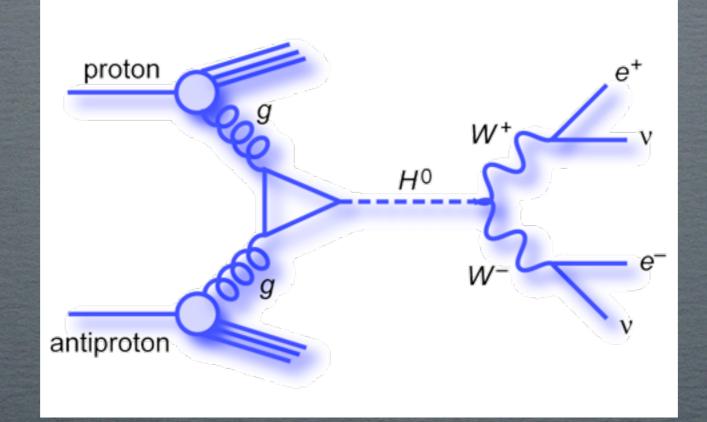
HIGGS PRODUCTION WITH A JET VETO (INCLUDING MASS EFFECTS)

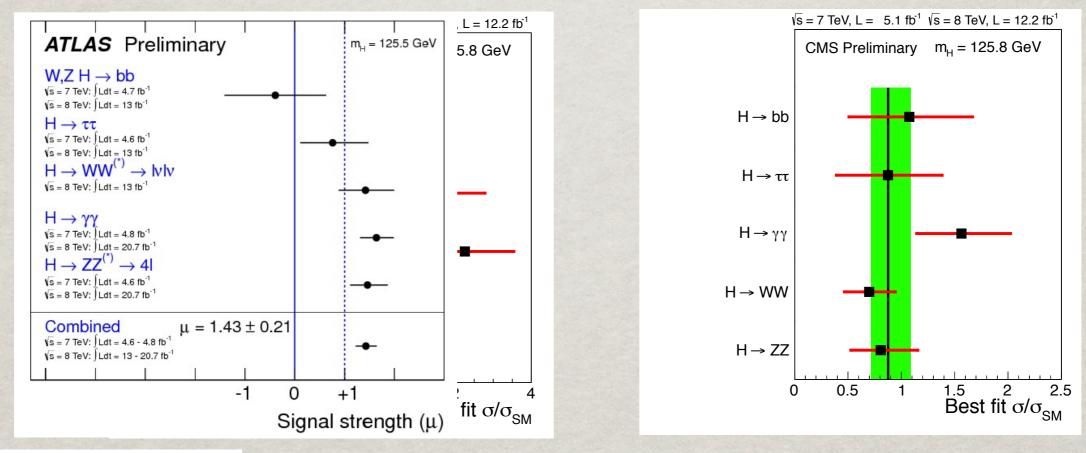


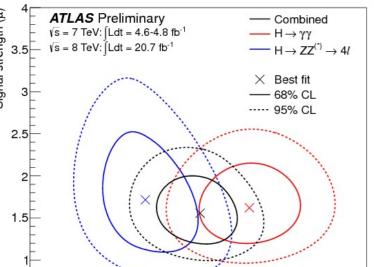
ANDREA BANFI University of Sussex

RESUMMATION AND PARTON SHOWERS - IPPP DURHAM

HIGGS CHARACTERISATION

 Precision calculations are required to establish the nature of the125-GeV Higgs boson recently found at the LHC

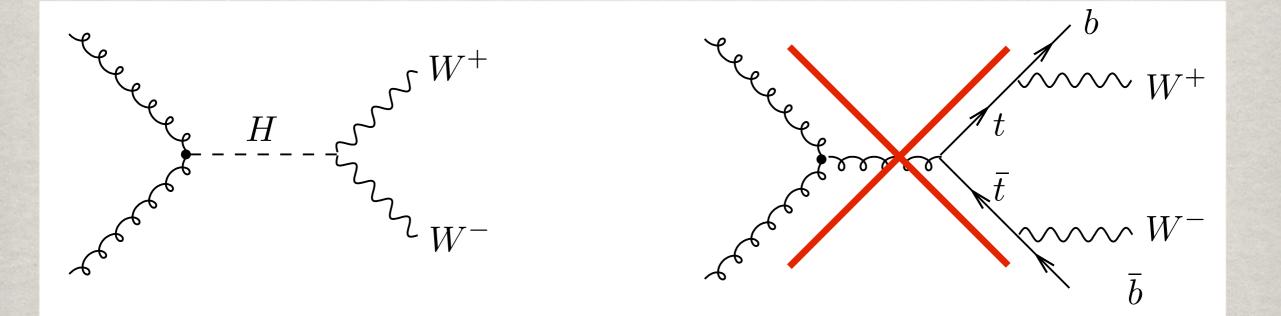




culations describing accurately the experimental setup for ay channel are needed

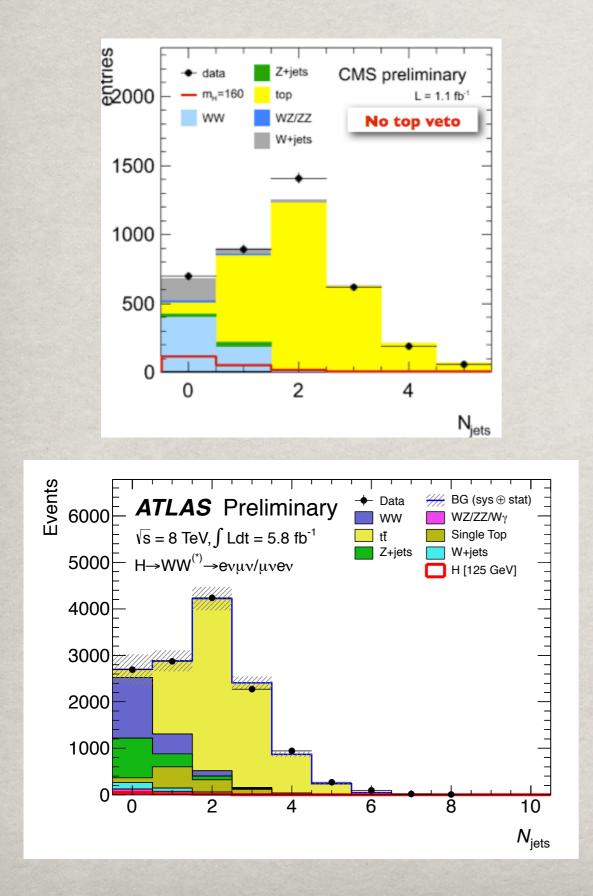
WW CHANNEL: JET-VETO NEEDED

Higgs decaying into WW suffers from a huge background from top-antitop production

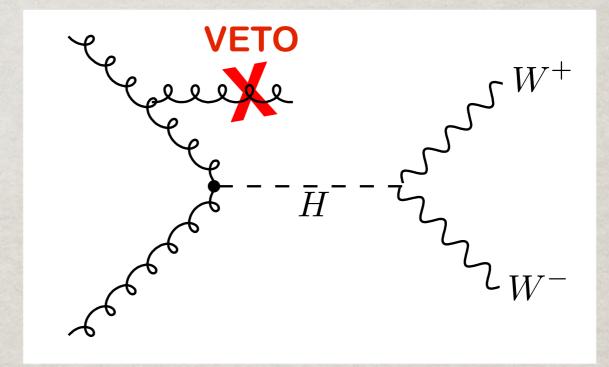


Solution Each top quark decays into a b-jet \Rightarrow veto events with jets in the final state

THE ZERO-JET CROSS SECTION



We require that there are no jets with transverse momentum larger than $p_{t,veto}$



This works well: the zero-jet cross section σ_{0-jet} is least contaminated by huge (yellow) top-antitop background

ALL-ORDER O-JET CROSS SECTION

The 0-jet cross section contains logarithms that become large when $p_{\rm t,veto} \ll m_H$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

