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Higgs characterisation
Precision calculations are required to establish the nature of the125-GeV 
Higgs boson recently found at the LHC

In particular, calculations describing accurately the experimental setup for 
each Higgs decay channel are needed

Strengths in channels 

March 1, 2013 P. Azzurri  -  CMS Higgs propert ies 7 
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Signal strength 
•  Parameter of interest : µ (global)     

        

! µ = 1.43 ± 0.16 (stat) ± 0.14 (sys) 
     Council Dec 2012 µ = 1.35 ± 0.19 (stat) ± 0.15 (sys) 

•  Consistency tests 
–   global µ with SM: 3% 

•  11% with rectangular  
     QCD scale and parton dist functions  

–  5 µi with SM: 8% 
–  5 µi with 1.43: 32% 

•  µ, mH contours 
–  ""#
–  4l 
–  combined 

!"Bruno Mansoulié (IRFU-CEA), Moriond-EW,  March 2013 

at mH = 125.5 

[124.5-126.5]: 
 µ ± 4% 



WW channel: jet-veto needed
Higgs decaying into WW suffers from a huge background from top-antitop 
production

Each top quark decays into a b-jet      veto events with jets in the final state ⇒
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The zero-jet cross section

We require that there are no jets with 
transverse momentum larger than  pt,veto
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Jet veto in Higgs searches

G. Zanderighi     Oxford University

Higgs production sensitivity can be maximized by studying the 0-,1-,2-jet 
bin cross-section separately, but this separation must be robust 

On the other hand, a jet veto essential to suppress large top background, 
experimental studies use pt,veto ! 20-30 GeV 

This works well: the zero-jet cross 
section           is least contaminated by 
huge (yellow) top-antitop background  
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σ0−jet



All-order 0-jet cross section
The 0-jet cross section contains logarithms that become large when
pt,veto � mH

σ0−jet � σ0

�
1− 2CA

αs(mH)

π
ln2

mH

pt,veto
+ . . .

�



All-order 0-jet cross section
The 0-jet cross section contains logarithms that become large when

Finiteness of            is recovered after resummation of large logarithms     
reorganisation of the PT series for                 

pt,veto � mH

σ0−jet � σ0

�
1− 2CA

αs(mH)

π
ln2

mH

pt,veto
+ . . .

�

σ0−jet ∼ σ0 exp



Lg1(αsL)� �� �
LL

+ g2(αsL)� �� �
NLL

+αsg3(αsL)� �� �
NNLL

+ . . .





σ0−jet ⇒
αsL ∼ 1

L = ln(mH/pt,veto)



All-order 0-jet cross section
The 0-jet cross section contains logarithms that become large when

Finiteness of            is recovered after resummation of large logarithms     
reorganisation of the PT series for                 

pt,veto � mH
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NLL resummation
NLL resummation can be obtained automatically with CAESAR, the 
Computer Automated Expert Semi-Analytical Resummer

At NLL accuracy, relevant soft and collinear emissions are widely separated 
in rapidity      no recombinations can occur

No jets = no gluons                  is just a Sudakov form factor σ0−jet

⇒

σ0−jet ∼ σ0 e

Lg1(αsL)� �� �
LL

+g2(αsL)� �� �
NLL

[AB Salam Zanderighi ’12]

[AB Salam Zanderighi ’03]

⇒



NNLL resummation
At NNLL, we have extra contributions from gluon emission      non trivial 
dependence on the jet radius

NNLL Sudakov exponent taken from Higgs     distribution

Correction         from real radiation only    computed with a Monte Carlo 

Note:                    due to collinear singularity in gluon splitting                      

pt

⇒

One gluon splitting into two jetsTwo nearby gluons clustered in one jet

σ0−jet ∼ σ0 ×



1 + f(R)α2
s(pt,veto)L� �� �
NNLL



 × e

Lg1(αsL)� �� �
LL

+g2(αsL)� �� �
NLL

+αsg3(αsL)� �� �
NNLL

+...

