect on A_{FB}(p_{⊥,tt̄}) → subleading colour terms lead to asymmetric radiation pattern

Results – $\mathbf{p}\mathbf{\bar{p}} \rightarrow \mathbf{t}\mathbf{\bar{t}} + \text{jets}$

Importance of

- $N_c = 3$ colour coherence vs.
- $N_c \rightarrow \infty$ colour coherence
 - small effect on standard (rapidity blind) observables, e.g. $p_{\perp,t\bar{t}}$ \rightarrow some destructive interference at large $p_{\perp,t\bar{t}}$
 - large effect on $A_{FB}(p_{\perp,t\bar{t}})$ \rightarrow subleading colour terms lead to asymmetric radiation pattern

$$A_{\mathsf{FB}}(\mathcal{O}) = \frac{\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y>0}} - \frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y<0}}}{\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y>0}} + \frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}\mathcal{O}|_{\Delta y<0}}}$$

Resummation properties of MEPS@NLO

Höche, Krauss, MS, Siegert JHEP04(2013)027

Consider a $2 \rightarrow n$ process and an observable senstive to (at least) j = n + k jets according to measure some jet measure $Q_{n+k+i} = Q(\Phi_{n+k+i})$

$$\langle O \rangle_j = \sum_{i=0}^{\infty} \langle O_{j+i} \rangle = \sum_{i=0}^{\infty} \langle O_{n+k+i} \rangle ,$$

such that

$$\langle O \rangle_{j}^{\text{excl}} = \sum_{i=0}^{\infty} \langle O_{j+i} \Theta(Q_{j} - Q_{\text{cut}}) \Theta(Q_{\text{cut}} - Q_{j+1}) \rangle$$

$$\langle O \rangle_{j}^{\text{incl}} = \sum_{i=0}^{\infty} \langle O_{j+i} \Theta(Q_{j} - Q_{\text{cut}}) \rangle .$$

Aim: a) the (n + k + i) jet state is NLO correct

- b) log. structure of the parton shower wrt. $2 \rightarrow n$ process is guaranteed
- ightarrow include truncated showering to accommodate arbitrary Q and t

Marek Schönherr

Resummation properties of MEPS@NLO

Höche, Krauss, MS, Siegert JHEP04(2013)027

Consider a $2 \rightarrow n$ process and an observable senstive to (at least) j = n + k jets according to measure some jet measure $Q_{n+k+i} = Q(\Phi_{n+k+i})$

$$\langle O \rangle_j = \sum_{i=0}^{\infty} \langle O_{j+i} \rangle = \sum_{i=0}^{\infty} \langle O_{n+k+i} \rangle ,$$

such that

$$\langle O \rangle_j^{\text{excl}} = \sum_{i=0}^{\infty} \langle O_{j+i} \Theta(Q_j - Q_{\text{cut}}) \Theta(Q_{\text{cut}} - Q_{j+1}) \rangle ,$$

$$\langle O \rangle_j^{\text{incl}} = \sum_{i=0}^{\infty} \langle O_{j+i} \Theta(Q_j - Q_{\text{cut}}) \rangle .$$

Aim: a) the (n + k + i) jet state is NLO correct

- b) log. structure of the parton shower wrt. $2 \rightarrow n$ process is guaranteed
- ightarrow include truncated showering to accommodate arbitrary Q and t

Marek Schönherr

Resummation properties of MEPS@NLO

Höche, Krauss, MS, Siegert JHEP04(2013)027

Consider a $2 \rightarrow n$ process and an observable senstive to (at least) j = n + k jets according to measure some jet measure $Q_{n+k+i} = Q(\Phi_{n+k+i})$

$$\langle O \rangle_j = \sum_{i=0}^{\infty} \langle O_{j+i} \rangle = \sum_{i=0}^{\infty} \langle O_{n+k+i} \rangle ,$$

such that

$$\langle O \rangle_{j}^{\text{excl}} = \sum_{i=0}^{\infty} \langle O_{j+i} \Theta(Q_{j} - Q_{\text{cut}}) \Theta(Q_{\text{cut}} - Q_{j+1}) \rangle ,$$

$$\langle O \rangle_{j}^{\text{incl}} = \sum_{l=j}^{\infty} \langle O \rangle_{l}^{\text{excl}} .$$

Aim: a) the (n + k + i) jet state is NLO correct

- b) log. structure of the parton shower wrt. $2 \rightarrow n$ process is guaranteed
- ightarrow include truncated showering to accommodate arbitrary Q and t

Marek Schönherr

Resummation properties of MEPS@NLO

Höche, Krauss, MS, Siegert JHEP04(2013)027

Consider a $2 \rightarrow n$ process and an observable senstive to (at least) j = n + k jets according to measure some jet measure $Q_{n+k+i} = Q(\Phi_{n+k+i})$

$$\langle O \rangle_j = \sum_{i=0}^{\infty} \langle O_{j+i} \rangle = \sum_{i=0}^{\infty} \langle O_{n+k+i} \rangle ,$$

such that

$$\langle O \rangle_j^{\text{excl}} = \sum_{i=0}^{\infty} \langle O_{j+i} \Theta(Q_j - Q_{\text{cut}}) \Theta(Q_{\text{cut}} - Q_{j+1}) \rangle ,$$

$$\langle O \rangle_j^{\text{incl}} = \sum_{l=j}^{\infty} \langle O \rangle_l^{\text{excl}} .$$