ALL-ORDER O-JET CROSS SECTION

• The 0-jet cross section contains logarithms that become large when $p_{\rm t,veto} \ll m_H$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

• Finiteness of $\sigma_{0-\rm jet}$ is recovered after resummation of large logarithms \Rightarrow reorganisation of the PT series for $\alpha_s L \sim 1$

$$\sigma_{0-\text{jet}} \sim \sigma_0 \exp\left[\underbrace{Lg_1(\alpha_s L)}_{\text{LL}} + \underbrace{g_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s g_3(\alpha_s L)}_{\text{NNLL}} + \dots\right]$$

ALL-ORDER O-JET CROSS SECTION

• The 0-jet cross section contains logarithms that become large when $p_{\rm t,veto} \ll m_H$

$$\sigma_{0-\text{jet}} \simeq \sigma_0 \left(1 - 2C_A \frac{\alpha_s(m_H)}{\pi} \ln^2 \frac{m_H}{p_{\text{t,veto}}} + \dots \right)$$

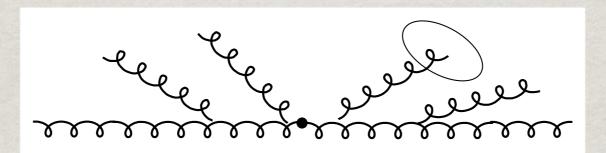
• Finiteness of $\sigma_{0-\rm jet}$ is recovered after resummation of large logarithms \Rightarrow reorganisation of the PT series for $\alpha_s L \sim 1$

$$\sigma_{0-\text{jet}} \sim \sigma_0 e \underbrace{Lg_1(\alpha_s L)}_{\text{LL}} \times \left(\underbrace{\begin{array}{ccc} 1 & + & \alpha_s & + \dots \\ G_2(\alpha_s L) + & \alpha_s G_3(\alpha_s L) \\ NLL & NNLL \end{array}}_{\text{NNLL}} + \underbrace{\begin{array}{ccc} 1 & + & \alpha_s & + \dots \\ G_2(\alpha_s L) + & \alpha_s G_3(\alpha_s L) \\ NNLL & NNLL \end{array}}_{\text{NNLL}} \right)$$

NLL RESUMMATION

In NLL resummation can be obtained automatically with CAESAR, the Computer Automated Expert Semi-Analytical Resummer

[AB Salam Zanderighi '03]

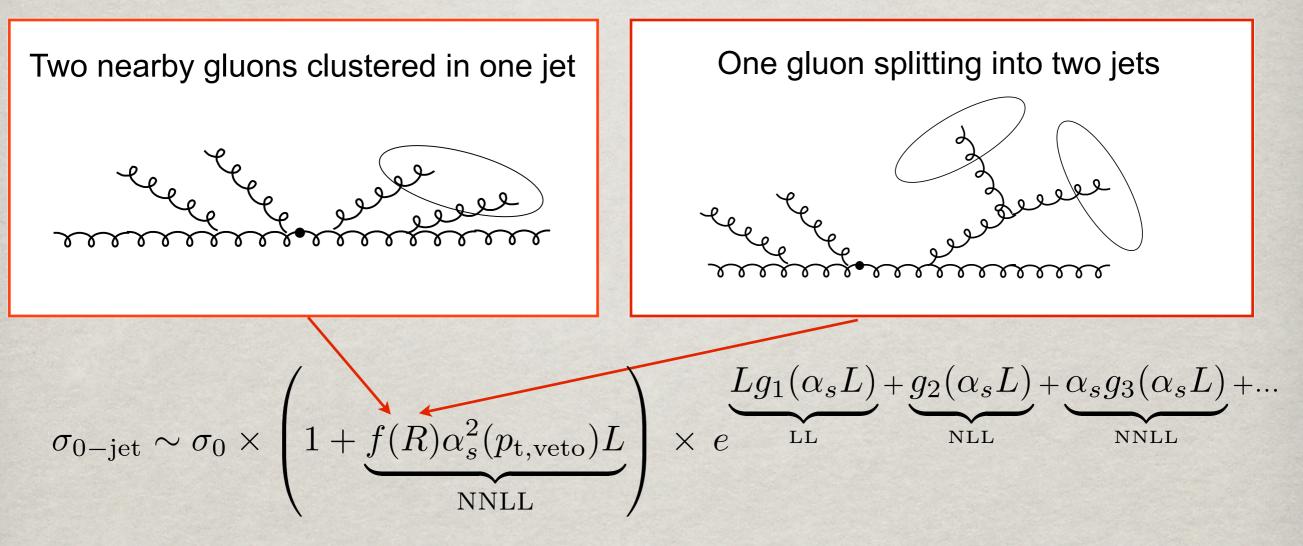


- At NLL accuracy, relevant soft and collinear emissions are widely separated in rapidity ⇒ no recombinations can occur
 [AB Salam Zanderighi '12]
- No jets = no gluons $\Rightarrow \sigma_{0-jet}$ is just a Sudakov form factor

$$\sigma_{0-\text{jet}} \sim \sigma_0 \; e^{\frac{Lg_1(\alpha_s L)}{\text{LL}} + \underbrace{g_2(\alpha_s L)}_{\text{NLL}}}$$

NNLL RESUMMATION

 At NNLL, we have extra contributions from gluon emission ⇒ non trivial dependence on the jet radius
 [AB Monni Salam Zanderighi '12]



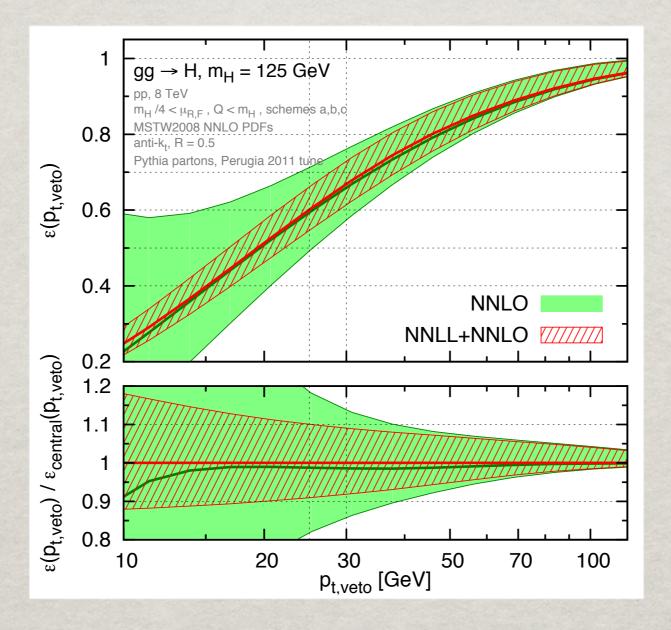
• NNLL Sudakov exponent taken from Higgs p_t distribution

[Catani et al. '06, Becher Neubert '11]

- Correction f(R) from real radiation only \Rightarrow computed with a Monte Carlo [AB Salam Zanderighi '12]
- Note: $f(R) \sim \ln R$ due to collinear singularity in gluon splitting

COMPARISON TO NNLO

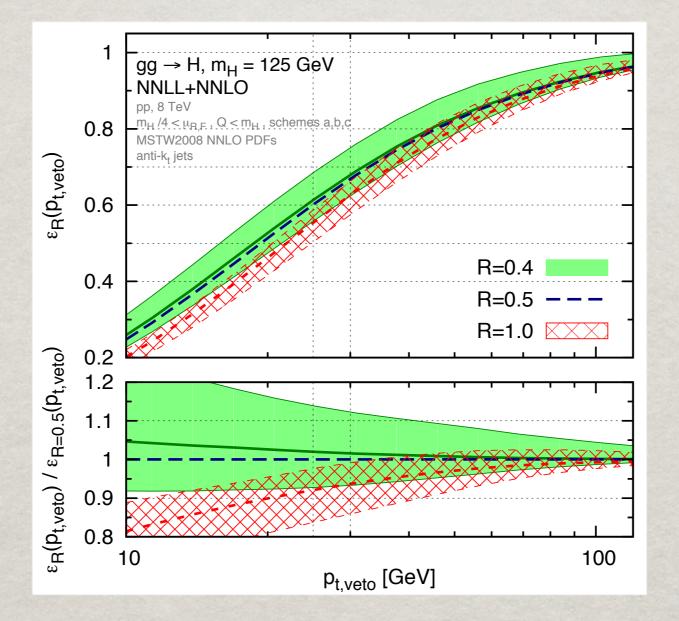
• We present results for the jet-veto efficiency $\epsilon(p_{t,veto}) = \sigma_{0-jet}(p_{t,veto})/\sigma_{tot}$



