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¢ Precision calculations are required to establish the nature of the125-GeV
Higgs boson recently found at the LHC
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¢ In particular, calculations describing accurately the experimental setup for
each Higgs decay channel are needed



¢ Higgs decaying into WW suffers from a huge background from top-antitop
production

¢ Each top quark decays into a b-jet = veto events with jets in the final state



THE ZERO-JET CROSS SECTION
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We require that there are no jets with
transverse momentum larger than Pt,veto

VETO

This works well: the zero-jet cross
section 0p_jet Is least contaminated by
huge (yellow) top-antitop background



¢ The 0-jet cross section contains logarithms that become large when
Pt ,veto <My

00—jet = 00 <1 s QCA &S(mH) 1112 ol et )
T pt,veto



¢ The 0-jet cross section contains logarithms that become large when
Pt ,veto <My

00—jet = 00 (1 s QCA&S(mH) 1I12 ol et )

T pt,veto

¢ Finiteness of og_jet is recovered after resummation of large logarithms =
reorganisation of the PT series for agL ~ 1
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¢ The 0-jet cross section contains logarithms that become large when
Pt ,veto <My

00—jet = 00 <1 s QCA &S(mH) 1112 ol et )
T pt,veto

¢ Finiteness of og_jet is recovered after resummation of large logarithms =
reorganisation of the PT series for agL ~ 1
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¢ NLL resummation can be obtained automatically with CAESAR, the

Computer Automated Expert Semi-Analytical Resummer
[AB Salam Zanderighi '03]
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¢ At NLL accuracy, relevant soft and collinear emissions are widely separated
In rapidity = no recombinations can occur [AB Salam Zanderighi *12]

¢ No jets = no gluons = 0Jo—jet is just a Sudakov form factor

Lgi(asL) + g2 (s L)
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¢ At NNLL, we have extra contributions from gluon emission = non trivial
dependence on the jet radius [AB Monni Salam Zanderighi "12]

Two nearby gluons clustered in one jet One gluon splitting into two jets
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¢ NNLL Sudakov exponent taken from Higgs p: distribution
[Catani et al. ‘06, Becher Neubert "11]

@ Correction f(R) from real radiation only=-computed with a Monte Carlo
[AB Salam Zanderighi '12]

¢ Note: f(R) ~ In R due to collinear singularity in gluon splitting



@ We present results for the jet-veto efficiency ¢(p; veto) = T0_jet (Pt.veto)/Ttot
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¢ Central values of NNLO and NNLL+NNLO are in good agreement

¢ Resummation reduces uncertainties by a factor two with respect to NNLO
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We present results for the jet-veto efficiency €(pt veto) = To—jet (Pt veto)/Ttot

1 Mgg—H, my =125 Gev . g,

L NNLL+NNLO
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¢ Alarger jet-radius gives smaller theoretical uncertainties

¢ Note: larger jet-radius = more contamination from underlying event



@ We present results for the jet-veto efficiency €(p; veto) = 00— iet (Pt.veto)/Ttot
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Central value agrees with POWHEG+PYTHIA (rescaled so as to agree with
Higgs NNLL+NNLO transverse momentum distribution)



0O-jet(pt,veto) [pb]

¢ We have developed a new uncertainty method for cg—_jet = € gt0t , treating
the efficiency ¢ and the total cross section oi,t as uncorrelated

¢ The efficiency method makes full use of resummed results, as opposed to
the currently used Stewart-Tackmann method, which is tied to fixed order
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¢ At NNLQ, in the region pt,veto <K ™M, the efficiency method gives a much
larger error than scale variations, which vanish spuriously

¢ Adding NNLL, uncertainty for p; veto = 25 — 30 GeV reduces to 11%



¢ The code JetVHeto to perform the resummation and matching to NNLO is
available at http://jetvheto.hepforge.org/

¢ Qur results have been independently confirmed by two different groups in

the framework of Soft-Collinear Effective Theory (SCET)
[Becher Neubert '12, Becher Neubert Rothen 13, Stewart Tackmann Walsh Zuberi 13]

Recent improvements:

¢ Effect of top and bottom masses in loops _ A _
[AB Monni Zanderighi, in preparation]

¢ Calculations beyond NNLL accuracy
[Becher Neubert Rothen 13, Stewart Tackmann Walsh Zuberi *13]


http://jetvheto.hepforge.org/
http://jetvheto.hepforge.org/

¢ The predictions presented so far were computed in the limit m; — oo

e For finite masses, top and bottom loops have different behaviours

rg,

o

Top loop: mpyg < my

The amplitude M, . has a
well-behaved expansion in
powers of (mg/my)
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Bottom loop: my, < mpy

The loop momentum becomes
soft giving the usual double-log



¢ Top and bottom loops have also different behaviours with respect to
factorisation of soft emissions in the region p; veto = 25 — 30 GeV

A> ______ “H_LL oo 171%
s W Prad W
Top loop: pr <K mpg < my Bottom loop: my < pr < myg
Soft gluons cannot resolve the Soft gluons can resolve a bottom

top loop = factorisation OK loop = factorisation breaking?



NON-FACTORISING CORRECTIONS (I)

¢ Emission of a soft gluon does not factorise from the lowest order amplitude
[for the amplitude see Baur Glover '90]
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¢ Emission of a soft gluon does not factorise from the lowest order amplitude
[for the amplitude see Baur Glover '90]
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¢ depend on the helicity of the

¢ have opposite signs = cancel in interference with the top loop

¢ Note: non-factorising terms arise also in the hard collinear limit
[see also Grazzini Sargsyan '13]



We investigate the impact of non-factorising corrections by studying p; | M |*

(constant behaviour = factorisation)
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The region in which In*(p; /ms) dominate never overlaps with the soft

region, and hardly with the collinear region

We then consider non-factorising corrections as a remainder, vanishing
smoothly for p; veto — 0 = automatically implemented through matching



¢ We consider the ratio of de/dp; over its limit for m; — oo
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¢ Finite-m; corrections: excellent agreement between resummation and
Monte Carlo



¢ We consider the ratio of de/dp; over its limit for m; — oo
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¢ Finite-my corrections: different implementations of mass corrections lead to
differences up to 5%

¢ POWHEG overestimates finite-mass effects, whereas MC@NLO tends to
underestimate them



RESULTS FOR THE EFFICIENCY
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¢ Larger discrepancy between central values of NNLO and NNLL+NNLO with
respect to m; — o0 case

@ Larger uncertainty in the efficiency = error on og—jet around 13-14%

¢ |Is there a case for resummation of In(p veto/ms) at all orders?



¢ We compare the jet-veto efficiency to different Monte Carlo predictions
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¢ All Monte Carlo results are within resummation uncertainty band

¢ In the region Pt veto = 25 — 30 GeV  NNLL+NNLO results are in better
agreement with MC@NLO



ALL-ORDER FACTORISATION

¢ Very recently, an all-order factorisation formula in SCET has been proposed
for the zero-jet cross section [Becher Neubert 12, Becher Neubert Rothen ’13]
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¢ Jet-clustering effects are part of a so-called “collinear anomaly” and are
shown to exponentiate



THE NNLLP APPROXIMATION

¢ NNLLp predictions include terms beyond NNLL [Becher Neubert Rothen "13]

¢ Numerical estimate of hard and beam functions H, B., Bz at two loops

¢ Estimate of the size of the three-loop collinear anomaly ds(R)

15 R=0.38
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a(py*) [pb]

¢ At small radius, large In R corrections spoil the convergence even of
resummed predictions at high logarithmic accuracy



¢ An alternative approach uses SCET-II to resum the 0-jet cross section
[Stewart Tackmann Walsh Zuberi '13]

Rsub

UO—jet ~ O0pg X Bc(pt,veto) 024 Bé(pt,veto) X %(pt,vetm mH) + Uo (pt,vet07 R)

Pl e

Factorisation is incomplete:

clustering of two nearby gluons
%‘Qj(%e is not exponentiated

¢ New NNLL' predictions containing exact two-loop dependence of the zero-
jet cross section on In R