Aim: a) the (n + k + i) jet state is NLO correct

- b) log. structure of the parton shower wrt. $2 \rightarrow n$ process is guaranteed
- ightarrow include truncated showering to accommodate arbitrary Q and t

Parton shower MEPS MEAN MEPSANO Conclusion
Parton shower MEPS Mean Mepsano Conclusion

$$\begin{aligned} & \text{Resummation properties of MEPS@NLO} \\ \hline \text{Define} \\ & \langle O \rangle_{n+k}^{\text{excl}} = \int d\Phi_{n+k} \Theta(Q_{n+k} - Q_{\text{cut}}) \tilde{B}_{n+k}^{(A)} \\ & \times \left[\tilde{\Delta}_{n+k}^{(A)}(t_c, \mu_Q^2) O_{n+k} + \int_{t_c}^{t_{n+k}} d\Phi_1 \frac{\tilde{D}_{n+k}^{(A)}}{B_{n+k}} \tilde{\Delta}_{n+k}^{(A)}(t_{n+k+1}, \mu_Q^2) \\ & \times \Theta(Q_{\text{cut}} - Q_{n+k+1}) O_{n+k+1} \right] \\ & + \int d\Phi_{n+k+1} \Theta(Q_{n+k} - Q_{\text{cut}}) \tilde{H}_{n+k}^{(A)} \tilde{\Delta}_{n+k}^{(\text{PS})}(t_{n+k+1}, \mu_Q^2; > Q_{\text{cut}}) \end{aligned}$$

 $\times \Theta(Q_{\text{cut}} - Q_{n+k+1}) \ O_{n+k+1}$

\Rightarrow structurally similar to MC@NLO

emission terms restricted from above by $Q_{\rm cut},$ as in MEPS twiddled quantities incorporate truncated emissions

Parton shower MEPS MC@NLO MEPS@NLO Conclusions
Resummation properties of MEPS@NLO

Truncated shower emission manifest in compound emission kernel

$$\tilde{\mathbf{D}}_{n+k}^{(\mathbf{A})}(\bar{\Phi}_1) = \mathbf{D}_{n+k}^{(\mathbf{A})} \Theta(t_{n+k} - \bar{t}) + \mathbf{B}_{n+k} \sum_{i=n}^{n+k-1} \mathbf{K}_i \Theta(t_i - \bar{t}) \Theta(\bar{t} - t_{i+1})$$

- \Rightarrow kernels for PS emissions in between reconstructed scales t_i starting at core process $2 \to n$ up to $2 \to n+k$
- \Rightarrow hierarchy $\mu_Q^2 = t_n > t_{n+1} > \dots t_{n+k-1} > t_{n+k}$ implicit
- \Rightarrow n+k+1-th emission by $ilde{\mathrm{D}}^{(\mathrm{A})}$, intermediate emissions by PS

Compound Sudakov form factor

$$\tilde{\Delta}_{n+k}^{(A)}(t,t') = \exp\left\{-\int_{t}^{t'} d\bar{\Phi} \frac{\tilde{D}_{n+k}^{(A)}}{B_{n+k}}\right\} = \Delta_{n+k}^{(A)}(t,t') \prod_{i=n}^{n+k-1} \Delta_{i}^{(PS)}(t,t')$$

Parton shower MEPS MC@NLO MEPS@NLO Conclusions
Resummation properties of MEPS@NLO

Truncated shower emission manifest in compound emission kernel

$$\tilde{\mathbf{D}}_{n+k}^{(A)}(\bar{\Phi}_1) = \mathbf{D}_{n+k}^{(A)} \Theta(t_{n+k} - \bar{t}) + \mathbf{B}_{n+k} \sum_{i=n}^{n+k-1} \mathbf{K}_i \Theta(t_i - \bar{t}) \Theta(\bar{t} - t_{i+1})$$

- \Rightarrow kernels for PS emissions in between reconstructed scales t_i starting at core process $2 \to n$ up to $2 \to n+k$
- \Rightarrow hierarchy $\mu_Q^2 = t_n > t_{n+1} > \dots t_{n+k-1} > t_{n+k}$ implicit
- $\Rightarrow~n+k+1\text{-th}$ emission by $\tilde{\mathrm{D}}^{(\mathrm{A})}$, intermediate emissions by PS

Compound Sudakov form factor

$$\tilde{\Delta}_{n+k}^{(A)}(t, t') = \exp\left\{-\int_{t}^{t'} d\bar{\Phi} \frac{\tilde{D}_{n+k}^{(A)}}{B_{n+k}}\right\} = \Delta_{n+k}^{(A)}(t, t') \prod_{i=n}^{n+k-1} \Delta_{i}^{(PS)}(t, t')$$

$$\Delta_{n+k}^{(\mathsf{PS})}(t, t') = \prod_{i=n}^{n+k} \Delta_i^{(\mathsf{PS})}(t, t')$$

10

Parton shower MEPS MC@NLO MEPS@NLO Conclusions
Resummation properties of MEPS@NLO

Truncated shower emission manifest in compound emission kernel

$$\tilde{\mathbf{D}}_{n+k}^{(A)}(\bar{\Phi}_1) = \mathbf{D}_{n+k}^{(A)} \Theta(t_{n+k} - \bar{t}) + \mathbf{B}_{n+k} \sum_{i=n}^{n+k-1} \mathbf{K}_i \Theta(t_i - \bar{t}) \Theta(\bar{t} - t_{i+1})$$

