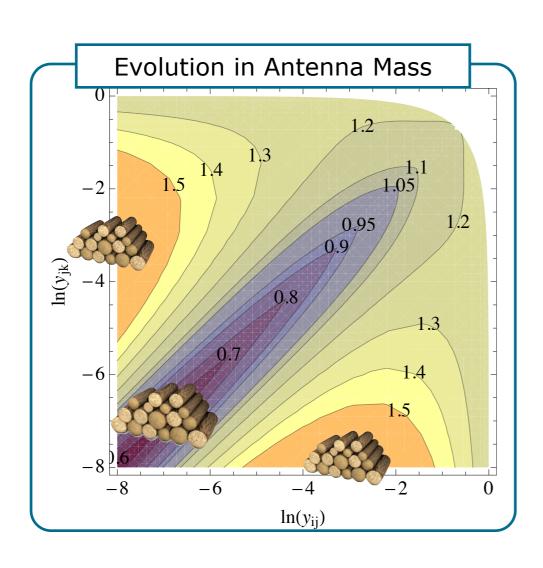
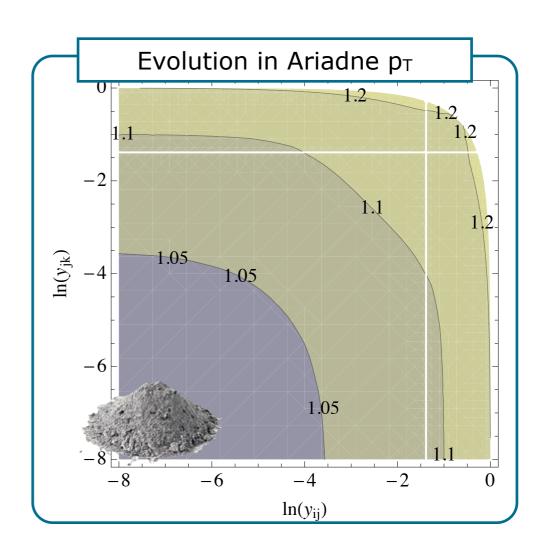
NLO and Helicity Amplitudes in VINCIA Peter Skands (CERN TH)





VINCIA

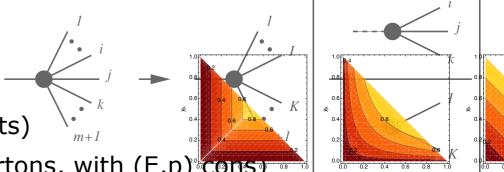
Written as a Plug-in to PYTHIA 8 Current Version: VINCIA 1.1.00 C++ (~20,000 lines)

Virtual Numerical Collider with Interleaved Antennae

Giele, Kosower, Skands, PRD 78 (2008) 014026, PRD 84 (2011) 054003 Gehrmann-de Ridder, Ritzmann, Skands, PRD 85 (2012) 014013

Based on antenna factorization

- of Amplitudes (exact in both soft and collinear limits)
- of Phase Space (LIPS: 2 on-shell → 3 on-shell partons, with (E,p) cons



Resolution Time

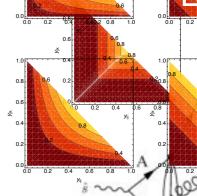
Infinite family of continuously deformable Q_E Special cases: transverse momentum, dipole mass, energy

Radiation functions

Arbitrary non-singular coefficients, anti

+ Massive antenna functions for massive fermions

0.4 0.4 0.8 0.8 1.0



Kinematics maps

Formalism derived for arbitrary $2\rightarrow 3$ recoil maps, $\kappa_{3\rightarrow 2}$ Default: massive generalization of Kosower's antenna maps

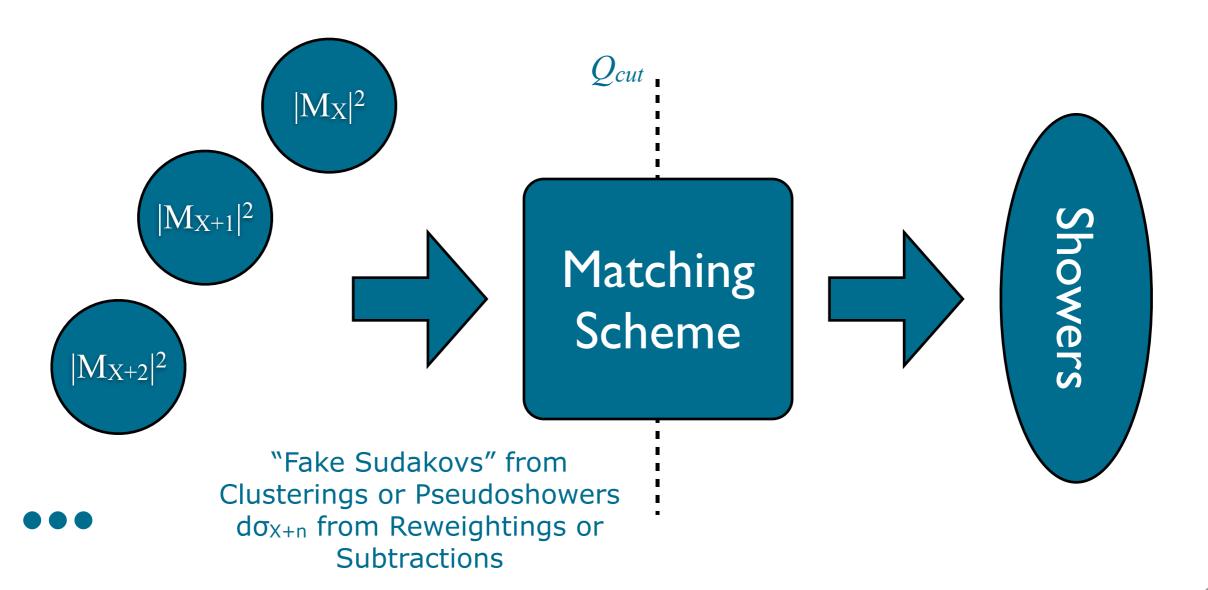
Standard Paradigm:

Have ME for X, X+1,..., X+n;

Want to combine and add showers

Double counting, IR divergences, multiscale logs

"The Soft Stuff"



Standard Paradigm:

Have ME for X, X+1,..., X+n;

Double counting, IR divergences, multiscale logs

Want to combine and add showers → "The Soft Stuff"

Works pretty well at low multiplicities

Still, only corrected for "hard" scales; Soft still pure LL.

Standard Paradigm:

Have ME for X, X+1,..., X+n;

Double counting, IR divergences, multiscale logs

Want to combine and add showers → "The Soft Stuff"

Works pretty well at low multiplicities

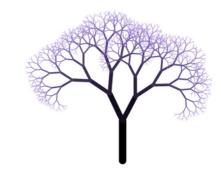
Still, only corrected for "hard" scales; Soft still pure LL.

At high multiplicities:

Efficiency problems: slowdown from need to compute and generate phase space from $d\sigma_{X+n}$, and from unweighting

Scale hierarchies: smaller single-scale phase-space region

Powers of alphaS pile up



Standard Paradigm:

Have ME for X, X+1,..., X+n;

Double counting, IR divergences, multiscale logs

Want to combine and add showers → "The Soft Stuff"

Works pretty well at low multiplicities

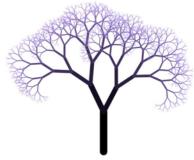
Still, only corrected for "hard" scales; Soft still pure LL.

At high multiplicities:

Efficiency problems: slowdown from need to compute and generate phase space from $d\sigma_{X+n}$, and from unweighting

Scale hierarchies: smaller single-scale phase-space region Powers of alphaS pile up

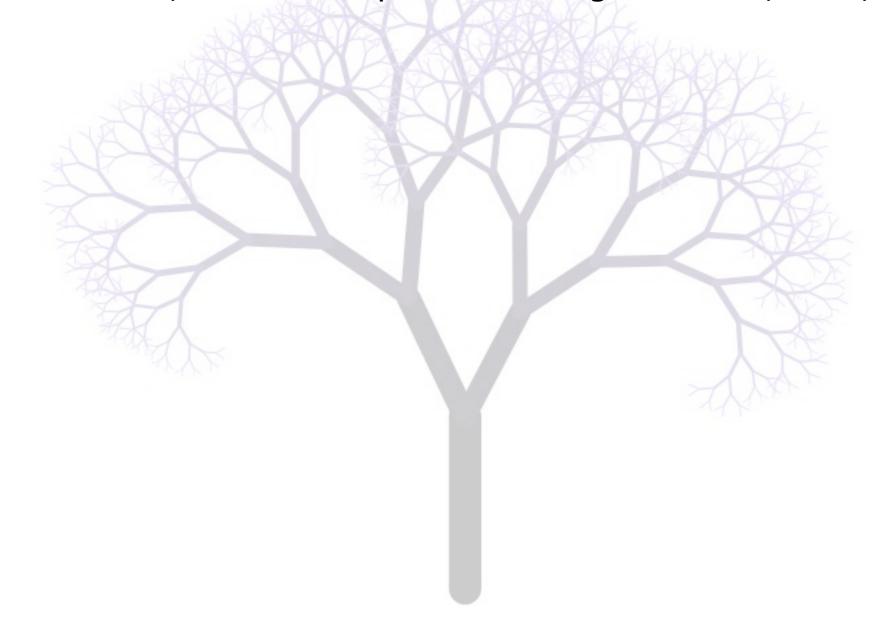
Better Starting Point: a QCD fractal?



Matrix-Element Corrections

Interleaved Paradigm:

Have shower; want to improve it using ME for X, X+1, ..., X+n.



Matrix-Element Corrections

Interleaved Paradigm:

Have shower; want to improve it using ME for X, X+1, ..., X+n.

Interpret all-orders shower structure as a trial distribution

Quasi-scale-invariant: intrinsically multi-scale (resums logs)

Unitary: automatically unweighted (& IR divergences → multiplicities)

More precise expressions imprinted via veto algorithm: ME corrections at LO, NLO, and more? → soft *and* hard

No additional phase-space generator or σ_{X+n} calculations \rightarrow **fast**

Matrix-Element Corrections

Interleaved Paradigm:

Have shower; want to improve it using ME for X, X+1, ..., X+n.

Interpret all-orders shower structure as a trial distribution

Quasi-scale-invariant: intrinsically multi-scale (resums logs)

Unitary: automatically unweighted (& IR divergences → multiplicities)

More precise expressions imprinted via veto algorithm: ME corrections at LO, NLO, and more? → soft *and* hard

No additional phase-space generator or σ_{X+n} calculations \rightarrow **fast**

Existing Approaches:

First Order: PYTHIA and POWHEG

Beyond First Order: PYTHIA → too complicated. POWHEG → very active, still mostly in framework of standard paradigm. GENEVA?

Markov is Crucial

LO: Giele, Kosower, Skands, PRD 84 (2011) 054003 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Problems:

Traditional parton showers are history-dependent (non-Markovian) → Number of generated terms (possible clustering histories) grows like 2^NN!

- + Complicated kinematics
- + Dead zones

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

Markov is Crucial

LO: Giele, Kosower, Skands, PRD 84 (2011) 054003 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Problems:

Traditional parton showers are history-dependent (non-Markovian) → Number of generated terms (possible clustering histories) grows like 2^NN!

- + Complicated kinematics
- + Dead zones

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

Markov is Crucial

LO: Giele, Kosower, Skands, PRD 84 (2011) 054003 NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Problems:

Traditional parton showers are history-dependent (non-Markovian) → Number of generated terms (possible clustering histories) grows like 2^NN!

- + Complicated kinematics
- + Dead zones

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

Solutions: Markovian Evolution, Matched Antenna Showers, and Smooth Ordering

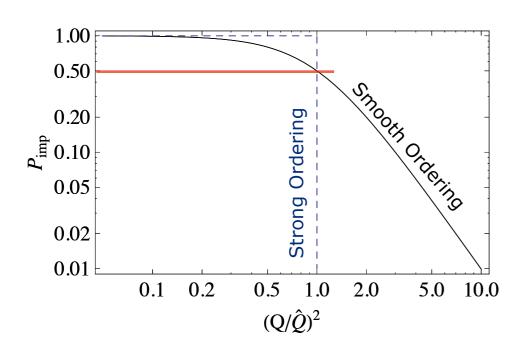
No need to ever cluster back more than one step

- → Number of generated terms grows like N
- + Simple expansions
- + Dead zones merely suppressed

Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

What is Smooth Ordering?