- Central values of NNLO and NNLL+NNLO are in good agreement
- Resummation reduces uncertainties by a factor two with respect to NNLO

EFFECT OF JET RADIUS

• We present results for the jet-veto efficiency $\epsilon(p_{t,veto}) = \sigma_{0-jet}(p_{t,veto})/\sigma_{tot}$

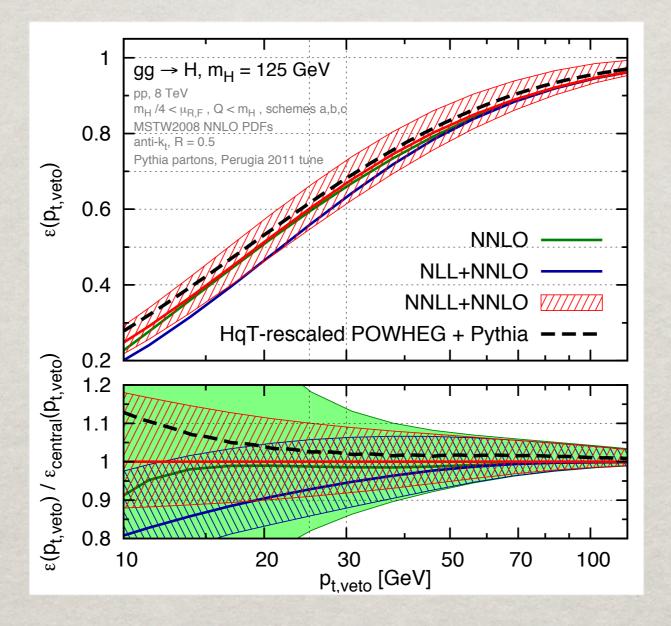


A larger jet-radius gives smaller theoretical uncertainties

• Note: larger jet-radius \Rightarrow more contamination from underlying event

COMPARISON TO MONTE CARLO

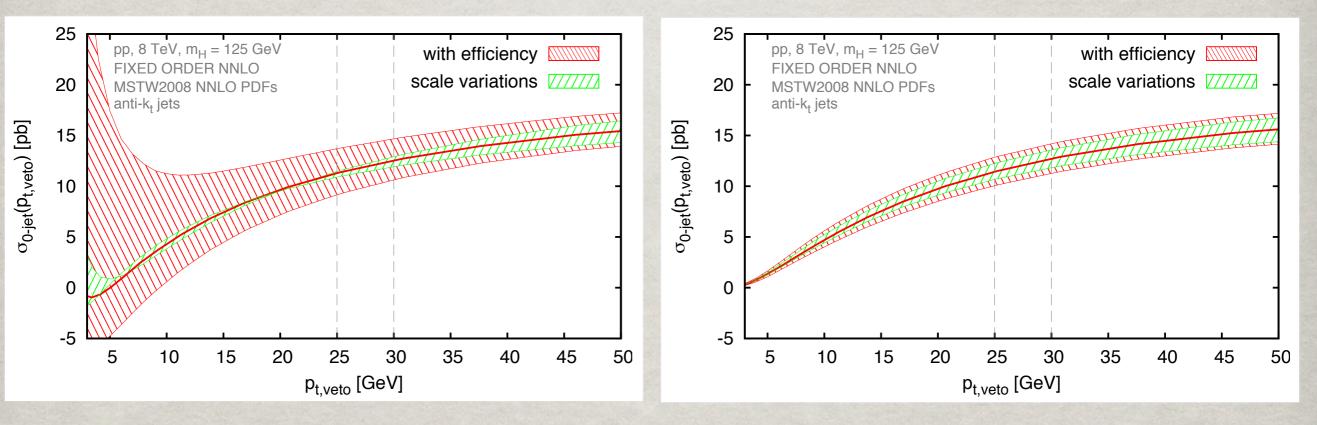
• We present results for the jet-veto efficiency $\epsilon(p_{t,veto}) = \sigma_{0-jet}(p_{t,veto})/\sigma_{tot}$



Central value agrees with POWHEG+PYTHIA (rescaled so as to agree with Higgs NNLL+NNLO transverse momentum distribution)

UNCERTAINTIES IN THE O-JET BIN

- We have developed a new uncertainty method for $\sigma_{0-jet} = \epsilon \sigma_{tot}$, treating the efficiency ϵ and the total cross section σ_{tot} as uncorrelated
- The efficiency method makes full use of resummed results, as opposed to the currently used Stewart-Tackmann method, which is tied to fixed order



- At NNLO, in the region $p_{t,veto} \ll m_H$, the efficiency method gives a much larger error than scale variations, which vanish spuriously
- Adding NNLL, uncertainty for $p_{t,veto} = 25 30 \,\text{GeV}$ reduces to 11%

JET-VETO RESUMMATION: OUTLOOK

- The code JetVHeto to perform the resummation and matching to NNLO is available at <u>http://jetvheto.hepforge.org/</u>
- Our results have been independently confirmed by two different groups in the framework of Soft-Collinear Effective Theory (SCET)
 [Becher Neubert '12, Becher Neubert Rothen '13, Stewart Tackmann Walsh Zuberi '13]

Recent improvements:

Effect of top and bottom masses in loops

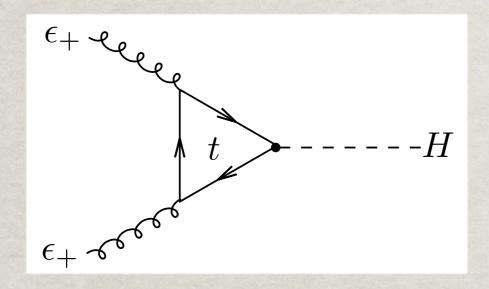
[AB Monni Zanderighi, in preparation]

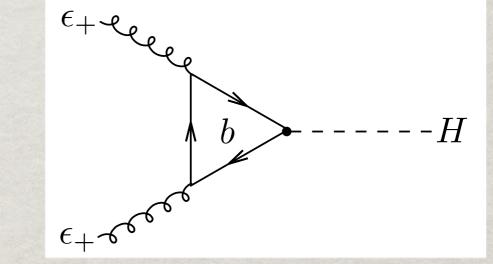
Calculations beyond NNLL accuracy

[Becher Neubert Rothen '13, Stewart Tackmann Walsh Zuberi '13]

FINITE-MASS EFFECTS IN LOOPS

- The predictions presented so far were computed in the limit $m_t \to \infty$
- For finite masses, top and bottom loops have different behaviours





Top loop: $m_H \ll m_t$

The amplitude M_{++} has a well-behaved expansion in powers of (m_H/m_t)