- \Rightarrow kernels for PS emissions in between reconstructed scales t_i starting at core process $2 \to n$ up to $2 \to n+k$
- \Rightarrow hierarchy $\mu_Q^2 = t_n > t_{n+1} > \dots t_{n+k-1} > t_{n+k}$ implicit
- \Rightarrow n+k+1-th emission by $ilde{\mathrm{D}}^{(\mathrm{A})}$, intermediate emissions by PS

Compound Sudakov form factor

$$\tilde{\Delta}_{n+k}^{(A)}(t,t') = \exp\left\{-\int_{t}^{t'} d\bar{\Phi} \frac{\tilde{D}_{n+k}^{(A)}}{B_{n+k}}\right\} = \Delta_{n+k}^{(A)}(t,t') \prod_{i=n}^{n+k-1} \Delta_{i}^{(PS)}(t,t')$$

$$\tilde{\Delta}_{n+k}^{(\mathsf{PS})}(t, t') = \prod_{i=n}^{n+k} \Delta_i^{(\mathsf{PS})}(t, t')$$

Parton shower Mc@NLO MEPs@NLO

Resummation properties of MEPS@NLO

Truncated shower emission manifest in compound emission kernel

$$\tilde{\mathbf{D}}_{n+k}^{(A)}(\bar{\Phi}_1) = \mathbf{D}_{n+k}^{(A)} \Theta(t_{n+k} - \bar{t}) + \mathbf{B}_{n+k} \sum_{i=n}^{n+k-1} \mathbf{K}_i \Theta(t_i - \bar{t}) \Theta(\bar{t} - t_{i+1})$$

- \Rightarrow kernels for PS emissions in between reconstructed scales t_i starting at core process $2 \rightarrow n$ up to $2 \rightarrow n+k$
- \Rightarrow hierarchy $\mu_{Q}^{2} = t_{n} > t_{n+1} > \dots t_{n+k-1} > t_{n+k}$ implicit
- \Rightarrow n + k + 1-th emission by $\tilde{D}^{(A)}$, intermediate emissions by PS

Compound Sudakov form factor

$$\tilde{\Delta}_{n+k}^{(A)}(t, t') = \exp\left\{-\int_{t}^{t'} d\bar{\Phi} \frac{\tilde{D}_{n+k}^{(A)}}{B_{n+k}}\right\} = \Delta_{n+k}^{(A)}(t, t') \prod_{i=n}^{n+k-1} \Delta_{i}^{(PS)}(t, t')$$

$$\Delta^{(\mathsf{PS})}(t,t') = \Delta^{(\mathsf{PS})}(t,t'; \langle Q_{\text{cut}}) \Delta^{(\mathsf{PS})}(t,t'; \rangle Q_{\text{cut}})$$

 Parton shower
 MEPS
 MC@NLO
 MEPS@NLO
 Conclusions

 Resummation properties of MEPS@NLO

Compound emission kernels require modified $\bar{\mathrm{B}}\textsc{-}\mathsf{functions}$

$$\tilde{B}_{n+k}^{(A)}(\Phi_{n+k}) = \bar{B}_{n+k}^{(A)}(\Phi_{n+k}) + B_{n+k}(\Phi_{n+k}) \sum_{i=n}^{n+k-1} \int d\Phi_1 K_i(\Phi_1) \Theta(t_i - t_{n+k+1}) \Theta(t_{n+k+1} - t_{i+1})$$

and, similarly, H-functions

$$\tilde{\mathbf{H}}_{n+k}^{(\mathbf{A})}(\Phi_{n+k+1}) = \mathbf{H}_{n+k}^{(\mathbf{A})}(\Phi_{n+k+1}) - \mathbf{B}_{n+k}(\Phi_{n+k}) \sum_{i=n}^{n+k-1} \mathbf{K}_i(\Phi_1) \Theta(t_i - t_{n+k+1}) \Theta(t_{n+k+1} - t_{i+1})$$

Necessary, because truncated shower emissions enter at $\mathcal{O}(\alpha_s)$

 Parton shower
 MEPS
 MC@NLO
 MEPS@NLO
 Conclusions

 Resummation properties of MEPS@NLO
 Conclusions
 Conclusions
 Conclusions

Compound emission kernels require modified $\bar{\mathrm{B}}\textsc{-}\mathsf{functions}$

$$\tilde{B}_{n+k}^{(A)}(\Phi_{n+k}) = \bar{B}_{n+k}^{(A)}(\Phi_{n+k}) + B_{n+k}(\Phi_{n+k}) \sum_{i=n}^{n+k-1} \int d\Phi_1 K_i(\Phi_1) \Theta(t_i - t_{n+k+1}) \Theta(t_{n+k+1} - t_{i+1})$$

and, similarly, H-functions

$$\tilde{\mathbf{H}}_{n+k}^{(\mathbf{A})}(\Phi_{n+k+1}) = \mathbf{H}_{n+k}^{(\mathbf{A})}(\Phi_{n+k+1}) - \mathbf{B}_{n+k}(\Phi_{n+k}) \sum_{i=n}^{n+k-1} \mathbf{K}_i(\Phi_1) \Theta(t_i - t_{n+k+1}) \Theta(t_{n+k+1} - t_{i+1})$$

Necessary, because truncated shower emissions enter at $\mathcal{O}(\alpha_s)$.