Giele, Kosower, Skands, PRD 84 (2011) 054003



$$P_{\text{strong}} = \Theta \left(\hat{p}_{\perp}^2 - p_{\perp}^2 \right)$$

$$P_{\text{smooth}} = \frac{\hat{p}_{\perp}^2}{\hat{p}_{\perp}^2 + p_{\perp}^2} \otimes \frac{1}{p_{\perp}^2}$$

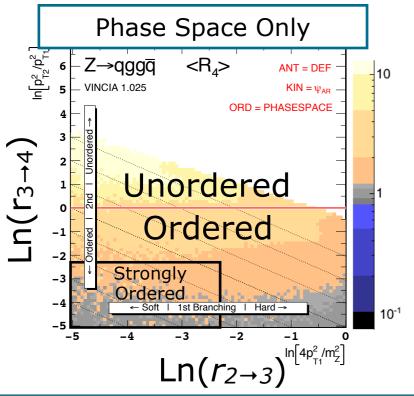
Strongly Ordered Limit

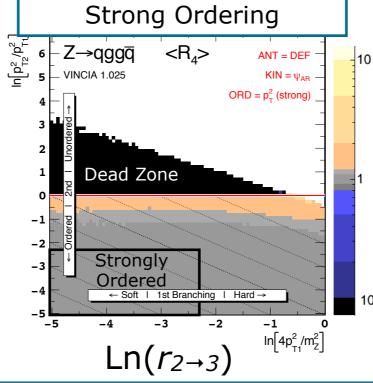
$$\frac{1}{p_{\perp}^2} \left(1 - \mathcal{O}\left(\frac{p_{\perp}^2}{\hat{p}_{\perp}^2}\right) \right)$$

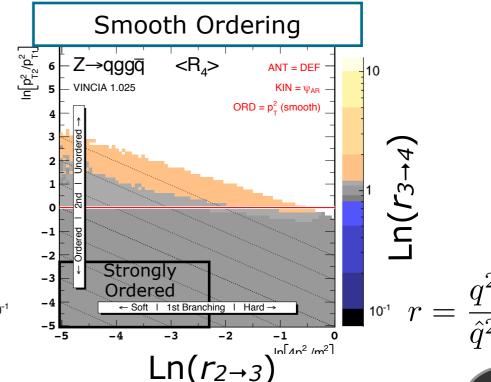
Strongly Unordered

$$\frac{\hat{p}_{\perp}^2}{p_{\perp}^4} \left(1 - \mathcal{O}\left(\frac{\hat{p}_{\perp}^2}{p_{\perp}^2}\right) \right)$$

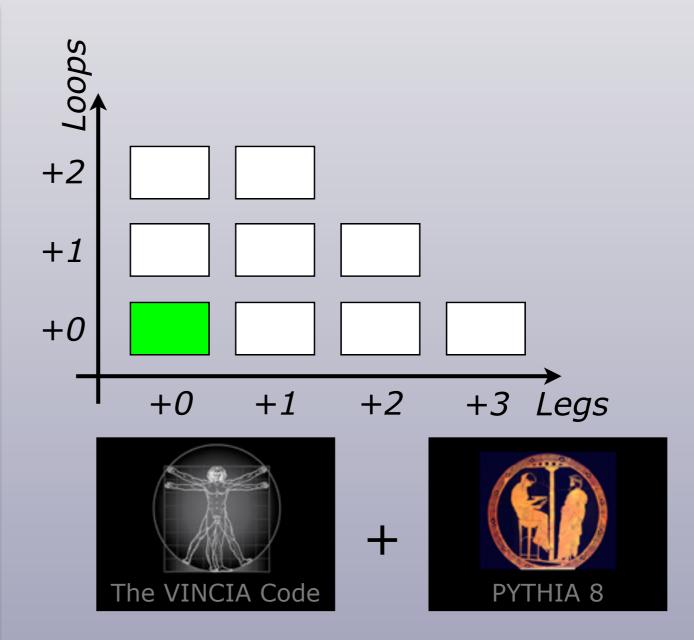
NB: Antenna Phase Spaces still nested (antenna masses strongly ordered and decreasing)







Start at Born level $|M_F|^2$



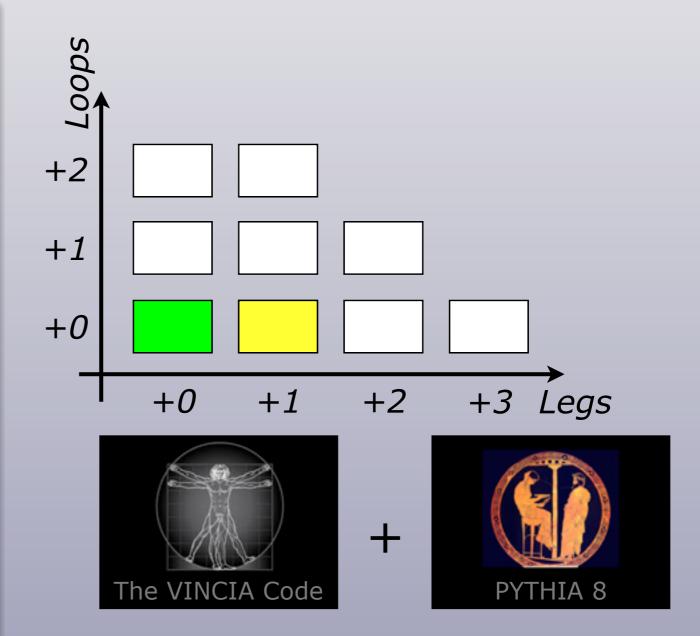
"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Start at Born level $|M_F|^2$

Generate "shower" emission

$$|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

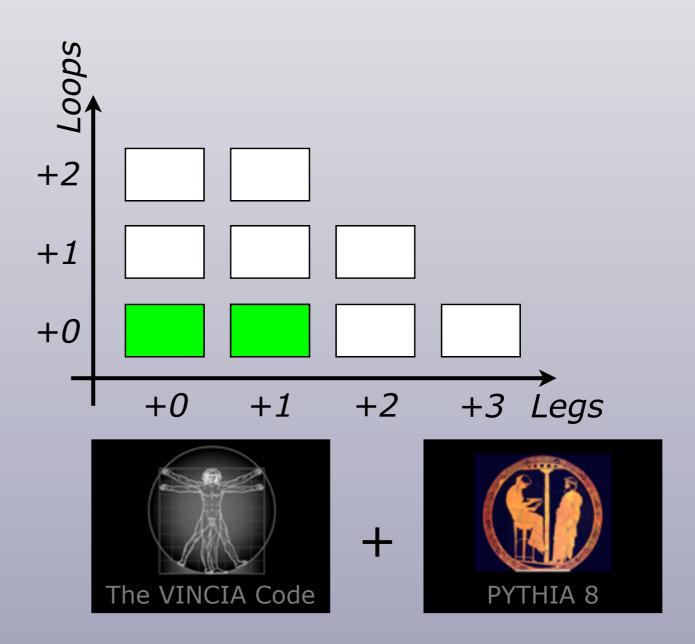
Start at Born level $|M_F|^2$

Generate "shower" emission

$$|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$$

Correct to Matrix Element

$$a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Start at Born level

$$|M_F|^2$$

Generate "shower" emission

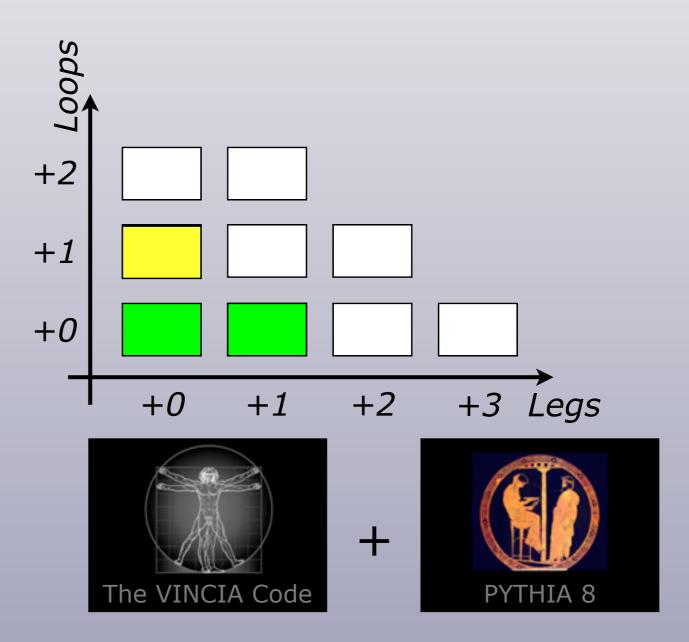
$$|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$$

Correct to Matrix Element

$$a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$$

Unitarity of Shower

$$Virtual = -\int Real$$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Start at Born level

$$|M_F|^2$$

Generate "shower" emission

$$|M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$$

Correct to Matrix Element

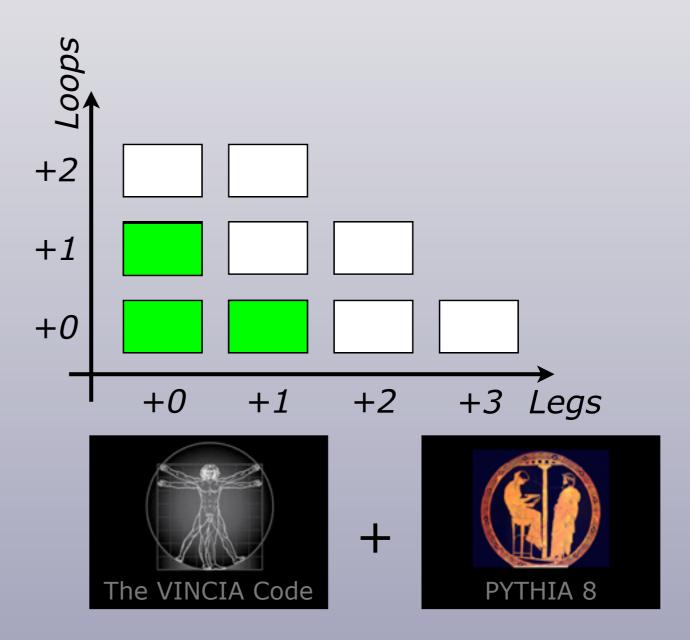
$$a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$$

Unitarity of Shower

$$Virtual = -\int Real$$

Correct to Matrix Element

$$|M_F|^2 \to |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Start at Born level $|M_F|^2$

Generate "shower" emission

$$\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$$

Correct to Matrix Element

$$a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$$

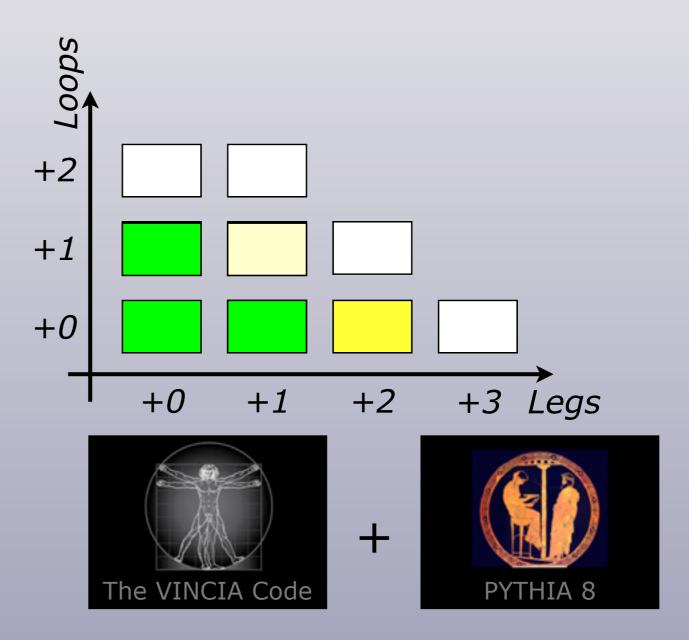
Unitarity of Shower

Markovian Repeat

$$Virtual = -\int Real$$

Correct to Matrix Element

$$|M_F|^2 \to |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Start at Born level $|M_F|^2$ Generate "shower" emission $|M_{E+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_E|^2$

$$\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$$

Correct to Matrix Element

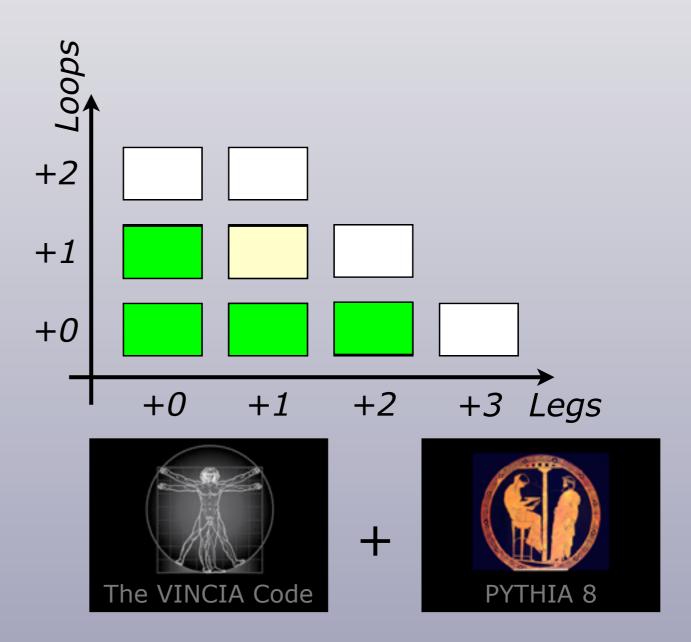
$$a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$$

Unitarity of Shower

$$Virtual = -\int Real$$

Correct to Matrix Element

$$|M_F|^2 \to |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

NLO: Hartgring, Laenen, Skands, arXiv:1303.4974

Markovian Repeat

Start at Born level $|M_F|^2$

Generate "shower" emission

$$\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum_{i \in \text{ant}} a_i |M_F|^2$$