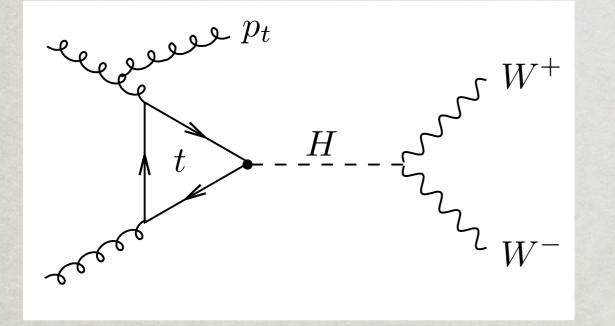
Bottom loop: $m_b \ll m_H$

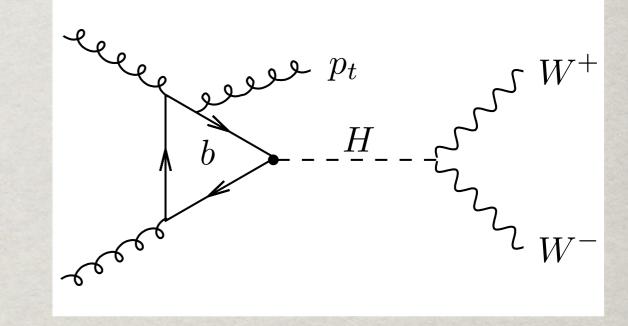
$$M_{++} \sim \left(\frac{m_b}{m_H}\right) \ln^2 \left(\frac{m_b^2}{m_H^2}\right)$$

The loop momentum becomes soft giving the usual double-log

MASSES AND SOFT FACTORISATION

• Top and bottom loops have also different behaviours with respect to factorisation of soft emissions in the region $p_{t,veto} = 25 - 30 \,\text{GeV}$





Top loop: $p_t \ll m_H \ll m_t$

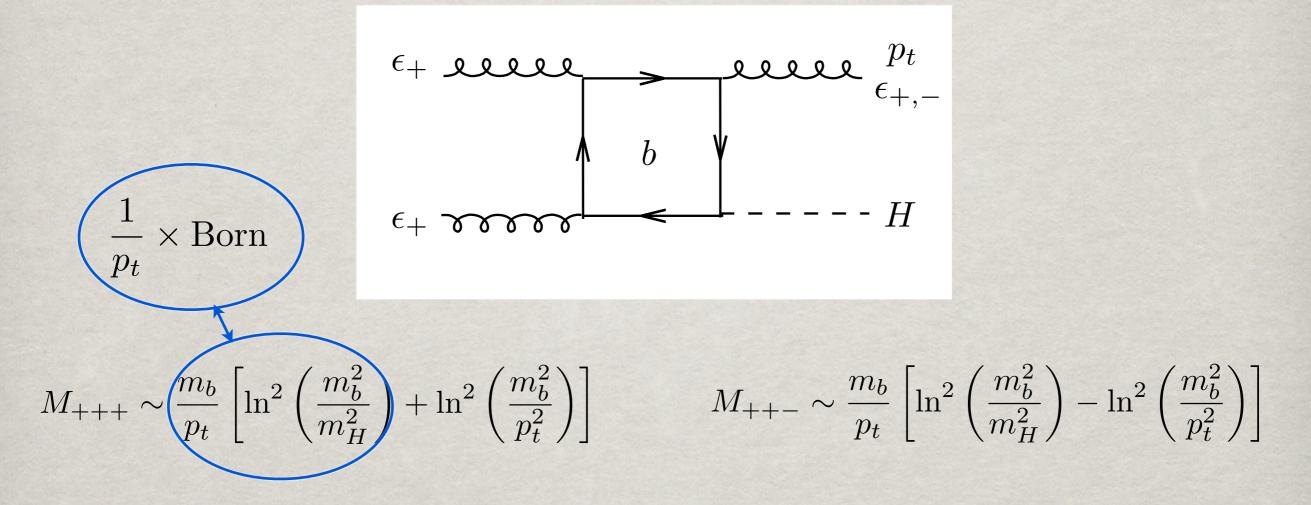
Soft gluons cannot resolve the top loop \Rightarrow factorisation OK

Bottom loop: $m_b \ll p_t \ll m_H$

Soft gluons can resolve a bottom loop \Rightarrow factorisation breaking?

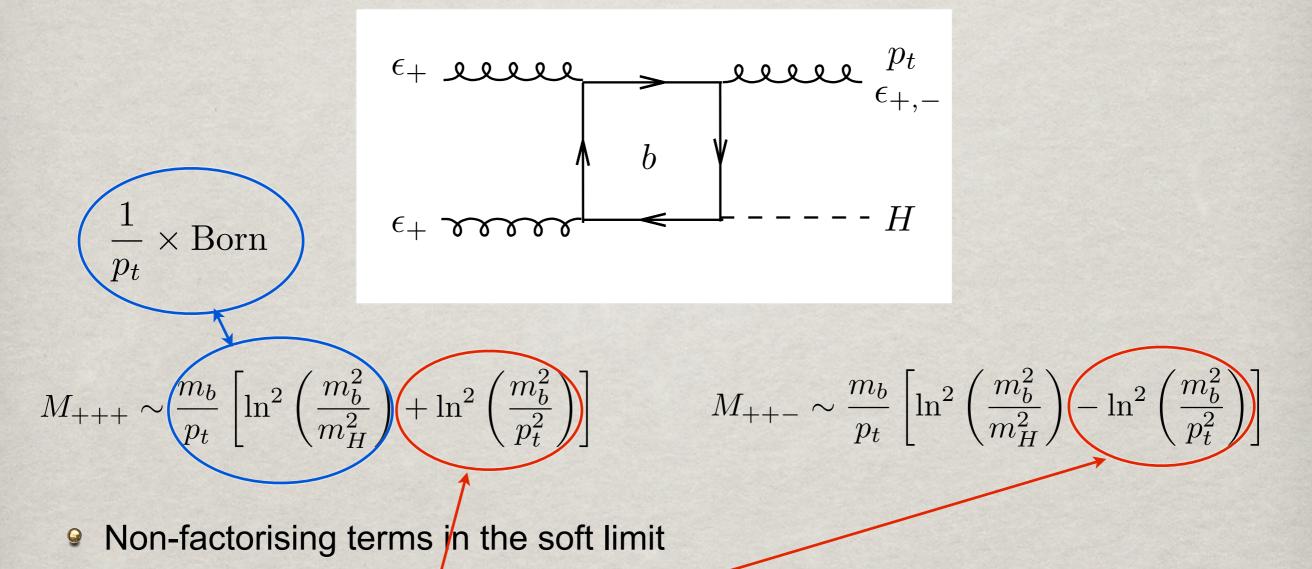
NON-FACTORISING CORRECTIONS (I)

Emission of a soft gluon does not factorise from the lowest order amplitude [for the amplitude see Baur Glover '90]



NON-FACTORISING CORRECTIONS (I)

Emission of a soft gluon does not factorise from the lowest order amplitude [for the amplitude see Baur Glover '90]

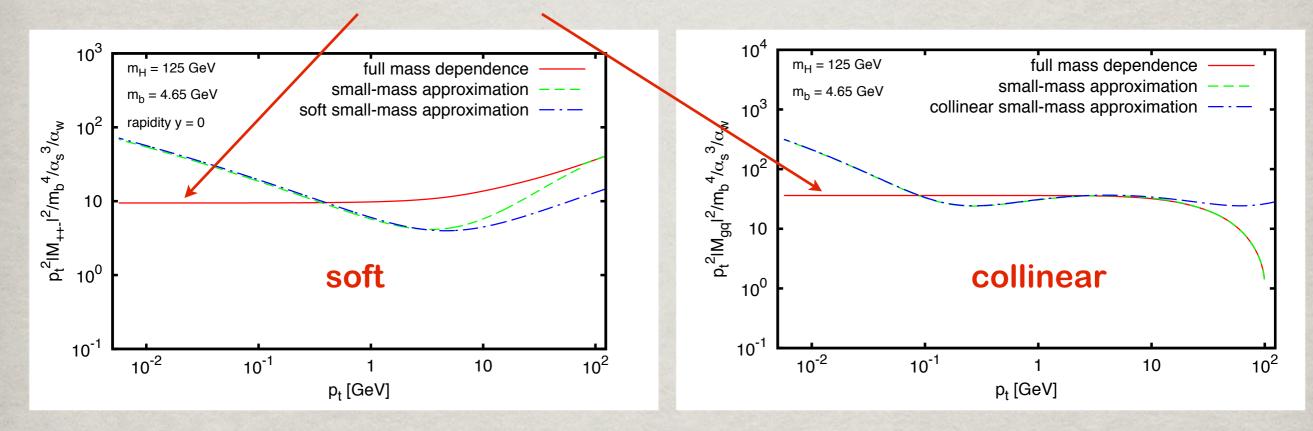


- depend on the helicity of the soft gluon
- have opposite signs \Rightarrow cancel in interference with the top loop
- Note: non-factorising terms arise also in the hard collinear limit