[AB Salam Zanderighi ’12]

[Catani et al. ’06, Becher Neubert ’11]

[AB Monni Salam Zanderighi ’12]

⇒f(R)

f(R) ∼ lnR



Comparison to NNLO
We present results for the jet-veto efficiency 

Central values of NNLO and NNLL+NNLO are in good agreement

Resummation reduces uncertainties by a factor two with respect to NNLO
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Effect of jet radius
We present results for the jet-veto efficiency 

A larger jet-radius gives smaller theoretical uncertainties

Note: larger jet-radius     more contamination from underlying event

�(pt,veto) = σ0−jet(pt,veto)/σtot
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Comparison to Monte Carlo
We present results for the jet-veto efficiency 

Central value agrees with POWHEG+PYTHIA (rescaled so as to agree with 
Higgs NNLL+NNLO transverse momentum distribution)
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Uncertainties in the 0-jet bin
We have developed a new uncertainty method for                        , treating 
the efficiency    and the total cross section         as uncorrelated  

The efficiency method makes full use of resummed results, as opposed to 
the currently used Stewart-Tackmann method, which is tied to fixed order                                    

At NNLO, in the region                       , the efficiency method gives a much 
larger error than scale variations, which vanish spuriously

Adding NNLL, uncertainty for                                     reduces to 11%
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Jet-veto resummation: outlook
The code JetVHeto to perform the resummation and matching to NNLO is 
available at http://jetvheto.hepforge.org/

Our results have been independently confirmed by two different groups in 
the framework of Soft-Collinear Effective Theory (SCET)

Effect of top and bottom masses in loops

Calculations beyond NNLL accuracy

Recent improvements:

[AB Monni Zanderighi, in preparation]

[Becher Neubert Rothen ’13, Stewart Tackmann Walsh Zuberi ’13]

[Becher Neubert ’12, Becher Neubert Rothen ’13, Stewart Tackmann Walsh Zuberi ’13]

http://jetvheto.hepforge.org/
http://jetvheto.hepforge.org/


Finite-mass effects in loops
The predictions presented so far were computed in the limit

For finite masses, top and bottom loops have different behaviours

mt → ∞

mH � mt

The amplitude           has a 
well-behaved expansion in 
powers of 

M++

(mH/mt)

mb � mH

The loop momentum becomes 
soft giving the usual double-log

M++ ∼
�

mb

mH

�
ln2

�
m2

b

m2
H

�

�+

�+

Ht

�+

�+

b H

Top loop: Bottom loop:



Masses and soft factorisation
Top and bottom loops have also different behaviours with respect to 
factorisation of soft emissions in the region 

pt � mH � mt mb � pt � mH

H
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W−

t
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Hb

pt
pt

pt,veto = 25− 30GeV

Top loop: Bottom loop:

Soft gluons cannot resolve the 
top loop      factorisation OK⇒

Soft gluons can resolve a bottom 
loop      factorisation breaking?⇒



Non-factorising corrections (I)
Emission of a soft gluon does not factorise from the lowest order amplitude 
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[for the amplitude see Baur Glover ’90]



Non-factorising corrections (I)
Emission of a soft gluon does not factorise from the lowest order amplitude 

Non-factorising terms in the soft limit

depend on the helicity of the soft gluon

have opposite signs      cancel in interference with the top loop

Note: non-factorising terms arise also in the hard collinear limit
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Non-factorising corrections (II)
We investigate the impact of non-factorising corrections by studying              
(constant behaviour = factorisation) 

The region in which                    dominate never overlaps with the soft 
region, and hardly with the collinear region  

We then consider non-factorising corrections as a remainder, vanishing 
smoothly for                        automatically implemented through matching                        
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Comparison to MC: top
We consider the ratio of             over its limit for

Finite-      corrections: excellent agreement between resummation and 
Monte Carlo 
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Comparison to MC: bottom
We consider the ratio of             over its limit for

Finite-      corrections: different implementations of mass corrections lead to 
differences up to 5%

POWHEG overestimates finite-mass effects, whereas MC@NLO tends to 
underestimate them
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Results for the efficiency

Larger discrepancy between central values of NNLO and NNLL+NNLO with 
respect to                 case

Larger uncertainty in the efficiency      error on            around 13-14%  

Is there a case for resummation of                         at all orders? 

mt → ∞

⇒ σ0−jet
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Comparison to Monte Carlo
We compare the jet-veto efficiency to different Monte Carlo predictions

All Monte Carlo results are within resummation uncertainty band

In the region                                     NNLL+NNLO results are in better 
agreement with MC@NLO
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All-order factorisation
Very recently, an all-order factorisation formula in SCET has been proposed 
for the zero-jet cross section

Jet-clustering effects are part of a so-called “collinear anomaly” and are 
shown to exponentiate

[Becher Neubert ’12, Becher Neubert Rothen ’13]

H ∼
�
pt,veto
mH

�d[αs(pt,veto)]

Factorization theorem

• As long as R < ln(mH/pT) ! 1.5, the kT-type algorithm will 
cluster soft and collinear radiation separately.