Correct to Matrix Element

$$a_i \to \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$$

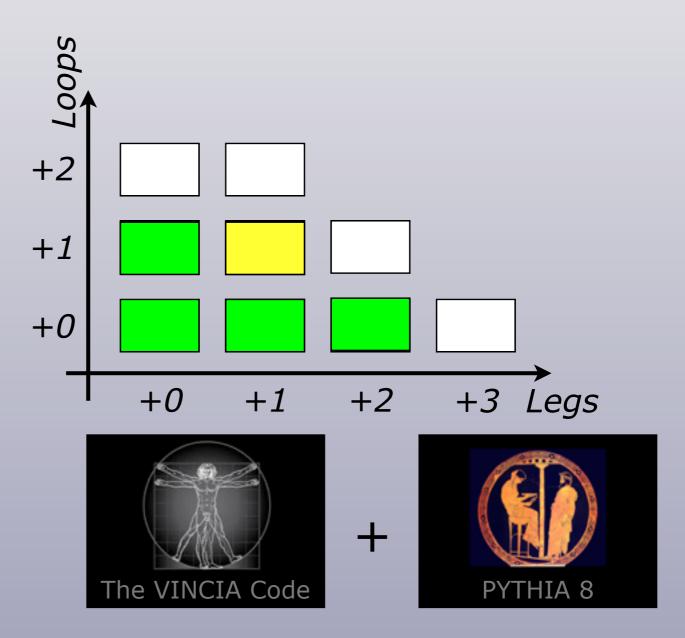
Unitarity of Shower

Markovian Repeat

$$Virtual = -\int Real$$

Correct to Matrix Element

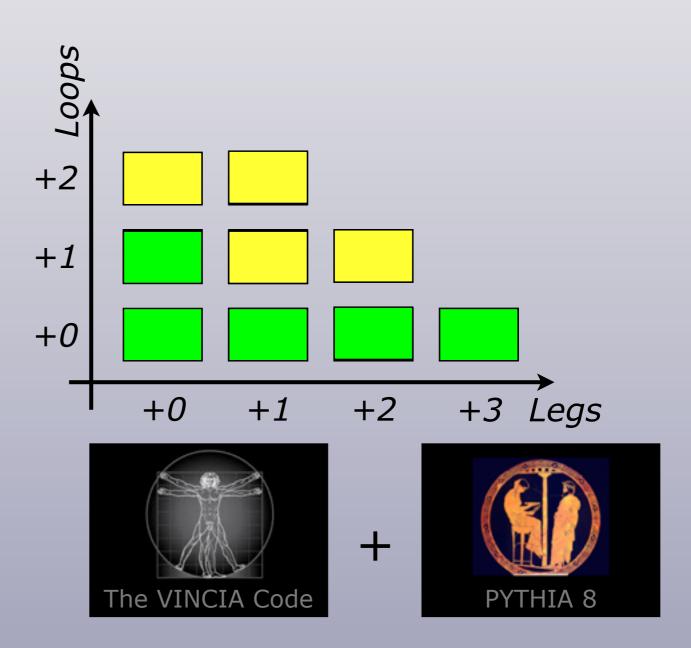
$$|M_F|^2 \to |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

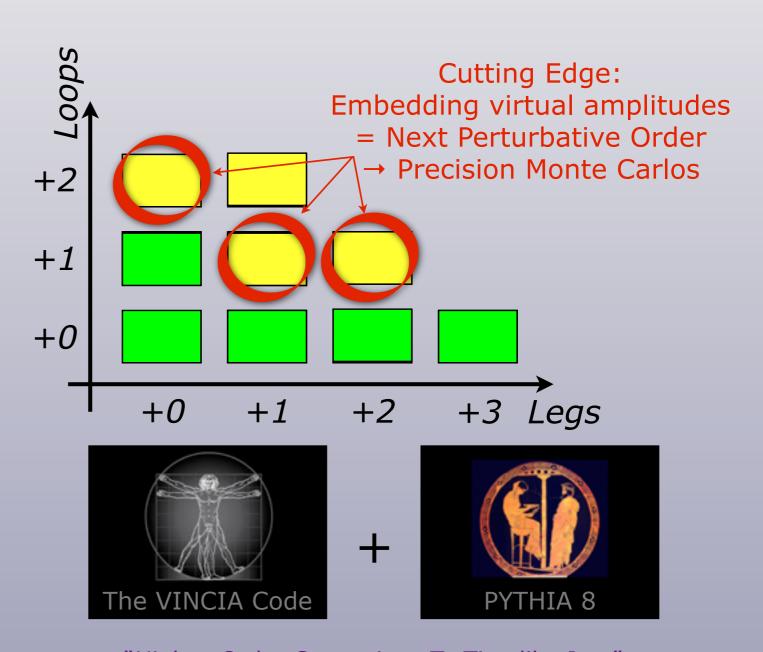
Start at Born level $|M_F|^2$ Generate "shower" emission $\rightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ Markovian Repeat Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ Unitarity of Shower Virtual = - / RealCorrect to Matrix Element $|M_F|^2 \to |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

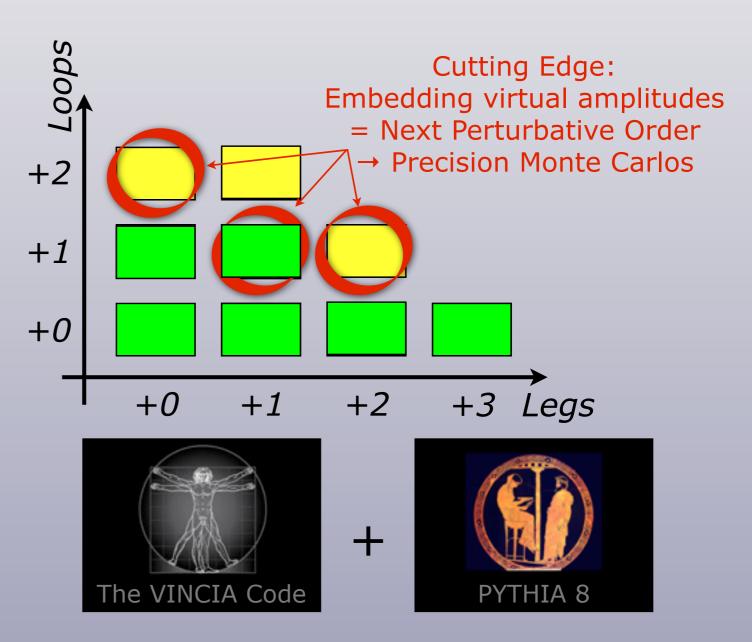
Start at Born level $|M_F|^2$ Generate "shower" emission $\longrightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ Markovian Repeat Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ Unitarity of Shower Virtual = - / RealCorrect to Matrix Element $|M_F|^2 \to |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$



"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Start at Born level $|M_F|^2$ Generate "shower" emission $\longrightarrow |M_{F+1}|^2 \stackrel{LL}{\sim} \sum a_i |M_F|^2$ Markovian Repeat Correct to Matrix Element $a_i \rightarrow \frac{|M_{F+1}|^2}{\sum a_i |M_F|^2} a_i$ Unitarity of Shower Virtual = - / RealCorrect to Matrix Element $|M_F|^2 \to |M_F|^2 + 2\text{Re}[M_F^1 M_F^0] + \int \text{Real}$



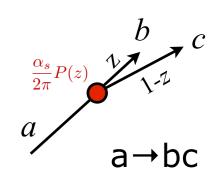
"Higher-Order Corrections To Timelike Jets" GeeKS: Giele, Kosower, Skands, PRD 84 (2011) 054003

HEL: Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Helicities

Larkoski, Peskin, PRD 81 (2010) 054010 Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033

Traditional parton showers use the standard Altarelli-Parisi kernels, P(z) = helicity sums/averages over:



Generalize these objects to dipole-antennae

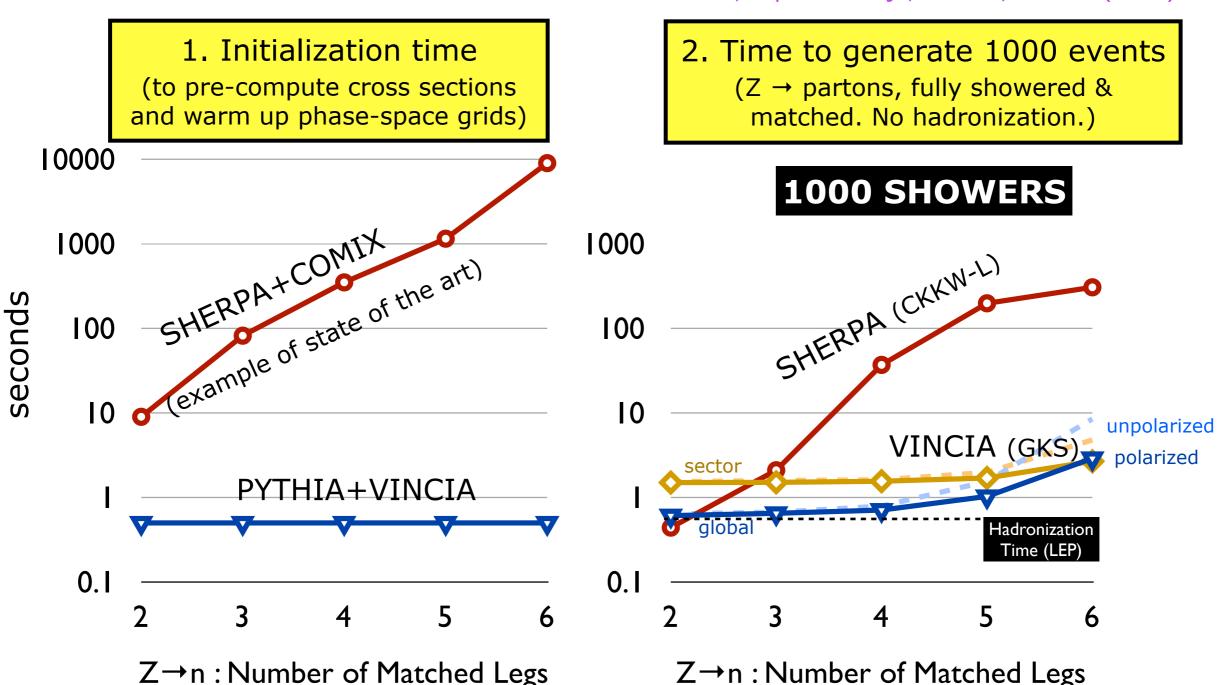
E.g.,

$$\begin{array}{l} q\bar{q} \rightarrow qg\bar{q} \\ ++ \rightarrow ++ + & \mathrm{MHV} \\ ++ \rightarrow +- + & \mathrm{NMHV} \\ +- \rightarrow ++ - & \mathrm{P-wave} \\ +- \rightarrow +- - & \mathrm{P-wave} \end{array}$$

- → Can trace helicities through shower
 - → Eliminates contribution from unphysical helicity configurations
 - → Can match to individual helicity amplitudes rather than helicity sum
 - → Fast! (gets rid of another factor 2^N)

Speed

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033



Z→udscb; Hadronization OFF; ISR OFF; udsc MASSLESS; b MASSIVE; E_{CM} = 91.2 GeV; Q_{match} = 5 GeV SHERPA 1.4.0 (+COMIX); PYTHIA 8.1.65; VINCIA 1.0.29 + MADGRAPH 4.4.26; gcc/gfortran v 4.7.1 -O2; single 3.06 GHz core (4GB RAM)

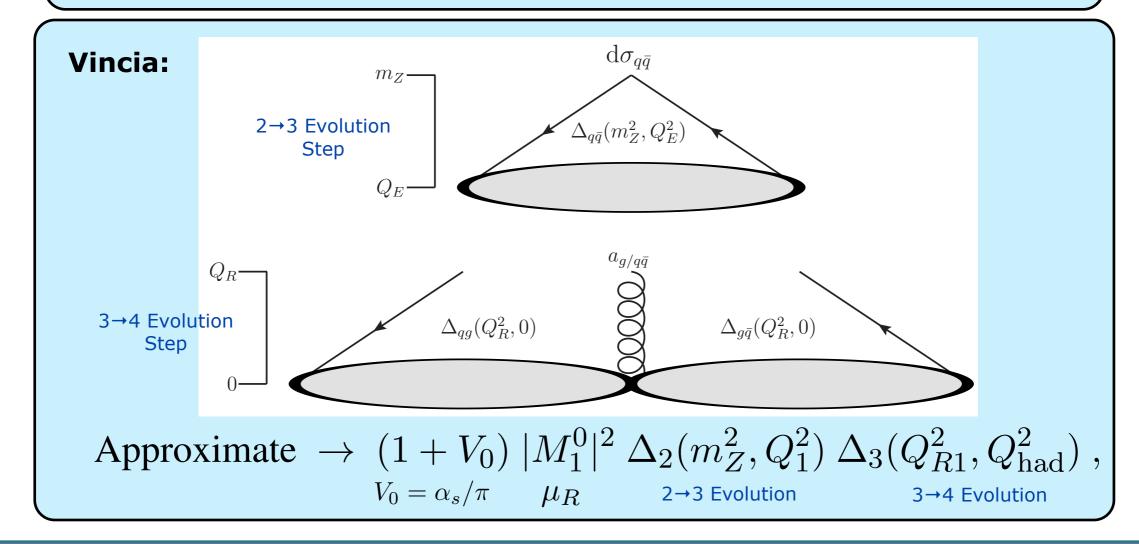
Hartgring, Laenen, Skands, arXiv:1303.4974

Getting Serious: 2nd order (1st order ~ POWHEG)

Born

Fixed Order: Exclusive 3-jet rate (3 and only 3 jets), at $Q = Q_{had}$ Exact $\rightarrow |M_1^0|^2 + 2 \operatorname{Re}[M_1^0 M_1^{1*}] + \int_{\mathbb{R}^2}^{Q_{\text{had}}^2} \frac{d\Phi_2}{d\Phi} |M_2^0|^2$ Unresolved Real

Virtual



Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$\begin{split} V_{1Z}(q,g,\bar{q}) &= \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\operatorname{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right) \ln \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{g\bar{q}}) + \frac{34}{3}\right] \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 1\right] \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} A_{g/qg}^{\mathrm{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/q\bar{q}} \right. \\ &\left. - \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Ej}\right) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/qg} \right] \\ &\left. - \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Sj}\right) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/qg} \right] \\ &\left. + \frac{\alpha_{s}n_{F}}{2\pi} \left[- \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Sj}\right) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg} \right. \\ &\left. - \frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}}\right) \right], \end{split}$$