Resummation properties of MEPS@NLO

Parton shower MC@NLO MEPs@NLO Resummation properties of MEPS@NLO This leads to $\langle O \rangle_{n+k}^{\text{excl}} = \int \mathrm{d}\Phi_{n+k} \,\Theta(Q_{n+k} - Q_{\text{cut}}) \,\tilde{B}_{n+k}^{(\mathsf{A})} \,\tilde{\Delta}_{n+k}^{(\mathsf{A})}(t_c, \mu_Q^2; > Q_{\text{cut}})$ $\times \left| \tilde{\Delta}_{n+k}^{(\mathsf{A})}(t_c, \mu_Q^2; < Q_{\text{cut}}) O_{n+k} \right|$ + $\int_{1}^{t_{n+k}} \mathrm{d}\Phi_1 \, \frac{\dot{\mathrm{D}}_{n+k}^{(\mathsf{A})}}{\mathbf{R}_{n+k}} \, \tilde{\Delta}_{n+k}^{(\mathsf{A})}(t_{n+k+1}, \mu_Q^2; < Q_{\mathrm{cut}})$ $\times \Theta(Q_{\text{cut}} - Q_{n+k+1}) O_{n+k+1}$ + $\int \mathrm{d}\Phi_{n+k+1}\,\Theta(Q_{n+k}-Q_{\mathrm{cut}})\,\tilde{\mathrm{H}}_{n+k}^{(\mathsf{A})}\,\tilde{\Delta}_{n+k}^{(\mathrm{PS})}(t_{n+k+1},\mu_Q^2;>Q_{\mathrm{cut}})$ $\times \Theta(Q_{\text{cut}} - Q_{n+k+1}) \ O_{n+k+1}$

⇒ Sudakovs for veto on $Q > Q_{cut}$ explicit $\tilde{B}^{(A)}$, $\tilde{H}^{(A)}$ contain correct subtraction terms for correct $\mathcal{O}(\alpha_s)$ terms

- proof on NLO accuracy proceeds as for MC@NLO, $\mathcal{O}(\alpha_s)$ terms of compound Sudakovs cancel with additional terms in \tilde{B} and \tilde{H}
- proof of logarithmic accuracy
 - \blacksquare emissions below $Q_{\rm cut}$ on (n+k) jet configuration generated by $\Delta^{\rm (A)}_{n+k}(t_{n+k+1},t_{n+k})$
 - 2 emissions above Q_{cut} are in the (n + k + 1) jet configuration, they may not generate unwanted logarithmic corrections wrt. (n + k) jet configuration
 - 3 iterate 1 and 2 for (n+k+1) jet configuration

• for 1 and 2 rewrite

$$\begin{split} \langle O \rangle_{n+k}^{\text{incl}} &= \langle O \rangle_{n+k}^{\text{excl}} + \langle O \rangle_{n+k+1}^{\text{excl}} + \dots \\ &= \langle O \rangle_{n+k}^{\text{MC@NLO}} + \langle O \rangle_{n+k}^{\text{corr}} \end{split}$$

- proof on NLO accuracy proceeds as for MC@NLO, $\mathcal{O}(\alpha_s)$ terms of compound Sudakovs cancel with additional terms in \tilde{B} and \tilde{H}
- proof of logarithmic accuracy
 - \blacksquare emissions below $Q_{\rm cut}$ on (n+k) jet configuration generated by $\Delta^{\rm (A)}_{n+k}(t_{n+k+1},t_{n+k})$
 - 2 emissions above Q_{cut} are in the (n + k + 1) jet configuration, they may not generate unwanted logarithmic corrections wrt. (n + k) jet configuration
 - **3** iterate 1 and 2 for (n + k + 1) jet configuration
- for 1 and 2 rewrite

$$\langle O \rangle_{n+k}^{\text{incl}} = \langle O \rangle_{n+k}^{\text{excl}} + \langle O \rangle_{n+k+1}^{\text{excl}} + \dots$$
$$= \langle O \rangle_{n+k}^{\text{MC@NLO}} + \langle O \rangle_{n+k}^{\text{corr}}$$

MC@NLO expression with

- additional Sudakov form factors to correctly resum all scale hierarchies $\mu_Q^2 = t_n > t_{n+1} > \ldots t_{n+k-1} > t_{n+k}$
- · truncated shower terms allowing for emissions off intermediate legs

\Rightarrow has exactly the right resummation behaviour

Parton shower MEPS MED MEPS@NLO Conclusions
Resummation properties of MEPS@NLO
$$\langle O \rangle_{n+k}^{\text{corr}} = \int d\Phi_{n+k+1} \Theta(Q_{n+k+1} - Q_{\text{cut}}) \tilde{\Delta}_{n+k+1}^{(\text{PS})}(t_c, \mu_Q^2) O_{n+k+1} \\ \left\{ \tilde{\Sigma}(A) \begin{bmatrix} 1 & \tilde{B}_{n+k}^{(A)} \ \Delta_{n+k}^{(A)}(t_{n+k+1}, t_{n+k}) \end{bmatrix} \right\}$$

$$\times \left\{ \tilde{\mathbf{D}}_{n+k}^{(\mathbf{A})} \left[1 - \frac{\tilde{\mathbf{B}}_{n+k}^{(\mathbf{A})}}{\mathbf{B}_{n+k}} \frac{\Delta_{n+k}^{(\mathbf{A})}(t_{n+k+1}, t_{n+k})}{\Delta_{n+k}^{(\mathsf{PS})}(t_{n+k+1}, t_{n+k})} \right] - \mathbf{B}_{n+k+1} \left[1 - \frac{\tilde{\mathbf{B}}_{n+k+1}^{(\mathbf{A})}}{\mathbf{B}_{n+k+1}} \frac{\Delta_{n+k+1}^{(\mathbf{A})}(t_c, t_{n+k+1})}{\Delta_{n+k+1}^{(\mathsf{PS})}(t_c, t_{n+k+1})} \right] + \mathcal{O}(\alpha_s^2) \right\}$$