[see also Grazzini Sargsyan '13]

NON-FACTORISING CORRECTIONS (II)

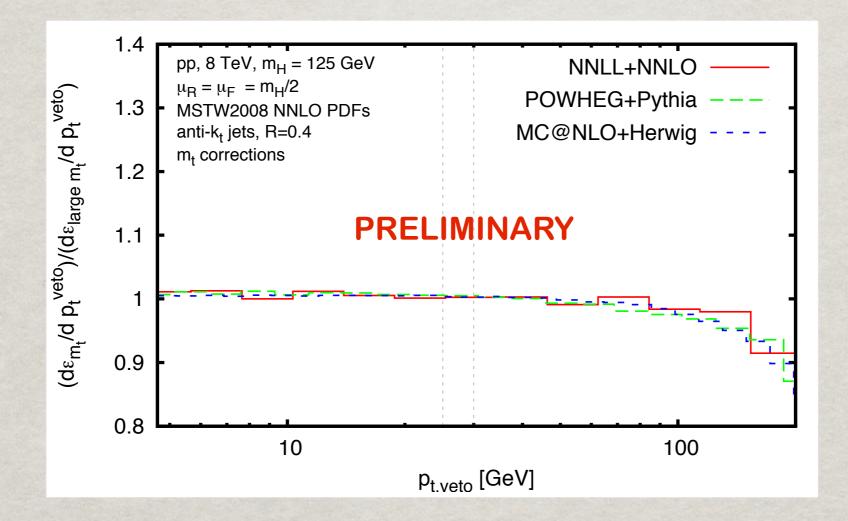
• We investigate the impact of non-factorising corrections by studying $p_t^2 |M|^2$ (constant behaviour = factorisation)



- The region in which $\ln^2(p_t/m_b)$ dominate never overlaps with the soft region, and hardly with the collinear region
- We then consider non-factorising corrections as a remainder, vanishing smoothly for $p_{t,veto} \rightarrow 0 \Rightarrow$ automatically implemented through matching

COMPARISON TO MC: TOP

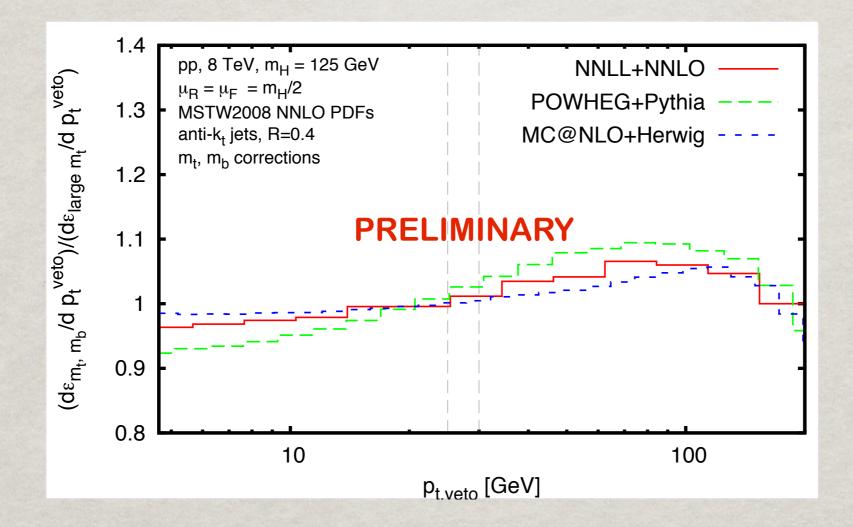
 ${\bf \Theta}$ We consider the ratio of $d\epsilon/dp_t$ over its limit for $m_t \to \infty$



 Finite-m_t corrections: excellent agreement between resummation and Monte Carlo

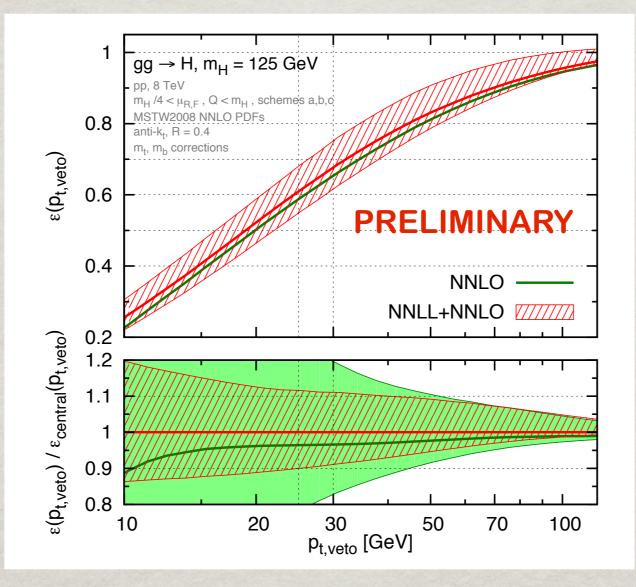
COMPARISON TO MC: BOTTOM

• We consider the ratio of $d\epsilon/dp_t$ over its limit for $m_t \to \infty$



- Finite-m_b corrections: different implementations of mass corrections lead to differences up to 5%
- POWHEG overestimates finite-mass effects, whereas MC@NLO tends to underestimate them

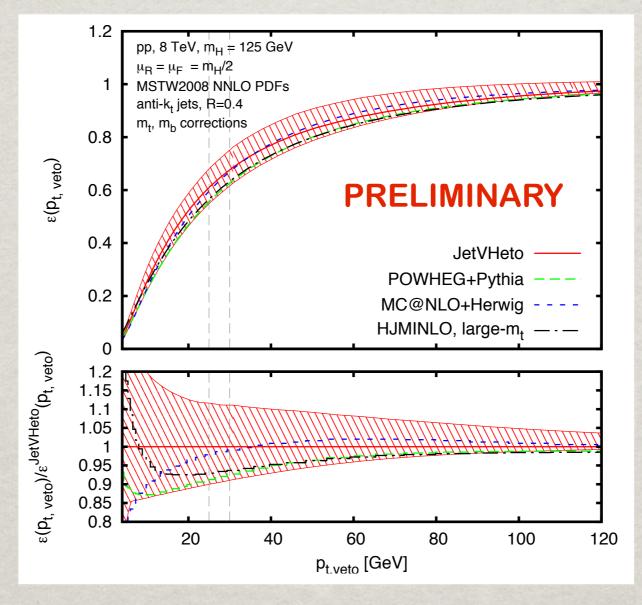
RESULTS FOR THE EFFICIENCY



- Larger discrepancy between central values of NNLO and NNLL+NNLO with respect to $m_t \rightarrow \infty$ case
- Larger uncertainty in the efficiency \Rightarrow error on σ_{0-jet} around 13-14%
- Is there a case for resummation of $\ln(p_{t,veto}/m_b)$ at all orders?