P. Skands

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$\begin{split} V_{1Z}(q,g,\bar{q}) &= \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\operatorname{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right) \ln \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{g\bar{q}}) + \frac{34}{3}\right] \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 1\right] \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} A_{g/q\bar{q}}^{\mathrm{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/q\bar{q}} \right. \\ &\left. - \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Ej}\right) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/qg} \right] \\ &\left. - \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Sj}\right) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg} \right. \\ &\left. + \frac{\alpha_{s}n_{F}}{2\pi} \left[- \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Sj}\right) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg} \right. \\ &\left. - \frac{1}{6}\frac{s_{qg} - s_{g\bar{q}}}{s_{qq} + s_{q\bar{q}}} \ln \left(\frac{s_{qg}}{s_{q\bar{q}}}\right) \right], \end{split}$$

P. Skands

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$\begin{split} V_{1Z}(q,g,\bar{q}) &= \left[\frac{2\operatorname{Re}[M_{1}^{0}M_{1}^{1*}]}{|M_{1}^{0}|^{2}}\right]^{\operatorname{LC}} - \frac{\alpha_{s}}{\pi} - \frac{\alpha_{s}}{2\pi} \left(\frac{11N_{C} - 2n_{F}}{6}\right)^{\underset{\square}{\operatorname{IIR}}} \left(\frac{\mu_{\mathrm{ME}}^{2}}{\mu_{\mathrm{PS}}^{2}}\right) \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{qg}^{(1)}(\epsilon,\mu^{2}/s_{g\bar{q}}) + \frac{34}{3}\right] \\ &+ \frac{\alpha_{s}n_{F}}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon,\mu^{2}/s_{qg}) - 1\right] \\ &+ \frac{\alpha_{s}C_{A}}{2\pi} \left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} A_{g/q\bar{q}}^{\mathrm{std}} + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/q\bar{q}} \right. \\ &\left. - \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Ej}\right) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{g/qg} \right] \\ &\left. - \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Sj}\right) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg} \right. \\ &\left. + \frac{\alpha_{s}n_{F}}{2\pi} \left[- \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Sj}\right) P_{Aj} A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^{2}\int_{0}^{s_{j}} \mathrm{d}\Phi_{\mathrm{ant}} \delta A_{\bar{q}/qg} \right. \\ &\left. - \frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qq} + s_{g\bar{q}}} \ln\left(\frac{s_{qg}}{s_{g\bar{q}}}\right) \right], \end{split}$$

P. Skands

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$V_{1Z}(q, g, \bar{q}) = \left[\frac{2\operatorname{Re}[M_1^0 M_1^{1*}]}{|M_1^0|^2}\right]^{\operatorname{LC}} - \frac{\alpha_s}{\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6}\right)^{\operatorname{LR}} \left(\frac{\mu_{\mathrm{ME}}^2}{\mu_{\mathrm{PS}}^2}\right)$$

Gluon Emission IR Singularity (std antenna integral)

Gluon Splitting IR Singularity (std antenna integral)

$$+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{g\bar{q}}) + \frac{34}{3} \right]$$

$$+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right]$$

$$+\frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\mathrm{ant}} \ A_{g/q\bar{q}}^{\mathrm{std}} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\mathrm{ant}} \ \delta A_{g/q\bar{q}} \right]$$
Resolution Scale

$$-\sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Ej}\right) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \, \delta A_{g/qg}$$
Ordering Function

$$+\frac{\alpha_s n_F}{2\pi} \left[-\sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} (1 - O_{Sj}) \, P_{Aj} \, A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \, \delta A_{\bar{q}/qg} \right]$$
Ordering Function

$$-\frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \right], \tag{72}$$

The "Ariadne" Log

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$V_{1Z}(q, g, \bar{q}) = \left[\frac{2\operatorname{Re}[M_1^0 M_1^{1*}]}{|M_1^0|^2}\right]^{\operatorname{LC}} - \frac{\alpha_s}{\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6}\right)^{\operatorname{LR}} \ln\left(\frac{\mu_{\mathrm{ME}}^2}{\mu_{\mathrm{PS}}^2}\right)$$

Gluon Emission IR Singularity (std antenna integral)

$$+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{g\bar{q}}) + \frac{34}{3} \right]$$

Gluon Splitting IR Singularity (std antenna integral)

$$+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right]$$

Standard (universal) 2→3 Sudakov Logs

$$+\frac{\alpha_{s}C_{A}}{2\pi}\left[8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}}d\Phi_{\text{ant}}A_{g/q\bar{q}}^{\text{std}}+8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}}d\Phi_{\text{ant}}\delta A_{g/q\bar{q}}\right] + 8\pi^{2}\int_{Q_{1}^{2}}^{m_{Z}^{2}}d\Phi_{\text{ant}}\delta A_{g/q\bar{q}}$$

$$-\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}}d\Phi_{\text{ant}}\left(1-O_{E_{j}}\right)A_{g/qg}^{\text{std}}+\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}}d\Phi_{\text{ant}}\delta A_{g/qg}\right]$$

$$-\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}}d\Phi_{\text{ant}}\left(1-O_{S_{j}}\right)A_{g/qg}^{\text{std}}+\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}}d\Phi_{\text{ant}}\delta A_{\bar{q}/qg}\right]$$

$$+\frac{\alpha_{s}n_{F}}{2\pi}\left[-\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}}d\Phi_{\text{ant}}\left(1-O_{S_{j}}\right)P_{A_{j}}A_{\bar{q}/qg}^{\text{std}}+\sum_{j=1}^{2}8\pi^{2}\int_{0}^{s_{j}}d\Phi_{\text{ant}}\delta A_{\bar{q}/qg}\right]$$

$$-\frac{1}{6}\frac{s_{qg}-s_{g\bar{q}}}{s_{qg}+s_{g\bar{q}}}\ln\left(\frac{s_{qg}}{s_{g\bar{q}}}\right)\right],$$

$$(72)$$

The "Ariadne" Log

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$V_{1Z}(q,g,\bar{q}) = \left[\frac{2\operatorname{Re}[M_1^0M_1^{1*}]}{|M_1^0|^2}\right]^{\operatorname{LC}} - \frac{\alpha_s}{\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6}\right)^{\operatorname{LR}} \left(\frac{\mu_{\mathrm{ME}}^2}{\mu_{\mathrm{PS}}^2}\right)$$

Gluon Emission IR Singularity (std antenna integral)

$$+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{g\bar{q}}) + \frac{34}{3} \right]$$

Gluon Splitting IR Singularity (std antenna integral)

$$+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right]$$

Standard (universal) 2→3 Sudakov Logs

$$+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\rm ant} \ A_{g/q\bar{q}}^{\rm std} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\rm ant} \ \delta A_{g/q\bar{q}} \right]$$

Standard (universal) 3→4 Sudakov Logs: C_A

$$-\sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \left(1 - O_{Ej}\right) A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \, \delta A_{g/qg} \right]$$
Ordering Function

$$+\frac{\alpha_s n_F}{2\pi} \left[-\sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} (1-O_{Sj}) \, P_{Aj} \, A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \, \delta A_{\bar{q}/qg} \right]$$
Ordering Function

$$-\frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \right], \tag{72}$$

The "Ariadne" Log

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$V_{1Z}(q,g,\bar{q}) = \left[\frac{2\operatorname{Re}[M_1^0M_1^{1*}]}{|M_1^0|^2}\right]^{\operatorname{LC}} - \frac{\alpha_s}{\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6}\right)^{\operatorname{LR}} \left(\frac{\mu_{\mathrm{ME}}^2}{\mu_{\mathrm{PS}}^2}\right)$$

Gluon Emission IR Singularity (std antenna integral)

+
$$\frac{\alpha_s C_A}{2\pi}$$
 $\left| -2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{g\bar{q}}) + \frac{34}{3} \right|$

Gluon Splitting IR Singularity (std antenna integral)

$$+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right]$$

Standard (universal) 2→3 Sudakov Logs

$$+ \frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\rm ant} \ A_{g/q\bar{q}}^{\rm std} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\rm ant} \ \delta A_{g/q\bar{q}} \right]$$

Standard (universal) 3→4 Sudakov Logs: C_A

$$-\sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \; (1-O_{Ej}) \; A_{g/qg}^{\mathrm{std}} \; + \; \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \; \delta A_{g/qg} \\ \text{Ordering Function}$$

Standard (universal) 3→4 Sudakov Logs: n_F

$$+\frac{\alpha_s n_F}{2\pi} \left[-\sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} (1-O_{Sj}) \, P_{Aj} \, A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \, \delta A_{\bar{q}/qg} \right]$$
 Ordering Function

appendix of our paper + functions in the code

$$-\frac{1}{6} \left. \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \right| , \tag{72}$$

P. Skands

Hartgring, Laenen, Skands, arXiv:1303.4974

NLO Correction: Subtract and correct by difference

$$V_{1Z}(q,g,\bar{q}) = \left[\frac{2\operatorname{Re}[M_1^0M_1^{1*}]}{|M_1^0|^2}\right]^{\operatorname{LC}} - \frac{\alpha_s}{\pi} - \frac{\alpha_s}{2\pi} \left(\frac{11N_C - 2n_F}{6}\right)^{\operatorname{LR}} \left(\frac{\mu_{\mathrm{ME}}^2}{\mu_{\mathrm{PS}}^2}\right)$$

Gluon Emission IR Singularity (std antenna integral)

$$+ \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{g\bar{q}}) + \frac{34}{3} \right]$$

Gluon Splitting IR Singularity (std antenna integral)

$$+ \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right]$$

δA: Integrals over ME/PS corrections

Standard (universal) 2→3 Sudakov Logs

 $+\frac{\alpha_s C_A}{2\pi} \left[8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\mathrm{ant}} \ A_{g/q\bar{q}}^{\mathrm{std}} + 8\pi^2 \int_{Q_1^2}^{m_Z^2} \mathrm{d}\Phi_{\mathrm{ant}} \ \delta A_{g/q\bar{q}} \right]$ Done numerically

Standard (universal) 3→4 Sudakov Logs: CA

$$-\sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \; (1-O_{Ej}) \; A_{g/qg}^{\mathrm{std}} + \sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \; \delta A_{g/qg} \\ -\sum_{j=1}^{2} 8\pi^2 \int_{0}^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \; \delta A_{g/qg}$$
 Ordering Function

Standard (universal) 3→4 Sudakov Logs: n_F

$$+\frac{\alpha_s n_F}{2\pi} \left[-\sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} (1-O_{Sj}) \, P_{Aj} \, A_{\bar{q}/qg}^{\mathrm{std}} + \sum_{j=1}^2 8\pi^2 \int_0^{s_j} \mathrm{d}\Phi_{\mathrm{ant}} \, \delta A_{\bar{q}/qg} \right]$$
Ordering Function

$$+ \sum_{j=1}^{2} 8\pi^2 \int_0^{s_j} d\Phi_{\text{ant}} \, \delta A_{\bar{q}/qg}$$

$$-\frac{1}{6} \frac{s_{qg} - s_{g\bar{q}}}{s_{qg} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \right],$$

$$-\frac{1}{6} \left. \frac{s_{qg} - s_{g\bar{q}}}{s_{ag} + s_{g\bar{q}}} \ln \left(\frac{s_{qg}}{s_{g\bar{q}}} \right) \right| , \tag{72}$$

The "Ariadne" Log

1) IR Limits

Hartgring, Laenen, Skands, arXiv:1303.4974

Pole-subtracted one-loop matrix element

$$\begin{aligned} \text{SVirtual} \ = & \left[\frac{2 \operatorname{Re}[M_3^0 M_3^{1*}]}{|M_3^0|^2} \right]^{\operatorname{LC}} + \frac{\alpha_s C_A}{2\pi} \left[-2I_{qg}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{qg}^{(1)}(\epsilon, \mu^2/s_{g\bar{q}}) + \frac{34}{3} \right] \\ & + \frac{\alpha_s n_F}{2\pi} \left[-2I_{qg,F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 2I_{g\bar{q},F}^{(1)}(\epsilon, \mu^2/s_{qg}) - 1 \right] \end{aligned}$$

SVirtual	soft	$\left(-L^2 - \frac{10}{3}L - \frac{\pi^2}{6}\right)C_A + \frac{1}{3}n_F L$
	hard collinear	$-\frac{5}{3}LC_A + \frac{1}{6}n_F L$

$$s_{qg} = s_{g\bar{q}} = y \to 0$$

$$s_{qg} = y \to 0, s_{g\bar{q}} \to s$$

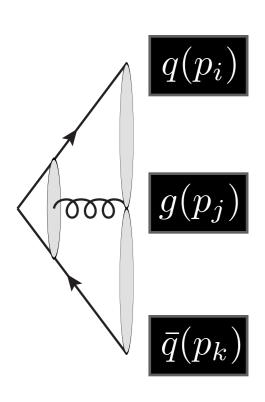
Second-Order Antenna Shower Expansion:

		strong	smooth	V_{3Z}
p_{\perp}	soft	$\left(L^2 - \frac{1}{3}L + \frac{\pi^2}{6}\right)C_A + \frac{1}{3}n_F L$	$\left(L^2 - \frac{1}{3}L - \frac{\pi^2}{6} \right) C_A + \frac{1}{3}n_F L$	$-\beta_0 L$
	hard collinear	$-\frac{1}{6}LC_A + \frac{1}{6}n_F L$	$\left(-\frac{1}{6}L - \frac{\pi^2}{6}\right)C_A + \frac{1}{6}n_F L$	$-\frac{1}{2}\beta_0 L$
m_D	soft	$\left(L^2 + \frac{3}{2}L - \frac{\pi^2}{6}\right)C_A$	$\left(L^2 + \frac{3}{2}L - \frac{\pi^2}{6}\right)C_A$	$-\frac{1}{2}\beta_0 L$
	hard collinear	$-\frac{1}{6}LC_A + \frac{1}{6}n_F L$	$\left(-\frac{1}{6}L - \frac{\pi^2}{3}\right)C_A + \frac{1}{6}n_F L$	$-\frac{1}{2}\beta_0 L$