• Similarly to MEPS case, this is the difference between the (n + k + 1) parton state and the emission kernel off the (n + k) parton state

 \Rightarrow this term is of $\mathcal{O}(rac{1}{N_C} lpha_s^2 L^3)$ relative to the (n+k) parton process

Parton shower	MEPS	Mc@NLO	MEPs@NLO	Conclusions
Resumma	tion prope	rties of ME	Ps@Nlo	
$\langle O \rangle_{n+k}^{\rm corr}$				
$= \int \mathrm{d}\Phi_{n+k+}$	$\Theta(Q_{n+k+1}-Q_{n+k+1})$	$Q_{\rm cut}) \tilde{\Delta}_{n+k+1}^{\rm (PS)}(t_c,$	$\mu_Q^2) O_{n+k+1}$	
$ imes \left\{ ilde{\mathrm{D}}_{n+k}^{(\mathrm{A})} ight.$	$\left[1 - \frac{\tilde{\mathbf{B}}_{n+k}^{(A)}}{\mathbf{B}_{n+k}} \frac{\Delta_{n+k}^{(A)}}{\Delta_{n+k}^{(PS)}}\right]$	$\frac{k(t_{n+k+1}, t_{n+k})}{k(t_{n+k+1}, t_{n+k})} \bigg]$		
identica $\mathcal{O}(lpha_s L^2)$ an	I at $-\operatorname{B}_{n+k}$ d $\mathcal{O}(lpha_s L)$	$= 1 - \frac{\tilde{\mathbf{B}}_{n+k+1}^{(A)}}{\mathbf{B}_{n+k+1}}$	$\frac{\Delta_{n+k+1}^{(A)}(t_c, t_{n+k+1})}{\Delta_{n+k+1}^{(PS)}(t_c, t_{n+k+1})}$	$\left.\frac{\partial}{\partial s}\right] + \mathcal{O}(\alpha_s^2) \bigg\}$

• Similarly to MEPS case, this is the difference between the (n+k+1) parton state and the emission kernel off the (n+k) parton state

 \Rightarrow this term is of $\mathcal{O}(\frac{1}{N_{c}}\alpha_{s}^{2}L^{3})$ relative to the (n+k) parton process

no $\mathcal{O}(\alpha_s^2)$ terms

Parton shower MEPS MEND MEPSONLO Conclusion

$$\begin{aligned} \langle O \rangle_{n+k}^{\text{corr}} \\ &= \int d\Phi_{n+k+1} \Theta(Q_{n+k+1} - Q_{\text{cut}}) \tilde{\Delta}_{n+k+1}^{(\text{PS})}(t_c, \mu_Q^2) O_{n+k+1} \\ &\times \left\{ \tilde{D}_{n+k}^{(A)} \left[1 - \frac{\tilde{B}_{n+k}^{(A)}}{B_{n+k}} \frac{\Delta_{n+k}^{(A)}(t_{n+k+1}, t_{n+k})}{\Delta_{n+k}^{(\text{PS})}(t_{n+k+1}, t_{n+k})} \right] & \underset{O\left(\frac{1}{N_C} \alpha_s L\right)}{\text{mismatch at}} \\ &\quad - B_{n+k+1} \left[1 - \frac{\tilde{B}_{n+k+1}^{(A)}}{B_{n+k+1}} \frac{\Delta_{n+k+1}^{(A)}(t_c, t_{n+k+1})}{\Delta_{n+k+1}^{(\text{PS})}(t_c, t_{n+k+1})} \right] + \mathcal{O}(\alpha_s^2) \right\} \\ &\quad \text{no } \mathcal{O}(\alpha_s^2) \text{ terms} \end{aligned}$$

• Similarly to MEPs case, this is the difference between the (n + k + 1) parton state and the emission kernel off the (n + k) parton state

 \Rightarrow this term is of $\mathcal{O}(rac{1}{N_{c}} lpha_{s}^{2} L^{3})$ relative to the (n+k) parton process

Parton shower MEPS MEND MEPSONLO Conclusion

$$\begin{aligned} \langle O \rangle_{n+k}^{\text{corr}} \\ &= \int d\Phi_{n+k+1} \Theta(Q_{n+k+1} - Q_{\text{cut}}) \tilde{\Delta}_{n+k+1}^{(\text{PS})}(t_c, \mu_Q^2) O_{n+k+1} \\ &\times \left\{ \tilde{D}_{n+k}^{(A)} \left[1 - \frac{\tilde{B}_{n+k}^{(A)}}{B_{n+k}} \frac{\Delta_{n+k}^{(A)}(t_{n+k+1}, t_{n+k})}{\Delta_{n+k}^{(\text{PS})}(t_{n+k+1}, t_{n+k})} \right] & \underset{O\left(\frac{1}{N_C} \alpha_s L\right)}{\text{mismatch at}} \\ &\quad - B_{n+k+1} \left[1 - \frac{\tilde{B}_{n+k+1}^{(A)}}{B_{n+k+1}} \frac{\Delta_{n+k+1}^{(A)}(t_c, t_{n+k+1})}{\Delta_{n+k+1}^{(\text{PS})}(t_c, t_{n+k+1})} \right] + \mathcal{O}(\alpha_s^2) \right\} \\ &\quad \text{no } \mathcal{O}(\alpha_s^2) \text{ terms} \end{aligned}$$