• Jet veto translates into veto in each individual sector.

J
J J

J J
J

J

H

However k2(µ) vanishes at tree level, and this equation then implies that it is zero to all orders
in perturbation theory, since there is no way to compensate the µ dependence of the coupling
constant.

The outcome of the above considerations is that the logarithm of the product of beam-jet
and soft functions is linear in ln(mH/µ). This result is important for the resummation of
logarithms. It implies that in the case pveto

L = pveto
R = pveto

T the product can be written in the
form

[

Bc(ξ1, p
veto
T , µ)Bc̄(ξ2, p

veto
T µ)S(pveto

T , µ)
]

q2=m2
H

=

(

mH

pveto
T

)−2Fgg(pvetoT ,µ)

B(ξ1, p
veto
T , µ) B(ξ2, p

veto
T , µ) ,

(25)

where for convenience we have absorbed the soft function into the refactorized beam-jet func-
tions B. The mH dependence due to the collinear anomaly is now explicit.

The structure of the anomaly is particularly simple for the jet veto. In previous applications
of the collinear anomaly in the context of transverse-momentum resummation for Drell-Yan
production [26] and jet broadening in e+e− annihilations [27], the anomalous exponents anal-
ogous to Fgg depended on some convolution variables, which were shared with the jet and soft
functions in the factorization theorem. After integration over these variables, the resulting
dependence on the hard scale can be quite complicated (see in particular the discussion in
[28]). In the present case, on the other hand, the anomaly leads to an extra term in the cross
section, which (at fixed pveto

T ) is pure power of mH/pveto
T .

For a final factorization step, we now use that in practice the jet veto is much larger than
the scale ΛQCD governing non-perturbative hadronic effects in QCD. It is thus possible to
calculate the physics associated with pveto

T in perturbation theory, and to relate the beam-jet
functions to conventional parton distribution functions (PDFs) [24, ?]. We write this relation
in the form

B(ξ, pveto
T , µ) =

∑

i=g,q,q̄

∫ 1

ξ

dz

z
Ig←i(z, p

veto
T , µ) φi/P (ξ/z, µ) , (26)

which is valid up to hadronic corrections suppressed by powers of ΛQCD/pveto
T . By means of this

relation, the cross section in (15) can be expressed as a convolution of calculable perturbative
functions Ig←i, which in general depend on the jet algorithm as well as on the jet veto, with
PDFs. The end result for the cross section then takes the form

dσ(pveto
T )

dy
= σ0(µ) C2

t (m
2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2
(

mH

pveto
T

)−2Fgg(pvetoT ,µ)

(27)

×
∑

i,j

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2
Ig←i(z1, p

veto
T , µ) Ig←j(z2, p

veto
T , µ) φi/P (ξ1/z1, µ) φj/P (ξ2/z2, µ) ,

where the sums over i, j extend over all flavors of partons (gluons, quarks, and anti-quarks).
In the above factorization theorem, the dependence on the two disparate scales mH and
pveto

T # mH is completely explicit. Large logarithms of their ratio can be resummed by
choosing the factorization scale around the jet veto, µ ∼ pveto

T . With such a choice, the
functions Fgg and Ig←i have well-behaved perturbative expansions free of large logarithms.

8

σ(pveto
T ) ∝

ξ1,2 =
mH√

s
e±yH(longitudinal momentum:                       ) 

σ0−jet ∼ σ0 × Bc(pt,veto)⊗ Bc̄(pt,veto)⊗H(pt,veto,mH)



The NNLLp approximation
NNLLp predictions include terms beyond NNLL

Numerical estimate of hard and beam functions                 at two loops

Estimate of the size of the three-loop collinear anomaly 

At small radius, large         corrections spoil the convergence even of 
resummed predictions at high logarithmic accuracy
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Figure 8: Resummed predictions for the leading-power jet-veto cross section at NLL (orange),
NNLL (red), and N3LLp order (green).