2) NLO Evolution

Hartgring, Laenen, Skands, arXiv:1303.4974

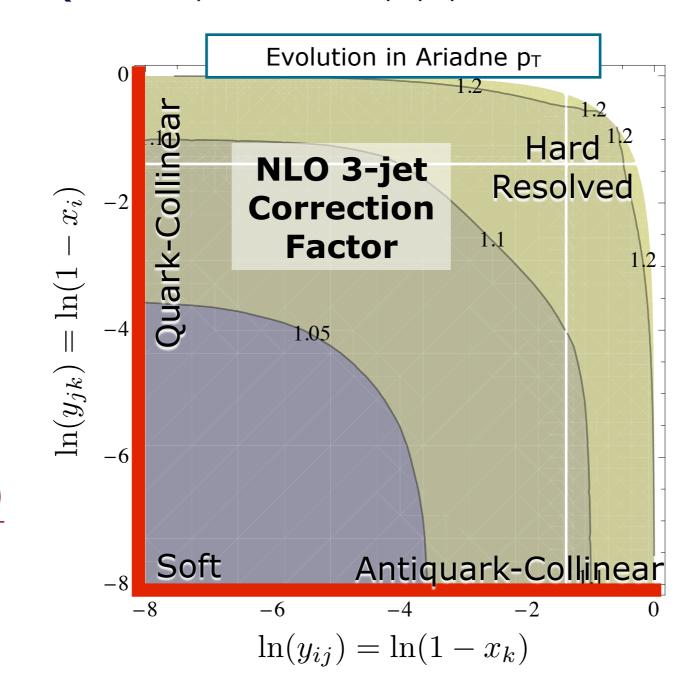
$Z \rightarrow Jets$ (NLO_{2,3} + LO_{2,3,4,5} + Shower)



Scaled Invariants

$$y_{ij} = \frac{2(p_i \cdot p_j)}{M_Z^2}$$

 \rightarrow 0 when i || j & when $E_i \rightarrow 0$



Size of NLO Correction:

over 3-parton Phase Space

$$\mu_R = p_T$$

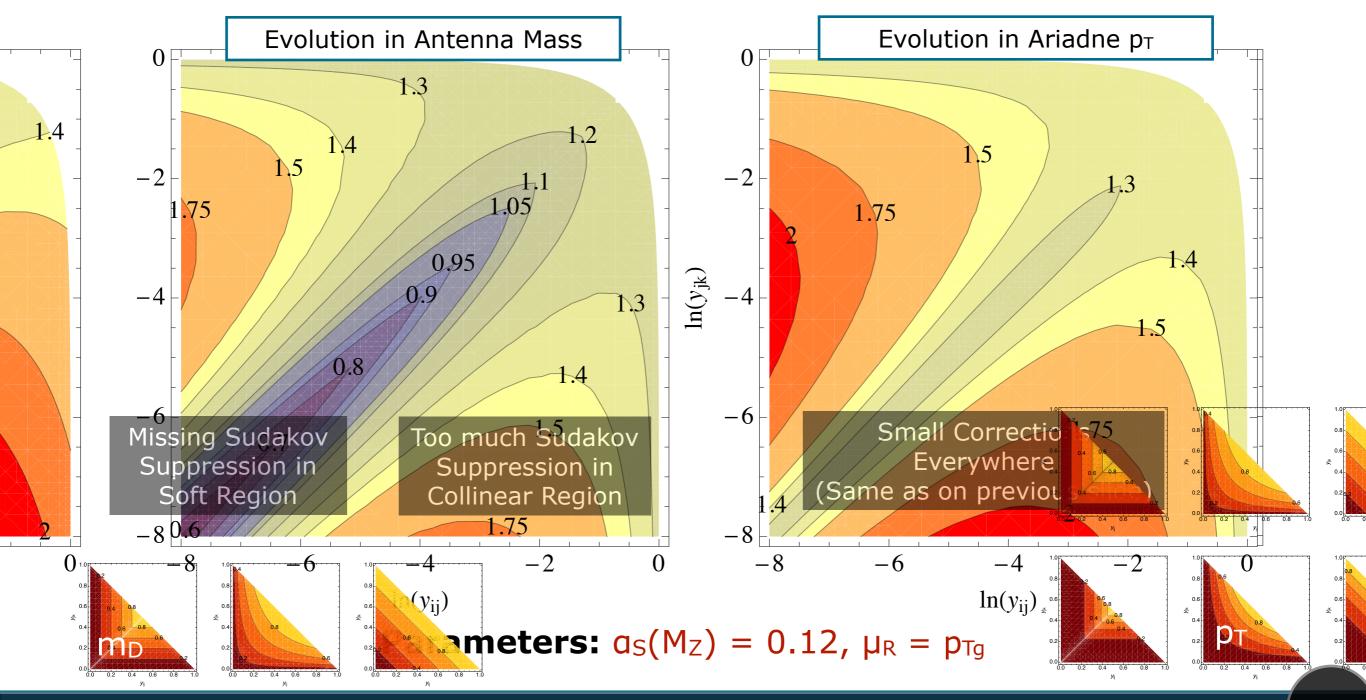
$$a_{S}(M_{Z}) = 0.12$$

With CMW factor

Evolution Variable

Hartgring, Laenen, Skands, arXiv:1303.4974

The choice of evolution variable (Q)



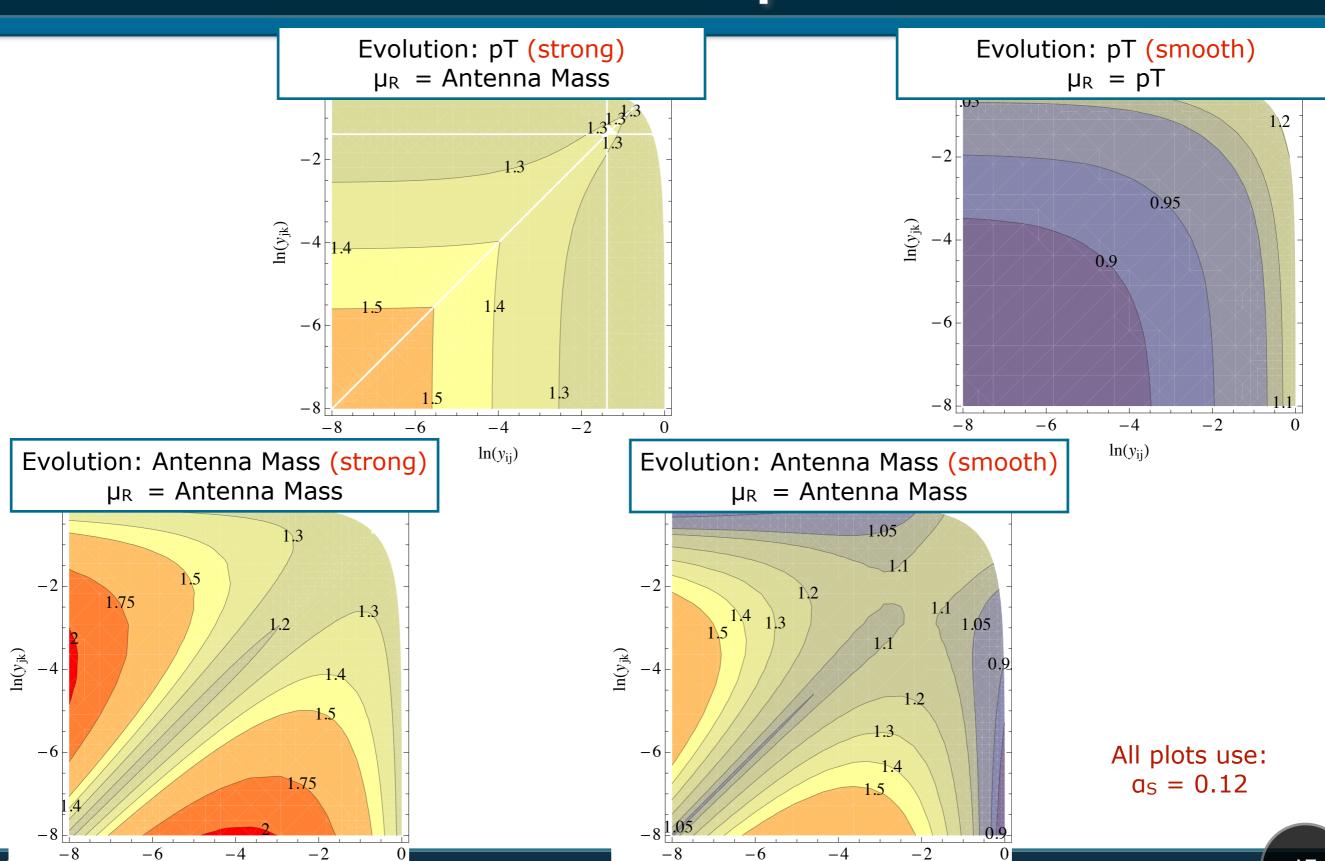
P. Skands
Or (strong)

 $\Omega_{\rm E}=m_{\rm D}$ (strong)

Further Examples

 $ln(y_{ij})$

Evolution & Renormalization



 $ln(y_{ij})$

The proof of the pudding

Mesons Baryons

0.6

Hartgring, Laenen, Skands, arXiv:1303.4974

 $N_{
m ch}$

0.0

 $\langle \chi^2 \rangle$ Frag

PYTHIA 8

VINCIA (LO)

VINCIA (NLO)

New VINCIA NLO Tune

 $a_s(M_Z)^{CMW} = 0.122$ (with 2-loop running)

LO Tunes

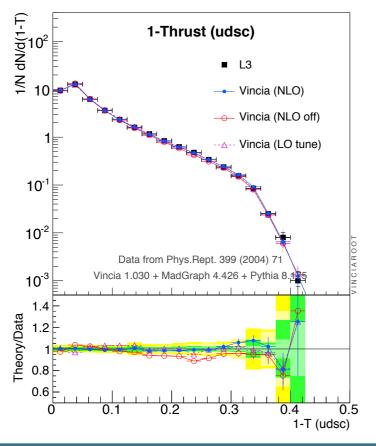
(both VINCIA and PYTHIA)

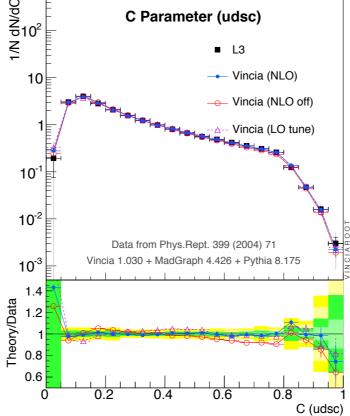
 $a_s(M_Z)^{MSbar} \sim 0.139$

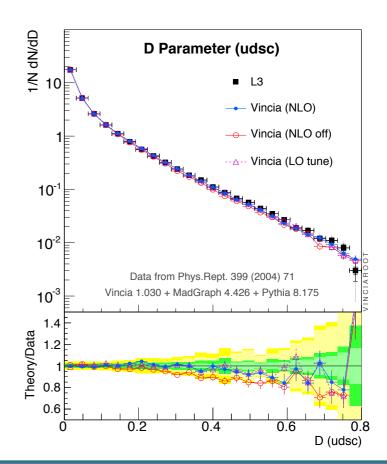
(LO matrix elements give similar values, and also LO PDFs)