• Similarly to MEPS case, this is the difference between the (n + k + 1) parton state and the emission kernel off the (n + k) parton state

 \Rightarrow this term is of $\mathcal{O}(\frac{1}{N_C}\,\alpha_s^2 L^3)$ relative to the (n+k) parton process

MEPS	MEPs@NLO	Conclusions

Results – $pp \rightarrow W+jets$

 $pp \rightarrow W+$ jets (0,1,2 @ NLO; 3,4 @ LO)

- $\mu_{R/F} \in [\frac{1}{2}, 2] \, \mu_{\mathrm{def}}$ scale uncertainty much reduced
- NLO dependence for $pp \rightarrow W+0,1,2$ jets LO dependence for $pp \rightarrow W+3,4$ jets

•
$$Q_{\text{cut}} = 30 \text{ GeV}$$

good data description

ATLAS data Phys.Rev.D85(2012)092002

MC@NL0

$\textbf{Results} - \mathbf{p}\mathbf{p} \rightarrow \mathbf{W} \textbf{+} \textbf{jets}$

$\textbf{Results} - \mathbf{p}\mathbf{p} \rightarrow \mathbf{W} \textbf{+} \textbf{jets}$

Scalar sum of transverse momenta

do/dH_T [pb/GeV] 103 SHERPA+BLACKHAT ATLAS data MC/data MePs@Nlo 10^{2} MePs@Nlo µ/2...2µ MENLOPS $'+ \ge 1$ iet (×1) **ΜΕΝΙΟΡS** μ/2...2μ 101 Mc@Nlo MC/data 10-1 10^{-2} W+ > 3 jets (×0.01) 10-3 MC/data 10^{-4} 500 600) 700 Н_Т [GeV] 100 200 300 400

ATLAS data Phys.Rev.D85(2012)092002

Mc@NL

$\textbf{Results} - \mathbf{p}\mathbf{p} \rightarrow \mathbf{W} \textbf{+} \textbf{jets}$

ATLAS data Phys.Rev.D85(2012)092002

Results – $\mathbf{p}\mathbf{\bar{p}} \rightarrow t\mathbf{\bar{t}}+\text{jets}$

CDF data Phys.Rev.D87(2013)092002

 $p\bar{p} \rightarrow t\bar{t}+$ jets (0,1 @ NLO) S. Höche, J. Huang, G. Luisoni, MS, J. Winter arXiv:1306.2703

- $A_{FB}(p_{\perp,t\bar{t}})$ NLO accurate in all but the first bin
- reconstructed tops
- no EW corrections

Mc@NL

Results – $\mathbf{p} \mathbf{\bar{p}} \rightarrow \mathbf{t} \mathbf{\bar{t}} + \text{jets}$

CDF data Phys.Rev.D87(2013)092002

parton level

- no EW corrections ($\approx 20\%$) effected
- right qualitative bahviour, but consistently below data

	MEPS	MEPs@NLO	Conclusions
Conclusions			

Conclusions

- parton showers have a well defined "parton shower accuracy" → more than just leading log
- merging methods must recover that accuracy to improve upon pure PS
- multijet merging at NLO proceeds schematically as at LO \rightarrow truncated vetoed showers integrate smoothly into formalism
- scale setting essential for recovering PS resummation
- NLOPS matching is LO+(N)LL matching
- can be improved by adding higher order calculations
 - (N)NLL resummation
 - NNLO corrections

current release SHERPA-2.0. β_2 , when fully tuned SHERPA-2.0.0

http://sherpa.hepforge.org

MEPS	MEPs@NLO	Conclusions

Thank you for your attention!

	MEPs		MEPs@NLO	Conclusions
MEPs@N	NLO – Multį	jet merging	at NLO	
$\langle O \rangle^{MEPs@Nlo}$		Höc	he, Krauss, MS, Siegert JH	IEP04(2013)027
$= \int \mathrm{d}\Phi_n \; \bar{\mathrm{E}}$	$\mathbf{Q}_n^{(A)} \left[\Delta_n^{(A)}(t_0, \mu_Q^2) \mathbf{Q} \right]$	Gehrmann, Höc \mathcal{O}_n	he, Krauss, MS, Siegert JH	EP01(2013)144
	$+\int_{t_0}^{\mu_Q^2}\mathrm{d}\Phi_1\frac{\mathrm{I}}{2}$	$\frac{D_n^{(A)}}{B_n}\Delta_n^{(A)}(t_{n+1},\mu_{Q}^2)$	$O(Q_{ ext{cut}}-Q)O_{n+1}$.]
$+\int\mathrm{d}\Phi_{\eta}$	$_{n+1}\left[\mathrm{R}_{n}-\mathrm{D}_{n}^{(A)}\right]\Theta$	$\left(Q_{\mathrm{cut}} - Q ight) O_{n+1}$		