NLL band, and there is a rather substantial gap between them. The origin of the large scale
dependence of the NNLL order bands at small R can be traced back to the behavior of the
two-loop anomaly coefficient dveto2 (R) given in (16), which is plotted in Figure 9 in units of the
coefficient dA2 appearing in the resummation formula for the transverse-momentum distribu-
tion of Higgs bosons at low qT ! mH [43]. Whereas dveto2 (R)/dA2 is of modest size for R ! 0.8,
this ratio quickly increases as R decreases, and it reaches a very large value dveto2 (R)/dA2 ≈ 8.7
for R = 0.2. The origin of this effect can be understood from the presence of the lnR term
in the expression for the function f(R) in (17), which becomes large for such small values
of the jet radius. Note that the dveto2 (R) term first appears at NNLL order, and that the µ
dependence of the running coupling in the anomaly term

exp

[

−
dveto2 (R)

8

(
αs(µ)

π

)2

ln
mH

pvetoT

]

≈ exp

[

1.21
dveto2 (R)

dA2
α2
s(µ) ln

mH

pvetoT

]

(68)

contained in the hard function H̄ in (19) only gets compensated at N3LL order. For pvetoT =
25GeV and R = 0.2, the exponent approximately equals 17α2

s(µ). Since the NLL band com-
pletely misses this genuine source of large scale dependence, it underestimates the perturbative
uncertainties for small R. To reduce the scale variations of the NNLL band, it is necessary
to perform the resummation at N3LLp order, as we do in the present work. The fact that
the green bands in Figure 8 are narrower than at NNLL order and fall between the NLL and
NNLL bands gives us confidence that at N3LLp order, and for R ≥ 0.4 not too small, one
captures the main corrections and obtains reliable predictions and error estimates.

In order to substantiate this claim, we study the scale variations of the different ingredients
in the factorization formula (18) separately. The top panels in Figure 10 show the residual scale

27

d3(R)

H,Bc,Bc̄

lnR

[Becher Neubert Rothen ’13]



Alternative factorisation
An alternative approach uses SCET-II to resum the 0-jet cross section

New NNLL’ predictions containing exact two-loop dependence of the zero-
jet cross section on           

[Stewart Tackmann Walsh Zuberi ’13]

+

σ0−jet ∼ σ0 × Bc(pt,veto)⊗ Bc̄(pt,veto)⊗H(pt,veto,mH) + σRsub
0 (pt,veto, R)

Factorisation is incomplete: 
clustering of two nearby gluons 
is not exponentiated

lnR

Factorization theorem

• As long as R < ln(mH/pT) ! 1.5, the kT-type algorithm will 
cluster soft and collinear radiation separately.

• Jet veto translates into veto in each individual sector.

J
J J

J J
J

J

H

However k2(µ) vanishes at tree level, and this equation then implies that it is zero to all orders
in perturbation theory, since there is no way to compensate the µ dependence of the coupling
constant.

The outcome of the above considerations is that the logarithm of the product of beam-jet
and soft functions is linear in ln(mH/µ). This result is important for the resummation of
logarithms. It implies that in the case pveto

L = pveto
R = pveto

T the product can be written in the
form

[

Bc(ξ1, p
veto
T , µ)Bc̄(ξ2, p

veto
T µ)S(pveto

T , µ)
]

q2=m2
H

=

(

mH

pveto
T

)−2Fgg(pvetoT ,µ)

B(ξ1, p
veto
T , µ) B(ξ2, p

veto
T , µ) ,

(25)

where for convenience we have absorbed the soft function into the refactorized beam-jet func-
tions B. The mH dependence due to the collinear anomaly is now explicit.

The structure of the anomaly is particularly simple for the jet veto. In previous applications
of the collinear anomaly in the context of transverse-momentum resummation for Drell-Yan
production [26] and jet broadening in e+e− annihilations [27], the anomalous exponents anal-
ogous to Fgg depended on some convolution variables, which were shared with the jet and soft
functions in the factorization theorem. After integration over these variables, the resulting
dependence on the hard scale can be quite complicated (see in particular the discussion in
[28]). In the present case, on the other hand, the anomaly leads to an extra term in the cross
section, which (at fixed pveto

T ) is pure power of mH/pveto
T .

For a final factorization step, we now use that in practice the jet veto is much larger than
the scale ΛQCD governing non-perturbative hadronic effects in QCD. It is thus possible to
calculate the physics associated with pveto

T in perturbation theory, and to relate the beam-jet
functions to conventional parton distribution functions (PDFs) [24, ?]. We write this relation
in the form

B(ξ, pveto
T , µ) =

∑

i=g,q,q̄

∫ 1

ξ

dz

z
Ig←i(z, p

veto
T , µ) φi/P (ξ/z, µ) , (26)

which is valid up to hadronic corrections suppressed by powers of ΛQCD/pveto
T . By means of this

relation, the cross section in (15) can be expressed as a convolution of calculable perturbative
functions Ig←i, which in general depend on the jet algorithm as well as on the jet veto, with
PDFs. The end result for the cross section then takes the form

dσ(pveto
T )

dy
= σ0(µ) C2

t (m
2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2
(

mH

pveto
T

)−2Fgg(pvetoT ,µ)