COMPARISON TO MONTE CARLO

We compare the jet-veto efficiency to different Monte Carlo predictions



- All Monte Carlo results are within resummation uncertainty band
- In the region $p_{t,veto} = 25 30 \,\text{GeV}$ NNLL+NNLO results are in better agreement with MC@NLO

ALL-ORDER FACTORISATION

 Very recently, an all-order factorisation formula in SCET has been proposed for the zero-jet cross section [Becher Neubert '12, Becher Neubert Rothen '13]

$$\sigma_{0-\text{jet}} \sim \mathcal{P}_{ac} \mathcal{B}_{c}(p_{t,\text{veto}}) \mathcal{B}_{\bar{c}}(p_{t,\text{veto}}) \mathcal{B}_{\bar{c}}(p_{t,\text{veto}}, m_{H})$$

However $k_2(\mu)$ vanishes at tree level, and this equation then implies that it is zero in perturbation theory, since there is no way to compensate the μ dependence of t constant. • As long as $R < \ln(m_{\rm H}/p_{\rm T}) \approx 1.5$, the $k_{\rm T}$ -type algorithm will

The outcome of steres of and collinear in $\ln (p_{HV})$ and soft functions is linear in $\ln (p_{HV})$ is important for the result is important for the result of the product of the product

 $\sigma(p_T^{\text{veto}}) \propto \left[\mathcal{B}_c(\xi_1, p_T^{\text{veto}}, \mu) \, \mathcal{B}_{\bar{c}}(\xi_2, p_T^{\text{veto}} \mu) \, \mathcal{S}(p_T^{\text{veto}}, \mu) \right]_{q^2 = m_H^2}$

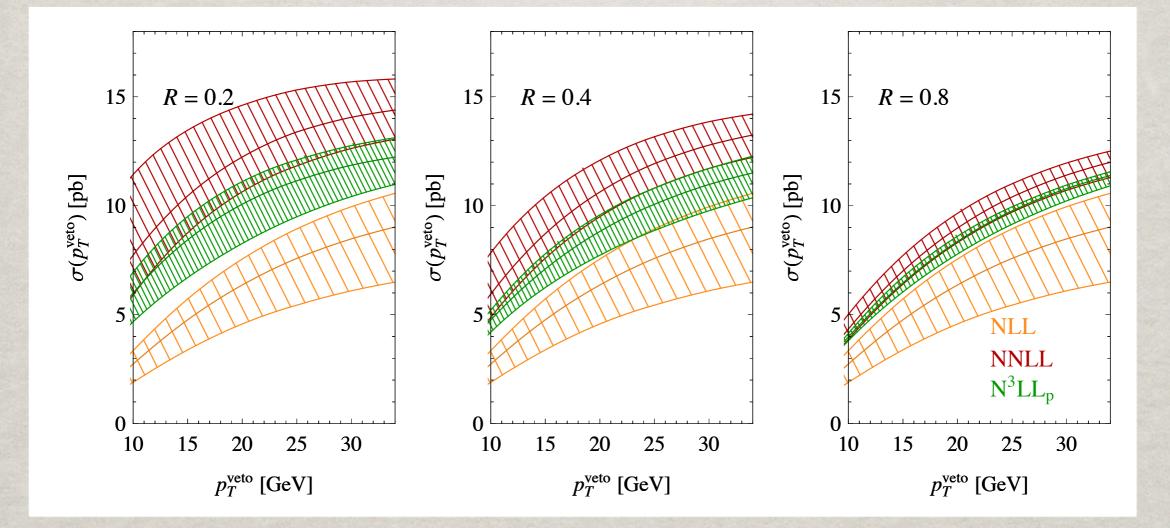
• Jet-clustering effects are part of $\underline{a}_{2} \underbrace{so_{gg}}_{gg} \underbrace{called}_{p_{T}}^{*} \underbrace{collinear anomaly}_{m_{H}}^{*} and are shown to exponentiate <math>\left(\frac{m_{H}}{p_{T}^{\text{veto}}}\right)^{*} \underbrace{B}_{gg} \underbrace{called}_{p_{T}}^{*} \underbrace{collinear}_{p_{T}}^{*} \underbrace{anomaly}_{m_{H}}^{*} B(\xi_{2}, p_{T}^{\text{veto}}, \mu) B(\xi_{2}, p_{T}^{\text{veto}}, \mu),$

THE NNLLP APPROXIMATION

NNLLp predictions include terms beyond NNLL

[Becher Neubert Rothen '13]

- Solution Numerical estimate of hard and beam functions $\mathcal{H}, \mathcal{B}_c, \mathcal{B}_{\bar{c}}$ at two loops
- Solution Estimate of the size of the three-loop collinear anomaly $d_3(R)$

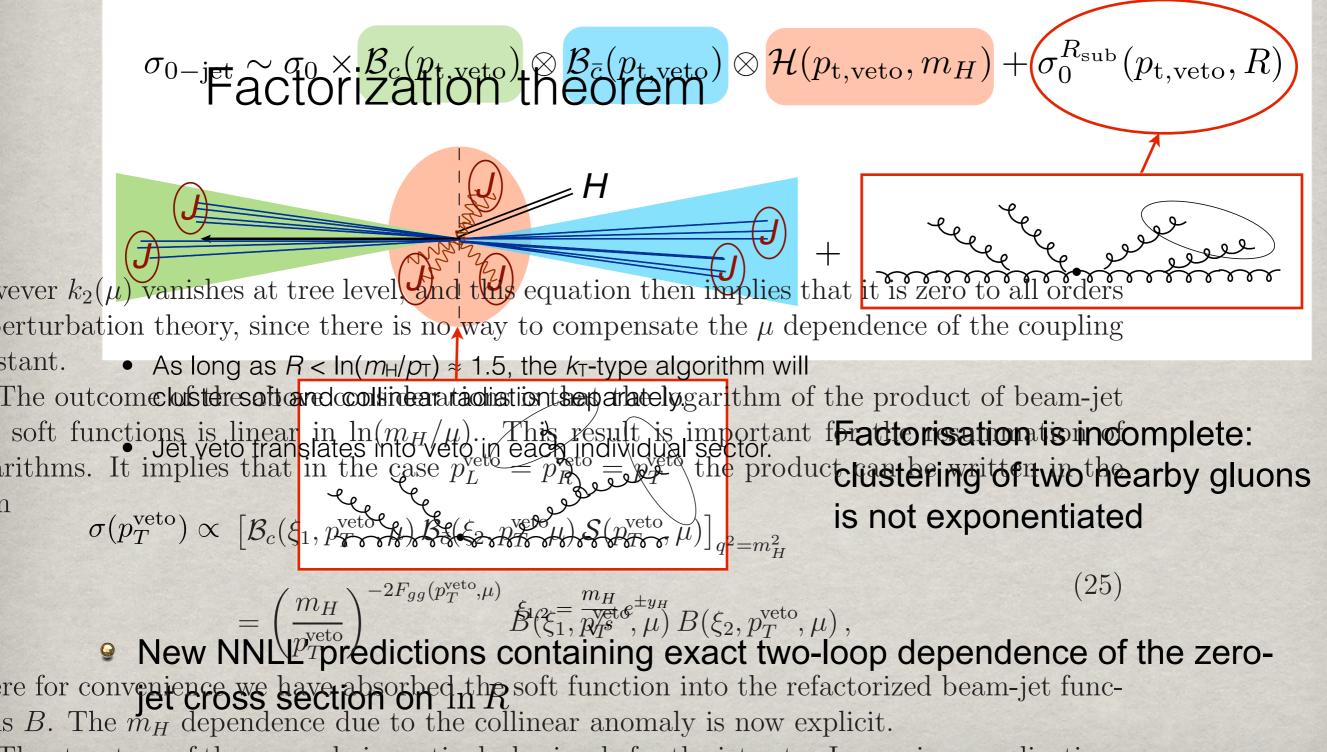


• At small radius, large $\ln R$ corrections spoil the convergence even of resummed predictions at high logarithmic accuracy

ALTERNATIVE FACTORISATION

An alternative approach uses SCET-II to resum the 0-jet cross section

[Stewart Tackmann Walsh Zuberi '13]



The structure of the anomaly is particularly simple for the jet veto. In previous applications