	MEPS		MEPs@NLO	Conclusions
MEPs@N	NLO – Multij	jet merging	at NLO	
$\langle O \rangle^{MEPs@Nlo}$		Höc	he, Krauss, MS, Siegert JH	IEP04(2013)027
$= \int \mathrm{d}\Phi_n \; \bar{\mathrm{B}}$	$\mathbf{Q}_n^{(A)} \left[\Delta_n^{(A)}(t_0, \mu_Q^2) \mathbf{Q} \right]$	Gehrmann, Höc \mathcal{O}_n	he, Krauss, MS, Siegert JH	IEP01(2013)144
	$+\int_{t_0}^{\mu_Q^2}\mathrm{d}\Phi_1\frac{\mathrm{I}}{2}$	$\frac{D_n^{(A)}}{B_n}\Delta_n^{(A)}(t_{n+1},\mu_Q^2$	$\Theta(Q_{cut}-Q)O_{n+1})$.]
$+\int\mathrm{d}\Phi_{\eta}$	$_{n+1}\left[\mathbf{R}_{n}-\mathbf{D}_{n}^{(A)}\right]\Theta$	$\left(Q_{cut}-Q\right)O_{n+1}$		

	MEPS		MEPs@NLO	Conclusions
MEPs@N	ILO – Multij	jet merging	at NLO	
$\langle O \rangle^{MEPs@Nlo}$		Höc	ne, Krauss, MS, Siegert Jł	HEP04(2013)027
$= \int \mathrm{d}\Phi_n \; \bar{\mathrm{B}}_n^t$	$ {}^{(A)}_{n} \left[\Delta_{n}^{(A)}(t_{0}, \mu_{Q}^{2}) \right] $	Gehrmann, Höcl D _n	ne, Krauss, MS, Siegert JI	HEP01(2013)144
	$+\int_{t_0}^{\mu_Q^2}\mathrm{d}\Phi_1\frac{\mathrm{I}}{\mathrm{I}}$	$\frac{D_n^{(A)}}{B_n} \Delta_n^{(A)}(t_{n+1}, \mu_Q^2)$	$) \Theta(Q_{cut} - Q) O_{n+1}$	1]
$+\int\mathrm{d}\Phi_n$	$+1\left[\mathbf{R}_n - \mathbf{D}_n^{(A)}\right]\Theta$	$\left(Q_{cut}-Q\right)O_{n+1}$		
$+\int\mathrm{d}\Phi_n$	$_{+1} \bar{\mathrm{B}}_{n+1}^{(A)} \left[1 + \frac{\mathrm{B}_{n}}{\mathrm{B}_{n}} \right]$		$\Delta_n^{(\mathcal{K})}(t_{n+1},\mu_Q^2)\Theta(\mathcal{K})$	$Q-Q_{cut})$
	$\times \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) \right]$	$O_{n+1} + \int_{t_0}^{t_{n+1}} \mathrm{d}t$	$\Phi_1 \frac{\mathbf{D}_{n+1}^{(A)}}{\mathbf{B}_{n+1}} \Delta_{n+1}^{(A)} (t_{n+1}) $	$(2, t_{n+1}) O_{n+2}$
$+\int d\Phi_{n+}$	${}_{2}\left[\mathrm{R}_{n+1}-\mathrm{D}_{n+1}^{(A)}\right]$	$\Delta_n^{(C)}(t_{n+1},\mu_Q^2)\boldsymbol{\Theta}($	$Q - Q_{cut}) O_{n+2}$	

	MEPS		MEPs@NLO	Conclusions
MePs@N	LO – Multij	et merging	at NLO	
$\langle O \rangle^{\rm MePs@Nlo}$		Höc Cohrmann Höc	che, Krauss, MS, Siegert Jł	HEP04(2013)027
$=\int\mathrm{d}\Phi_n\;\bar{\mathrm{B}}_n^0$	$ \sum_{n}^{(A)} \left[\Delta_n^{(A)}(t_0, \mu_Q^2) C \right] $	\mathcal{O}_n	ine, Krauss, Ivio, Siegeri Jr	1EF01(2013)144
	$+\int_{t_0}^{\mu_Q^2}\mathrm{d}\Phi_1\frac{\mathrm{E}}{\mathrm{I}}$	$\frac{\Delta_n^{(A)}}{B_n} \Delta_n^{(A)}(t_{n+1}, \mu_{\zeta}^2)$	$Q) \Theta(Q_{cut} - Q) O_{n+1}$	1
$+\int\mathrm{d}\Phi_n$	$+1\left[\mathrm{R}_n - \mathrm{D}_n^{(A)}\right]\Theta$	$\left(Q_{cut}-Q ight)O_{n+1}$		
$+\int\mathrm{d}\Phi_n$	$+1 \bar{\mathrm{B}}_{n+1}^{(A)} \left[1 + \frac{\mathrm{B}_{n+1}}{\mathrm{B}_{n+1}}\right]$		$\Delta_n^{(\mathcal{K})}(t_{n+1},\mu_Q^2)\Theta(\zeta$	$Q-Q_{cut})$
	$\times \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) \right]$	$O_{n+1} + \int_{t_0}^{t_{n+1}} \mathrm{d}t$	$\Phi_1 \frac{\mathbf{D}_{n+1}^{(A)}}{\mathbf{B}_{n+1}} \Delta_{n+1}^{(A)}(t_{n+1})$	$(-2, t_{n+1}) O_{n+2}$
$+\int d\Phi_{n+2}$	${}_{2}\left[\mathrm{R}_{n+1}-\mathrm{D}_{n+1}^{(A)}\right]$	$\Delta_n^{(\mathcal{K})}(t_{n+1},\mu_Q^2)\Theta$	$\left(Q-Q_{cut} ight)O_{n+2}$	