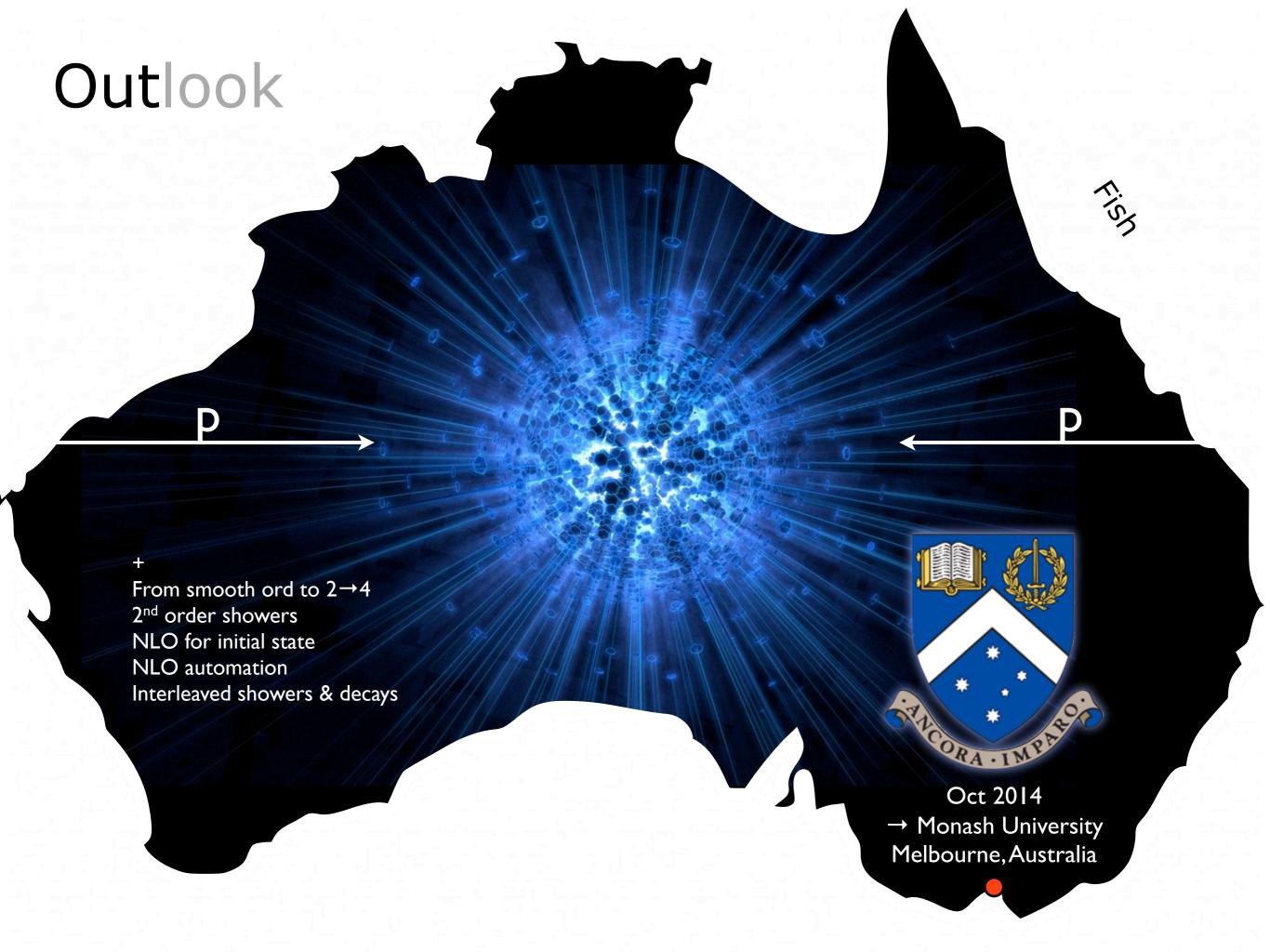
$\left\langle \chi^{2} \right angle$ Shapes	T	C	D	B_W	B_T
PYTHIA 8	0.4	0.4	0.6	0.3	0.2
VINCIA (LO)	0.2	0.4	0.4	0.3	0.3
VINCIA (NLO)	0.2	0.2	0.6	0.3	0.2

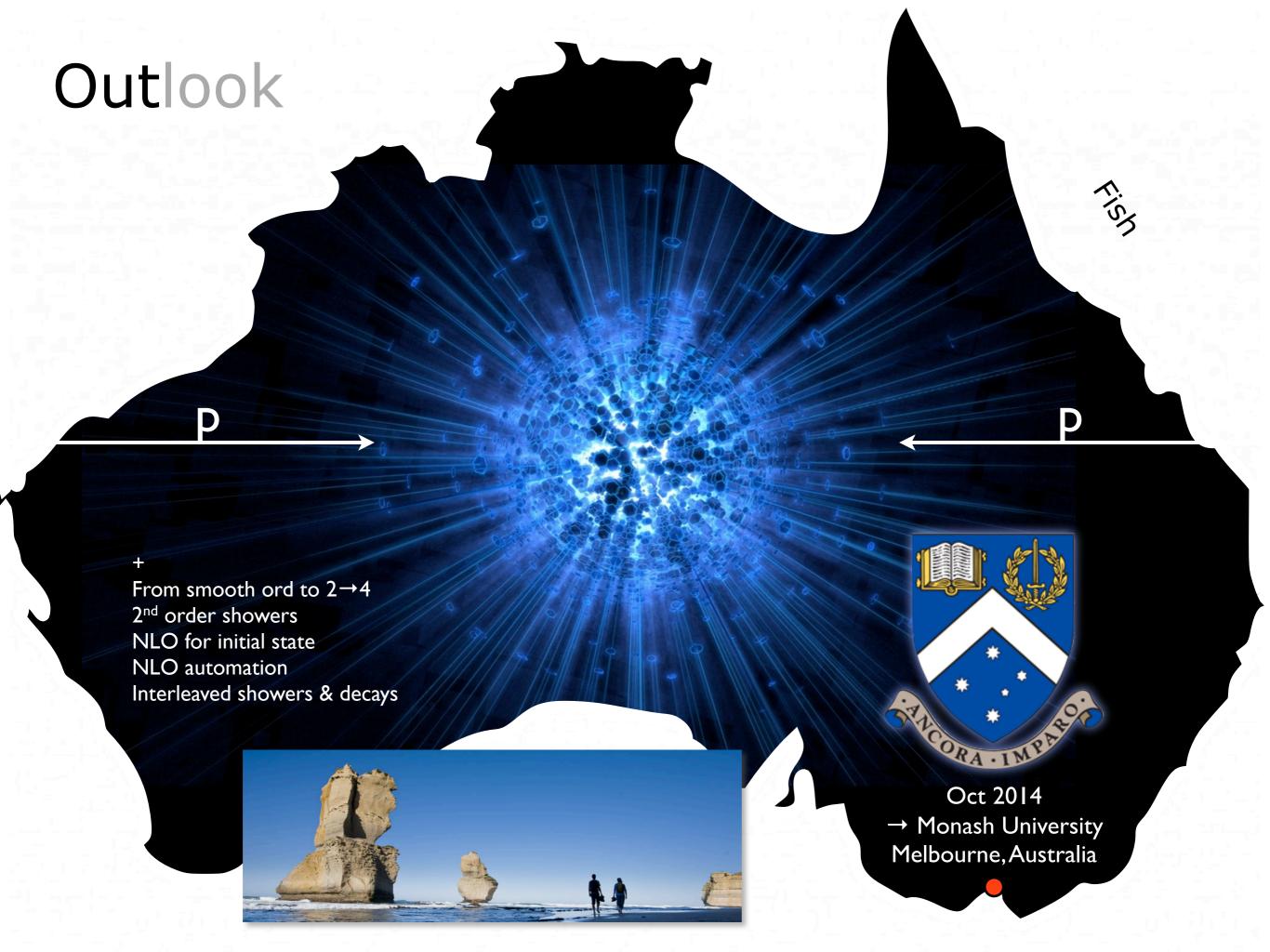
$\left\langle \chi^{2} \right angle$ Jets	$r_{1j}^{ m exc}$	$\ln(y_{12})$	$r_{2j}^{ m exc}$	$\ln(y_{23})$	$r_{3j}^{ m exc}$	$\ln(y_{34})$	$r_{4j}^{ m exc}$	$\ln(y_{45})$	$r_{5j}^{ m exc}$	$\ln(y_{56})$	$r_{6j}^{ m inc}$
PYTHIA 8	0.1	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.2	0.4	0.3
VINCIA (LO)	0.1	0.2	0.1	0.2	0.0	0.2	0.3	0.1	0.1	0.0	0.0
VINCIA (NLO)	0.2	0.4	0.1	0.3	0.1	0.3	0.2	0.2	0.1	0.2	0.1

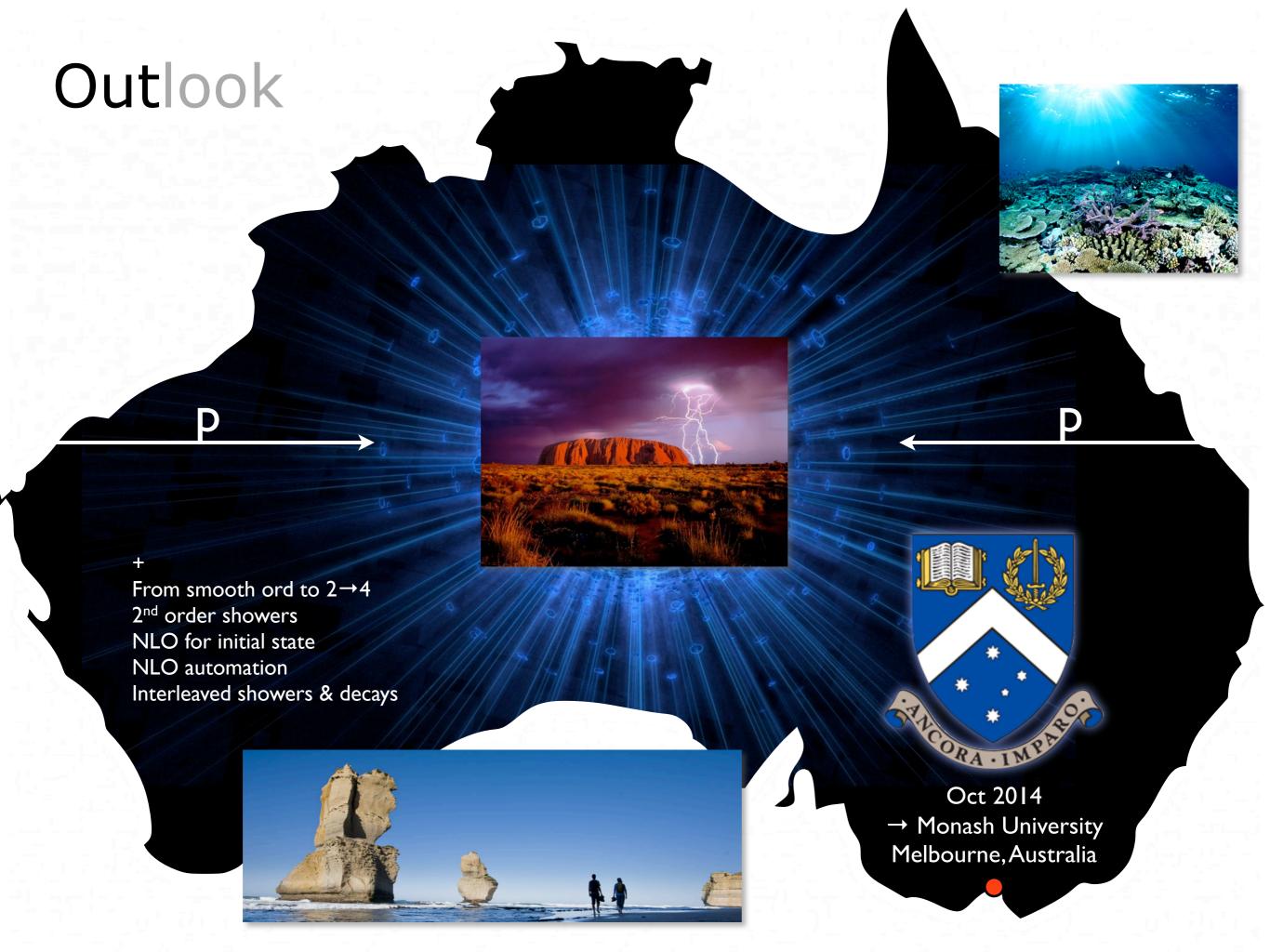












Shower Types

Traditional vs Coherent vs Global vs Sector vs Dipole

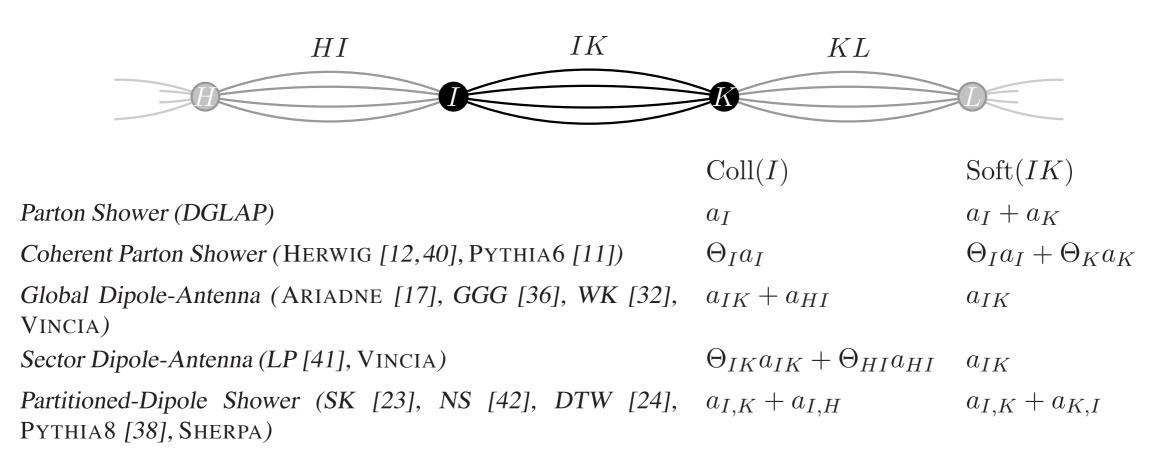


Figure 2: Schematic overview of how the full collinear singularity of parton I and the soft singularity of the IK pair, respectively, originate in different shower types. (Θ_I and Θ_K represent angular vetos with respect to partons I and K, respectively, and Θ_{IK} represents a sector phase-space veto, see text.)