(27)

×
∑

i,j

∫ 1

ξ1

dz1

z1

∫ 1

ξ2

dz2

z2
Ig←i(z1, p

veto
T , µ) Ig←j(z2, p

veto
T , µ) φi/P (ξ1/z1, µ) φj/P (ξ2/z2, µ) ,

where the sums over i, j extend over all flavors of partons (gluons, quarks, and anti-quarks).
In the above factorization theorem, the dependence on the two disparate scales mH and
pveto

T # mH is completely explicit. Large logarithms of their ratio can be resummed by
choosing the factorization scale around the jet veto, µ ∼ pveto

T . With such a choice, the
functions Fgg and Ig←i have well-behaved perturbative expansions free of large logarithms.

8

σ(pveto
T ) ∝

ξ1,2 =
mH√

s
e±yH(longitudinal momentum:                       ) 



Conclusions
We have three  equivalent NNLL resummations for the Higgs cross section 
with zero jets

Banfi-Monni-Salam-Zanderighi: QCD resummation, publicly available in the 
code JetVHeto

Becher-Neubert: all-order factorisation formula in SCET

Stewart-Tackmann-Walsh-Zuberi: SCET-II, no all-order factorisation

New version of JetVHeto contains top and bottom mass effects

BN and STWZ have improved predictions containing some NNNLL terms

There are two new cases for resummation

Logarithmically enhanced mass effects 

Large         corrections induced by small jet radius 

http://jetvheto.hepforge.org/

lnR

ln(pt,jet/mb)
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Comparison to NNL
We present results for the jet-veto efficiency 

No significant reduction of uncertainties from NLL to NNLL

Large NNLL corrections induced by the small jet radius

�(pt,veto) = σ0−jet(pt,veto)/σtot
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Real life issues
We present results for the jet-veto efficiency 

Finite rapidity, hadronisation and underlying event effects are negligible in 
the region of interest at the LHC

�(pt,veto) = σ0−jet(pt,veto)/σtot
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Comparing NNLLp with JetVHeto
The NNLLp+NNLO results have been compared to the output of JetVHeto

Matching scheme (a) is the reference scheme used by BMSZ to obtain 
central value and scale uncertainties

NNLLp+NNLO does not agree with reference scheme (a)

Note however: NNLLp is expected to give a lower efficiency than NNLL
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Figure 12: Comparison of our result for the jet-veto efficiency (green) to the results of BMSZ
(purple) obtained in the three different matching schemes used in [12].

can either first expand the numerator and the denominator in the formula for ε(pvetoT ) and then
take their ratio (default scheme (a)), expand ε(pvetoT ) itself (scheme (c)), or consider 1− ε(pvetoT )
and separately expand numerator and denominator for this quantity (scheme (b)). The purple
bands in Figure 12 show the scale uncertainty of the BMSZ results, which they obtain by first
varying µf and µr by a factor 2 about the default value mH/2, while keeping 1/2 < µf/µr < 2
and the resummation scale Q at its default value, and then varying the resummation scale Q,
while keeping µf and µr fixed at their default values. The bands shown in the figure are the
envelope of these variations.

The difference between the three matching schemes shown in Figure 12 is not negligible.
Since the fixed-order corrections to both σtot and σ(pvetoT ) are large, the different ways of defin-
ing the efficiency ε(pvetoT ) lead to fairly different results, despite the fact that this difference is
formally of O(α3

s). Note that only the virtual part of the corrections cancel in the efficiency
ε(pvetoT ), since the real-emission corrections to the two cross sections are obviously quite dif-
ferent. The virtual corrections encoded in CS(−m2

H , µ) are indeed responsible for the bad
perturbative behavior of the cross section, and they can be avoided by choosing a time-like
value µ2 = −m2

H for the matching scale [23, 45], as we do in our analysis. By now the virtual
corrections to Higgs production are known to three-loop accuracy [46–48], and the result con-
firms that the higher-order corrections to |CS(−m2

H , µ)|2 are negligibly small for a time-like
scale choice. Even for the standard choice µ2 = +m2

H , the three-loop corrections are only
about 4%. The part which suffers from these large corrections is thus known very precisely,
with sub-percent accuracy. The uncertainty on the fixed-order total cross section is larger, of
order 10%, because the real-emission corrections are not as well known as the virtual part.
Dividing by the total cross section therefore increases the uncertainty on the prediction and
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