We have three equivalent NNLL resummations for the Higgs cross section
with zero jets

¢ Banfi-Monni-Salam-Zanderighi: QCD resummation, publicly available in the
code JetVHeto http://jetvheto.hepforge.org/

¢ Becher-Neubert: all-order factorisation formula in SCET

¢ Stewart-Tackmann-Walsh-Zuberi: SCET-II, no all-order factorisation
New version of JetVHeto contains top and bottom mass effects
BN and STWZ have improved predictions containing some NNNLL terms

There are two new cases for resummation

¢ Logarithmically enhanced mass effects In(p; jet/ms)

¢ Large In R corrections induced by small jet radius


http://jetvheto.hepforge.org/
http://jetvheto.hepforge.org/

¢ We have three equivalent NNLL resummations for the Higgs cross section
with zero jets

¢ Banfi-Monni-Salam-Zanderighi: QCD resummation, publicly available in the
code JetVHeto http://jetvheto.hepforge.org/

¢ Becher-Neubert: all-order factorisation formula in SCET

¢ Stewart-Tackmann-Walsh-Zuberi: SCET-II, no all-order factorisation
¢ New version of JetVHeto contains top and bottom mass effects
¢ BN and STWZ have improved predictions containing some NNNLL terms
¢ There are two new cases for resummation

¢ Logarithmically enhanced mass effects In(p; jet/ms)

¢ Large In R corrections induced by small jet radius

Thank you for your attention!
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¢ We have combined the NNLL resummation with NNLO, using three
matching schemes (a), (b) and (c) [AB Monni Salam Zanderighi '12]

¢ Central value: scheme (a) with itr = pir = Q = mpu /2

() is the resummation scale: In(mmg /Pt veto) — In(Q /Pt veto)
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¢ We have combined the NNLL resummation with NNLO, using three
matching schemes (a), (b) and (c) [AB Monni Salam Zanderighi '12]

¢ Central value: scheme (a) with (tr = pir = Q = mpu /2

() is the resummation scale: In(mmg /Pt veto) — In(Q /Pt veto)
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We have combined the NNLL resummation with NNLO, using three

matching schemes (a), (b) and (c)

[AB Monni Salam Zanderighi '12]

Central value: scheme (a) with ftr = pr = Q = mp /2

() is the resummation scale: In(mmg /Pt veto) — In(Q /Pt veto)

Variation of pr, r with Q = my /2
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We have combined the NNLL resummation with NNLO, using three

matching schemes (a), (b) and (c)

Central value: scheme (a) with ftr = pr = Q = mp /2

[AB Monni Salam Zanderighi '12]

() is the resummation scale: In(mmg /Pt veto) — In(Q /Pt veto)
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We have combined the NNLL resummation with NNLO, using three

matching schemes (a), (b) and (c)

Central value: scheme (a) with ftr = pr = Q = mp /2

[AB Monni Salam Zanderighi '12]

() is the resummation scale: In(mmg /Pt veto) — In(Q /Pt veto)

Variation of pr, r with Q = my /2
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@ We present results for the jet-veto efficiency ¢(p; veto) = T0_jet (Pt.veto)/Ttot
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¢ No significant reduction of uncertainties from NLL to NNLL

¢ Large NNLL corrections induced by the small jet radius



¢ We present results for the jet-veto efficiency e(pt veto) = To—jet (Pt veto)/Ttot

Higgs production (my = 125 GeV), impact of rapidity cut Higgs production (my = 125 GeV), impact of hadronisation
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¢ Finite rapidity, hadronisation and underlying event effects are negligible in
the region of interest at the LHC Pt veto = 25 — 30 GeV



¢ The NNLLp+NNLO results have been compared to the output of JetVHeto

Scheme (a) Scheme (b) Scheme (¢)
e 7 0.9 e , 0.9 ey ,
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N°LL, + NNLO |

¢ Matching scheme (a) is the reference scheme used by BMSZ to obtain
central value and scale uncertainties

¢ NNLLp+NNLO does not agree with reference scheme (a)

¢ Note however: NNLLp is expected to give a lower efficiency than NNLL