	MEPS		MEPs@NLO	Conclusions
MEPs@N	ILO – Multį	jet merging	at NLO	
$\langle O \rangle^{MEPs@Nlo}$		Hö	che, Krauss, MS, Siegert JH	IEP04(2013)027
$= \int \mathrm{d}\Phi_n \bar{\mathrm{B}}$	${}_{n}^{(A)}\left[\Delta_{n}^{(A)}(t_{0},\mu_{Q}^{2})\mathbf{G}\right]$	Gehrmann, Hö \mathcal{O}_n	che, Krauss, MS, Siegert JH	IEP01(2013)144
	$+\int_{t_0}^{\mu_Q^2}\mathrm{d}\Phi_1\frac{\mathrm{I}}{2}$	$\frac{\mathcal{D}_n^{(A)}}{\mathcal{B}_n} \Delta_n^{(A)}(t_{n+1}, \mu_0^2)$	$Q = O(Q_{cut} - Q) O_{n+2}$	l
$+\int\mathrm{d}\Phi_n$	$+1\left[\mathrm{R}_{n}-\mathrm{D}_{n}^{(A)}\right]\Theta$	$\left(Q_{cut}-Q\right)O_{n+1}$		
$+\int\mathrm{d}\Phi_n$	$+1 \bar{\mathrm{B}}_{n+1}^{(A)} \left[1 + \frac{\mathrm{B}_n}{\bar{\mathrm{B}}_n} \right]$	$\frac{\pm 1}{\pm 1} \int_{t_{n+1}}^{\mu_Q^2} \mathrm{d}\Phi_1 \mathcal{K}_n \bigg]$	$\Delta_n^{(\mathcal{K})}(t_{n+1},\mu_Q^2)\Theta(Q$	$Q-Q_{cut})$
	$\times \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) \right]$	$O_{n+1} + \int_{t_0}^{t_{n+1}} O_{t_0} dt$	$\mathrm{d}\Phi_1 \frac{\mathrm{D}_{n+1}^{(A)}}{\mathrm{B}_{n+1}} \Delta_{n+1}^{(A)}(t_{n+1})$	$_{2}, t_{n+1}) O_{n+2}$
$+\int d\Phi_{n+1}$	${}_{2}\left[\mathrm{R}_{n+1}-\mathrm{D}_{n+1}^{(A)}\right]$	$\Delta_n^{(\mathcal{K})}(t_{n+1},\mu_Q^2)\Theta$	$\left(Q-Q_{cut} ight)O_{n+2}$	

NLO merging – Generation of MC counterterm

$$\left[1 + \frac{\mathbf{B}_{n+1}}{\bar{\mathbf{B}}_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} \mathrm{d}\Phi_1 \,\mathcal{K}_n\right]$$

- same form as exponent of Sudakov form factor $\Delta_n^{(PS)}(t_{n+1},\mu_Q^2)$
- truncated parton shower on $n\mbox{-}{\rm parton}$ configuration underlying $n+1\mbox{-}{\rm parton}$ event
 - 1 no emission \rightarrow retain n + 1-parton event as is
 - 2 first emission at t' with $Q > Q_{cut}$, multiply event weight with $B_{n+1}/\bar{B}_{n+1}^{(A)}$, restart evolution at t', do not apply emission kinematics
 - 3 treat every subsequent emission as in standard truncated vetoed shower
- generates

$$\left[1 + \frac{\mathbf{B}_{n+1}}{\overline{\mathbf{B}}_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} \mathrm{d}\Phi_1 \,\mathcal{K}_n\right] \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2)$$

 \Rightarrow identify $\mathcal{O}(\alpha_s)$ counterterm with the omitted emission

IPPP Durham

Parton shower	MEPS	MC@NLO	MEPS@NLO	Conclusions
	ring			
	Sing			

Renormalisation scales:

• determined by clustering using PS probabilities and taking the respective nodal values t_i

$$\alpha_s(\mu_R^2)^{n+k} = \alpha_s(\mu_{\text{core}})^n \cdot \prod_{i=1}^k \alpha_s(t_i)$$

- change of scales $\mu_R \to \tilde{\mu}_R$ in MEs necessitates one-loop counter term

$$\alpha_s(\tilde{\mu}_R^2)^k \left(1 - \frac{\alpha_s(\tilde{\mu}_R^2)}{2\pi} \beta_0 \sum_{i=1}^k \ln \frac{t_i}{\tilde{\mu}_R^2}\right)$$

Factorisation scale:

- μ_F determined from core *n*-jet process
- change of scales $\mu_F \to \tilde{\mu}_F$ in MEs necessitates one-loop counter term

$$B_n(\Phi_n) \frac{\alpha_s(\tilde{\mu}_R^2)}{2\pi} \log \frac{\mu_F^2}{\tilde{\mu}_F^2} \left(\sum_{c=q,g}^n \int_{x_a}^1 \frac{\mathrm{d}z}{z} P_{ac}(z) f_c(x_a/z, \tilde{\mu}_F^2) + \dots \right)$$