CONCLUSIONS

- We have three equivalent NNLL resummations for the Higgs cross section with zero jets
 - Banfi-Monni-Salam-Zanderighi: QCD resummation, publicly available in the code JetVHeto <u>http://jetvheto.hepforge.org/</u>
 - Becher-Neubert: all-order factorisation formula in SCET
 - Stewart-Tackmann-Walsh-Zuberi: SCET-II, no all-order factorisation
- New version of JetVHeto contains top and bottom mass effects
- BN and STWZ have improved predictions containing some NNNLL terms
- There are two new cases for resummation
 - Solution Logarithmically enhanced mass effects $\ln(p_{t,jet}/m_b)$
 - Large $\ln R$ corrections induced by small jet radius

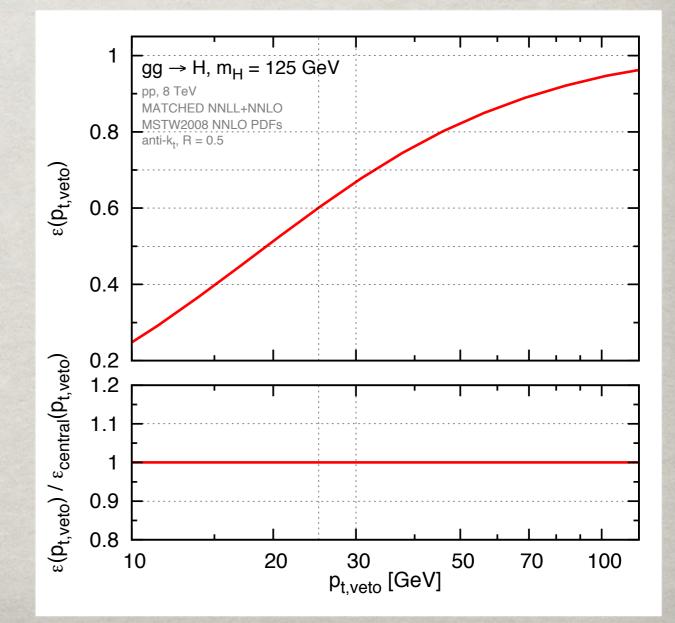
CONCLUSIONS

- We have three equivalent NNLL resummations for the Higgs cross section with zero jets
 - Banfi-Monni-Salam-Zanderighi: QCD resummation, publicly available in the code JetVHeto <u>http://jetvheto.hepforge.org/</u>
 - Becher-Neubert: all-order factorisation formula in SCET
 - Stewart-Tackmann-Walsh-Zuberi: SCET-II, no all-order factorisation
- New version of JetVHeto contains top and bottom mass effects
- BN and STWZ have improved predictions containing some NNNLL terms
- There are two new cases for resummation
 - Solution Logarithmically enhanced mass effects $\ln(p_{t,jet}/m_b)$
 - Large $\ln R$ corrections induced by small jet radius

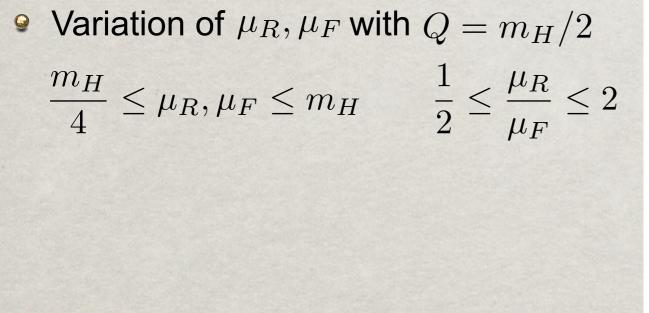
Thank you for your attention!

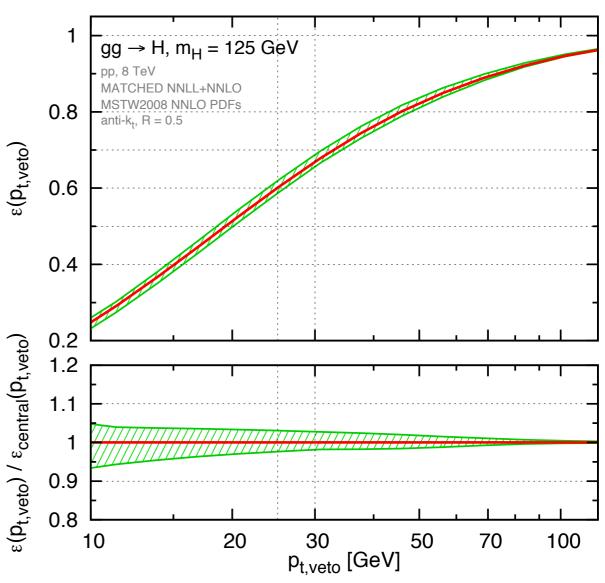
- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c)
 [AB Monni Salam Za]
 - [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$

Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$



- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c)
 [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ *Q* is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$



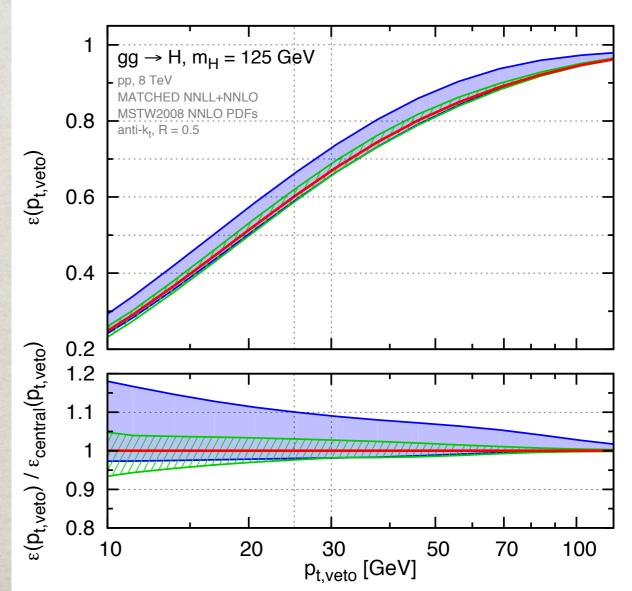


- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c)
 [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ *Q* is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

• Variation of
$$\mu_R$$
, μ_F with $Q = m_H/2$
 $\frac{m_H}{4} \le \mu_R$, $\mu_F \le m_H$ $\frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2$

• Variation of Q with $\mu_R, \mu_F = m_H/2$

$$\frac{m_H}{4} \le Q \le m_H$$



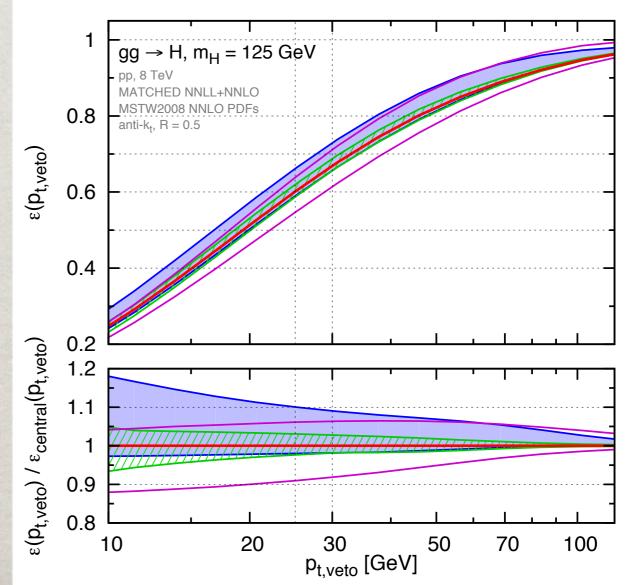
- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c)
 [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

• Variation of
$$\mu_R$$
, μ_F with $Q = m_H/2$
 $\frac{m_H}{4} \le \mu_R$, $\mu_F \le m_H$ $\frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2$

• Variation of Q with $\mu_R, \mu_F = m_H/2$

$$\frac{m_H}{4} \le Q \le m_H$$

Schemes (b) and (c) with $\mu_R = \mu_F = Q = m_H/2$



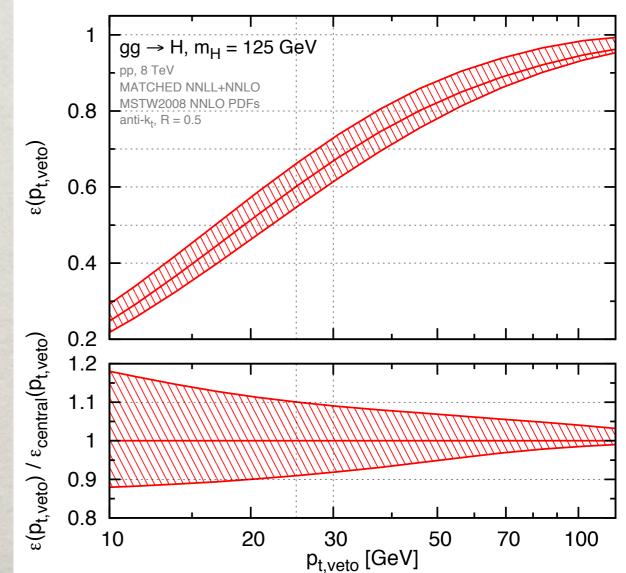
- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c) [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

• Variation of
$$\mu_R$$
, μ_F with $Q = m_H/2$
 $\frac{m_H}{4} \le \mu_R$, $\mu_F \le m_H$ $\frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2$

• Variation of Q with $\mu_R, \mu_F = m_H/2$

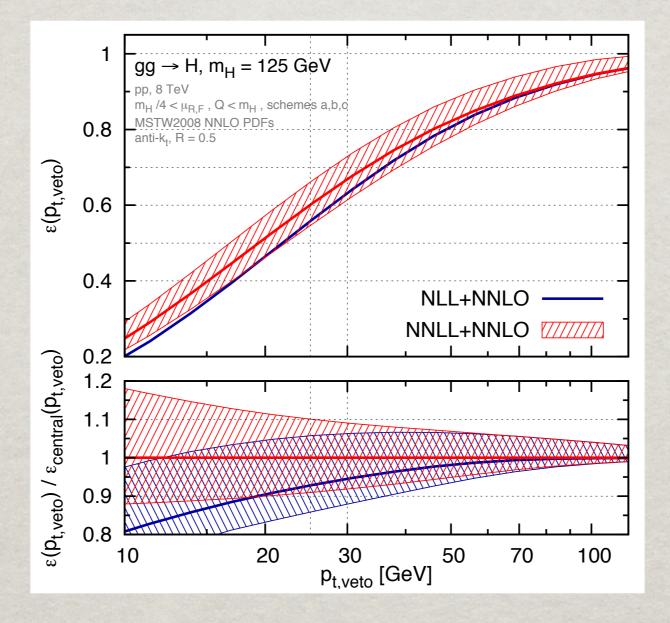
$$\frac{m_H}{4} \le Q \le m_H$$

- Schemes (b) and (c) with $\mu_R = \mu_F = Q = m_H/2$
- Total uncertainty: envelope



COMPARISON TO NNL

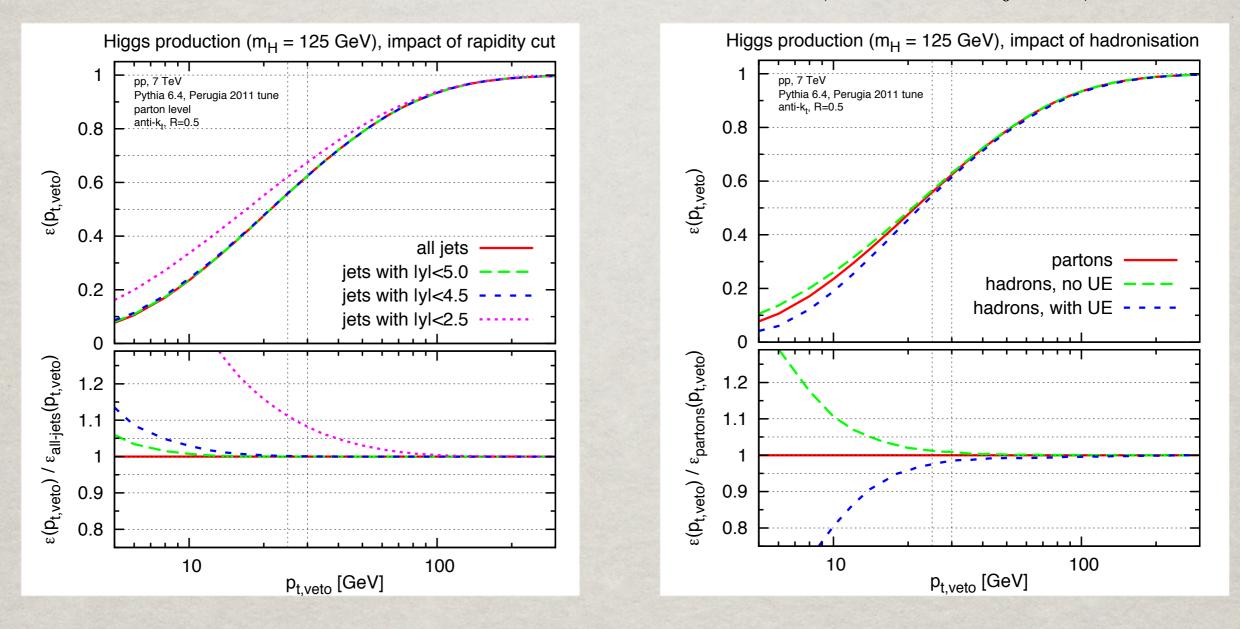
• We present results for the jet-veto efficiency $\epsilon(p_{t,veto}) = \sigma_{0-jet}(p_{t,veto})/\sigma_{tot}$



- No significant reduction of uncertainties from NLL to NNLL
- Large NNLL corrections induced by the small jet radius

REAL LIFE ISSUES

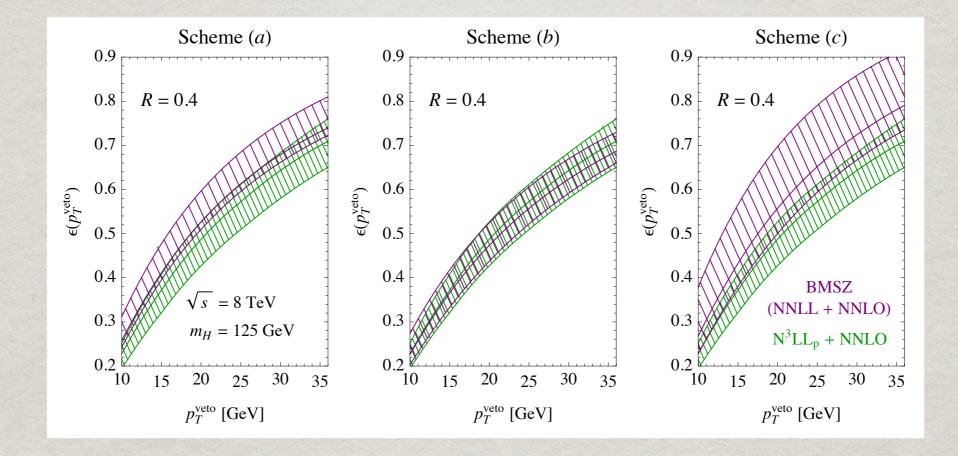
• We present results for the jet-veto efficiency $\epsilon(p_{t,veto}) = \sigma_{0-jet}(p_{t,veto})/\sigma_{tot}$



• Finite rapidity, hadronisation and underlying event effects are negligible in the region of interest at the LHC $p_{\rm t,veto} \simeq 25 - 30 \, {\rm GeV}$

COMPARING NNLLP WITH JETVHETO

The NNLLp+NNLO results have been compared to the output of JetVHeto



- Matching scheme (a) is the reference scheme used by BMSZ to obtain central value and scale uncertainties
- NNLLp+NNLO does not agree with reference scheme (a)
- Note however: NNLLp is expected to give a lower efficiency than NNLL