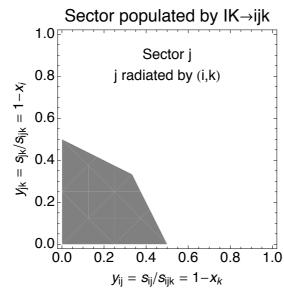
Sector Antennae

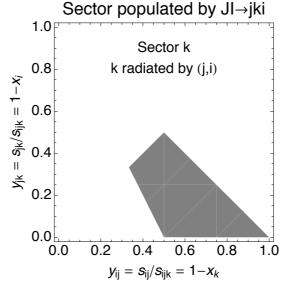
Global

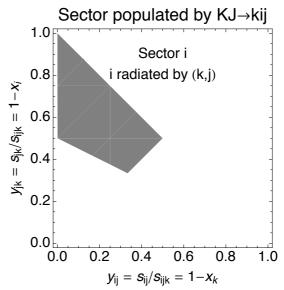
$$\bar{a}_{g/qg}^{\mathrm{gl}}(p_i,p_j,p_k) \overset{s_{jk}\to 0}{\longrightarrow} \frac{1}{s_{jk}} \left(P_{gg\to G}(z) - \frac{2z}{1-z} - z(1-z) \right)$$
 $\xrightarrow{}$ $\mathsf{P(z)} = \mathsf{Sum} \; \mathsf{over} \; \mathsf{two} \; \mathsf{neigboring} \; \mathsf{antennae} \; \mathsf{neigboring} \; \mathsf{neigbo$

Sector

Only a single term in each phase space point







 \rightarrow Full P(z) must be contained in every antenna

$$\bar{a}_{j/IK}^{\text{sct}}(y_{ij}, y_{jk}) = \bar{a}_{j/IK}^{\text{gl}}(y_{ij}, y_{jk}) + \delta_{Ig}\delta_{H_K H_k} \left\{ \delta_{H_I H_i} \delta_{H_I H_j} \left(\frac{1 + y_{jk} + y_{jk}^2}{y_{ij}} \right) \right\}$$

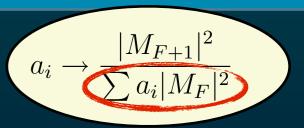
Sector = Global + additional collinear terms (from "neighboring" antenna)

$$+ \delta_{H_{I}H_{j}} \left(\frac{1}{y_{ij}(1 - y_{jk})} - \frac{1 + y_{jk} + y_{jk}^{2}}{y_{ij}} \right) \right\}$$

$$+ \delta_{Kg} \delta_{H_{I}H_{i}} \left\{ \delta_{H_{I}H_{j}} \delta_{H_{K}H_{k}} \left(\frac{1 + y_{ij} + y_{ij}^{2}}{y_{jk}} \right) - \frac{1 + y_{ij} + y_{ij}^{2}}{y_{jk}} \right\}$$

$$+ \delta_{H_K H_j} \left(\frac{1}{y_{jk} (1 - y_{ij})} - \frac{1 + y_{ij} + y_{ij}^2}{y_{jk}} \right) \right\}$$

The Denominator



In a traditional parton shower, you would face the following problem:

Existing parton showers are *not* really Markov Chains

Further evolution (restart scale) depends on *which* branching happened last → proliferation of terms

Number of histories contributing to n^{th} branching $\propto 2^n n!$

$$\left(\left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \begin{array}{c} \\ \\ \\ \end{array} \right) = 1$$
2 terms

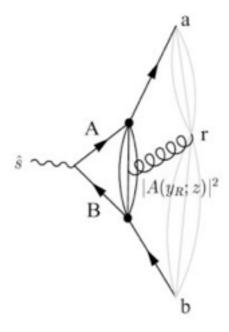
Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)

Matched Markovian Antenna Showers

Antenna showers: one term per parton *pair* 2ⁿn! → n!

Giele, Kosower, Skands, PRD 84 (2011) 054003



(+ generic Lorentzinvariant and on-shell phase-space factorization)

+ Change "shower restart" to Markov criterion:

Given an *n*-parton configuration, "ordering" scale is

 $Q_{ord} = min(Q_{E1}, Q_{E2}, ..., Q_{En})$

Unique restart scale, independently of how it was produced

+ Matching: n! → n

Given an *n*-parton configuration, its phase space weight is:

 $|M_n|^2$: Unique weight, independently of how it was produced

Matched Markovian Antenna Shower:

After 2 branchings: 2 terms After 3 branchings: 3 terms After 4 branchings: 4 terms Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ **Sector** antennae

→ 1 term at *any* order

Larkosi, Peskin, Phys. Rev. D81 (2010) 054010 Lopez-Villarejo, Skands, JHEP 1111 (2011) 150

Approximations

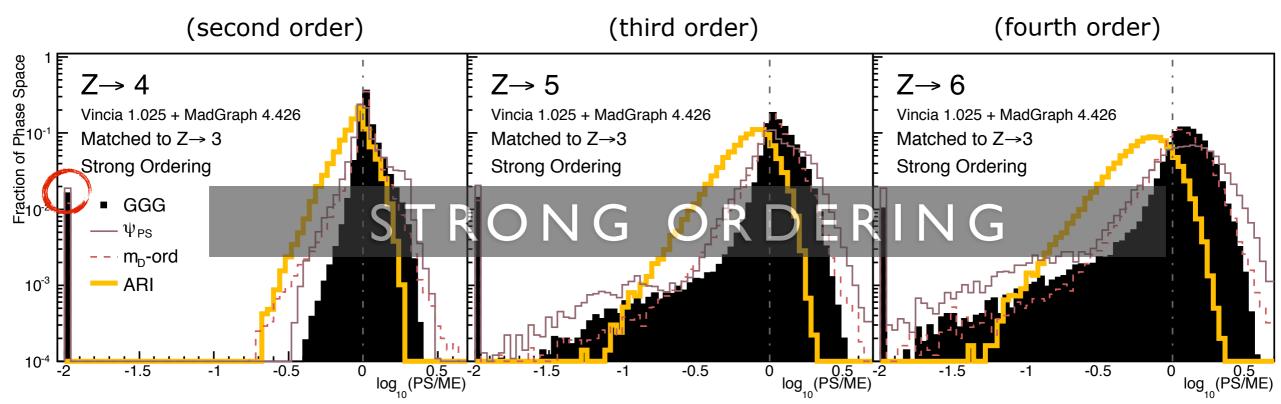
Q: How well do showers do?

Exp: Compare to data. Difficult to interpret; all-orders cocktail including

hadronization, tuning, uncertainties, etc

Th: Compare products of splitting functions to full tree-level matrix elements

Plot distribution of Log₁₀(PS/ME)

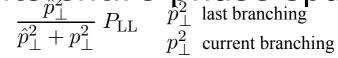


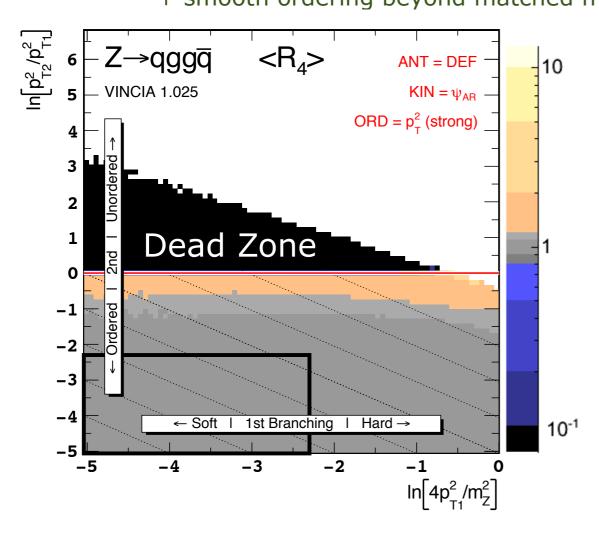
Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*fine from strict LL point of view: those points correspond to "unordered" non-log-enhanced configurations

Generate Branchings without imposing strong ordering

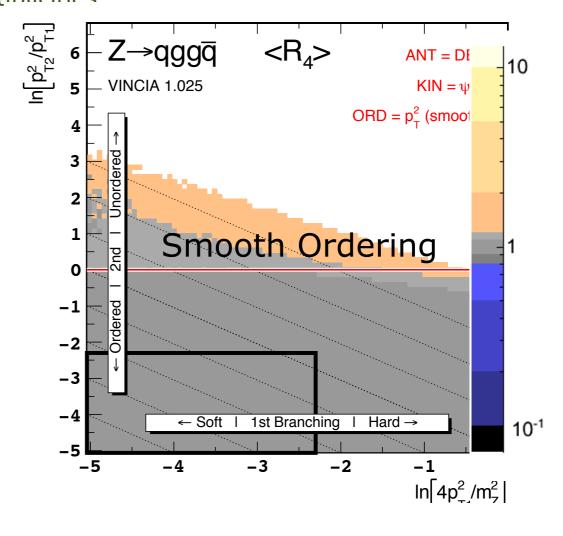
At each step, each dipole allowed to fill its entire phase space overcounting removed by matching $\frac{\hat{p}_{\perp}^2}{\hat{p}_{\perp}^2 + p_{\perp}^2} P_{\rm LL} = \frac{\hat{p}_{\perp}^2}{\hat{p}_{\perp}^2} \frac{\text{last branching}}{\hat{p}_{\perp}^2 \text{ current branching}}$

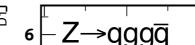
+ smooth ordering beyond matched multiplicities





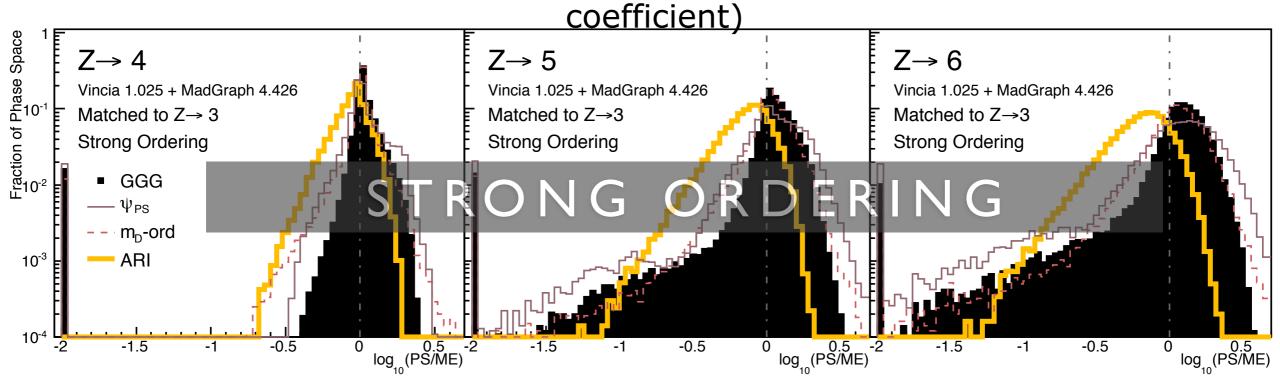
 $< R_{\downarrow} >$



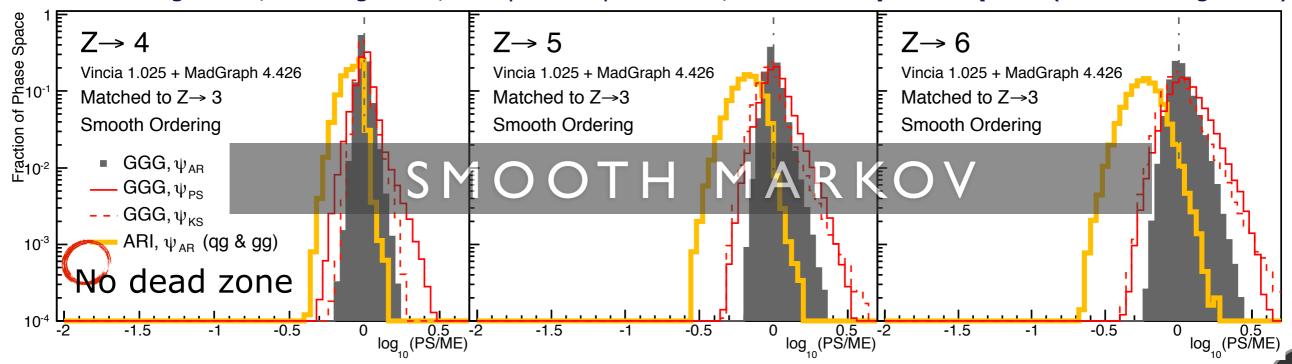


→ Better Approximations

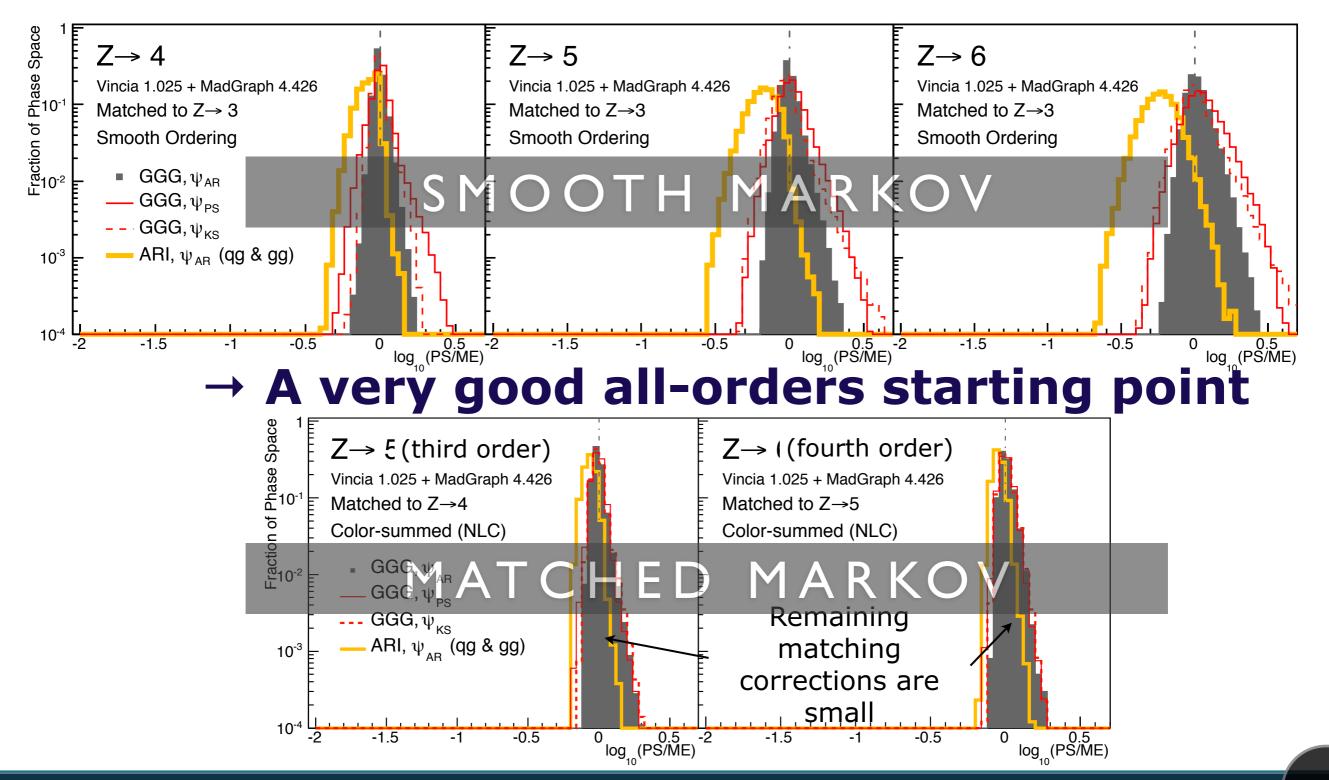
Distribution of Log₁₀(PS_{LO}/ME_{LO}) (inverse ~ matching



Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

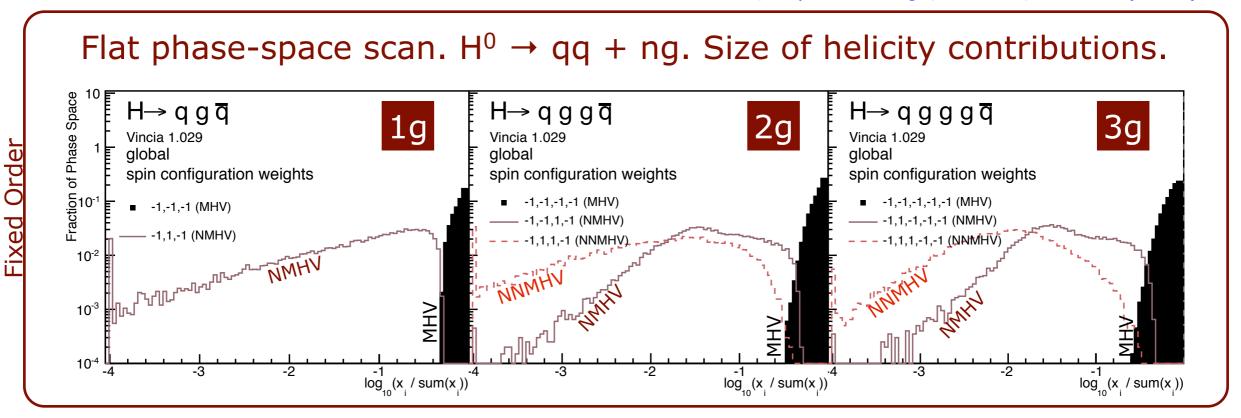


+ Matching (+ full colour)



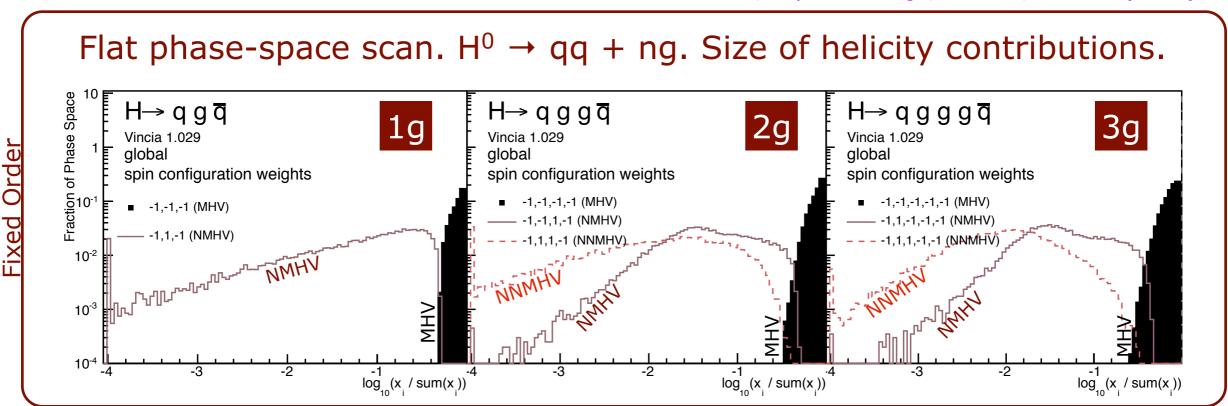
Helicity Contributions

Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033



Helicity Contributions

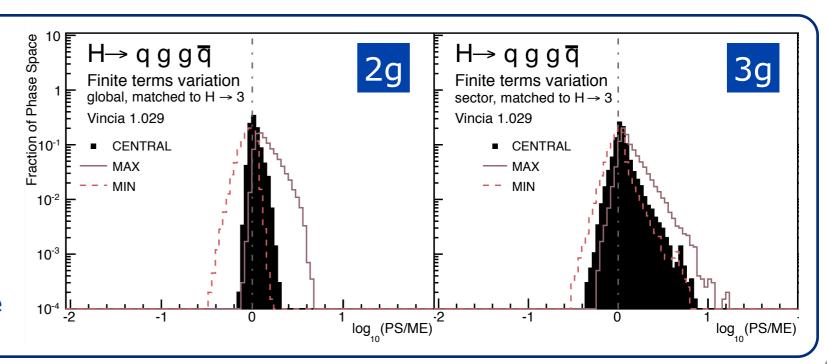
Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033



Distribution of PS/ME ratio (summed over helicities)

Vincia shower already quite close to ME
→ small corrections

Note: precision not greatly improved by helicity dependence



Helicity Contributions

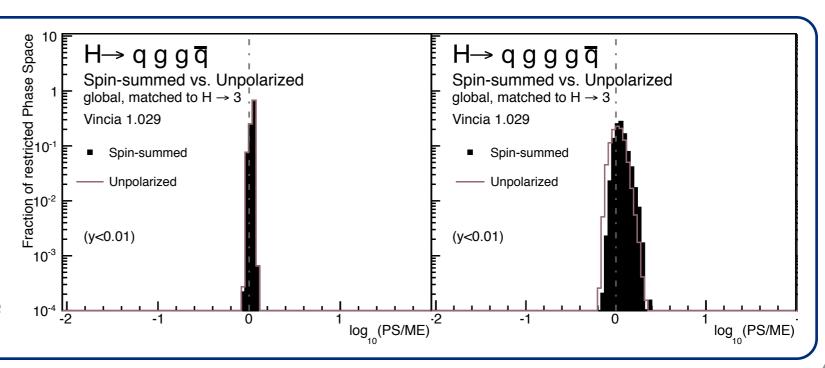
Larkoski, Lopez-Villarejo, Skands, PRD 87 (2013) 054033



Distribution of PS/ME ratio (summed over helicities)

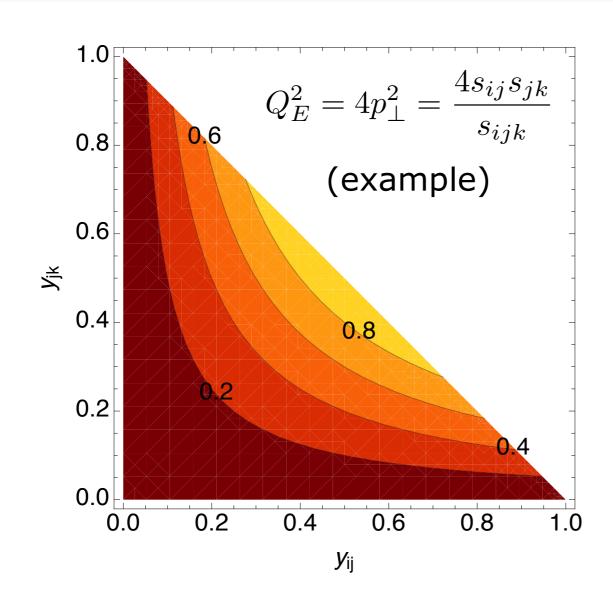
Vincia shower already quite close to ME
→ small corrections

Note: precision not greatly improved by helicity dependence



P. Skands _____

Sudakov Integrals



$$\begin{array}{c} \textbf{1.0} \\ \textbf{2-3:} \\ \textbf{0.8} \\ g_s^2C_A \\ \textbf{0.6} \\ \textbf{0.6} \\ \textbf{0.7} \\ \textbf{2.7} \\ \textbf{0.6} \\ \textbf{0.6} \\ \textbf{0.7} \\ \textbf{0.7} \\ \textbf{0.8} \\ \textbf{0.9} \\ \textbf{$$

 $I_5 = \frac{1}{24} \left| 2 \left(3C_{00} - (C_{01} + C_{10})(-1 + y_3^2) \sqrt{1 - y_3^2} - 3C_{00}y_3^2 \ln \left(\frac{1 + \sqrt{1 - y_3^2}}{1 - \sqrt{1 - y_3^2}} \right) \right) \right|.$

3→4: C_A piece (for strong ordering)

$$-g_s^2 \sum_{j=1}^2 C_A \int_0^{s_j} (1 - O_{E_j}) d_3^0 d\Phi_{\text{ant}} = -\frac{\alpha_s C_A}{2\pi} \left(\sum_{i=1}^5 K_i I_i(s_{qg}, Q_3^2) \right) - \frac{\alpha_s C_A}{2\pi} \left(\sum_{i=1}^5 K_i I_i(s_{g\bar{q}}, Q_3^2) \right)$$

Speed relative to PYTHIA

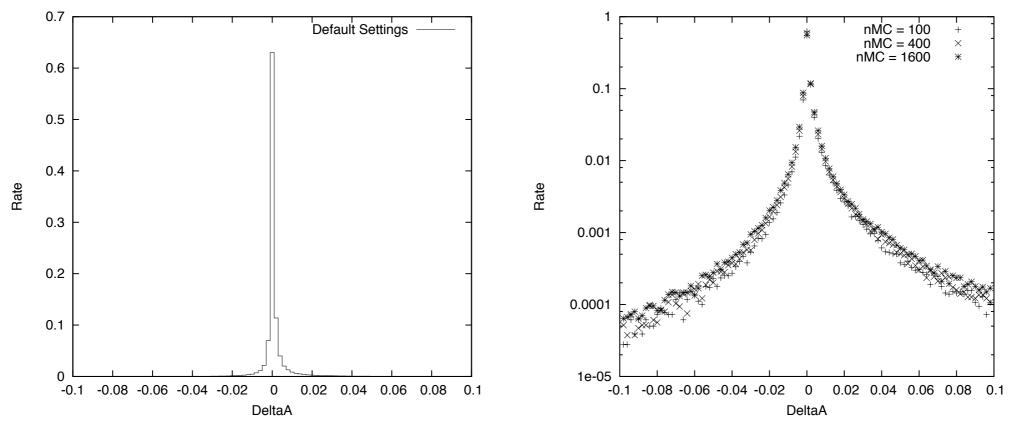


Figure 14: Distribution of the size of the δA terms (normalized so the LO result is unity) in actual VIN-CIA runs. Left: linear scale, default settings. Right: logarithmic scale, with variations on the minimum number of MC points used for the integrations (default is 100).

Speed:

	$Z \rightarrow$	$Z \rightarrow$	[milliseconds]	$rac{1}{ ext{Time}}$ / PYTHIA 8	
PYTHIA 8	2,3	2	0.4	1	
VINCIA (NLO off)	2, 3, 4, 5	2	2.2	$\sim 1/5$	
VINCIA (NLO on)	2, 3, 4, 5	2,3	3.0	~ 1/7 ←	- OK

Time / Event

P. Skands

LO level NLO level

Loop Corrections

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Hartgring, Laenen, Skands, arXiv:1303.4974

Pedagogical Example: $Z^0 o q ar q$ First Order (~POWHEG)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at Q = Q_{had}
$$= |M_0^0|^2 \left(1 + \frac{2\operatorname{Re}[M_0^0 M_0^{1*}]}{|M_0^0|^2} + \int_0^{Q_{\mathrm{had}}^2} \mathrm{d}\Phi_{\mathrm{ant}} \, g_s^2 \, \mathcal{C} \, A_{g/q\bar{q}}\right) = \frac{|M_1^0|^2}{|M_0^0|^2}$$
 Born Virtual Unresolved Real

Loop Corrections

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Hartgring, Laenen, Skands, arXiv:1303.4974

Pedagogical Example: $Z^0 o q ar q$ First Order (~POWHEG)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at Q = Qhad

$$= |M_0^0|^2 \left(1 + \frac{2\operatorname{Re}[M_0^0 M_0^{1*}]}{|M_0^0|^2} + \int_0^{Q_{\mathrm{had}}^2} \mathrm{d}\Phi_{\mathrm{ant}} \ g_s^2 \ \mathcal{C} \ A_{g/q\bar{q}} \right)$$
 Born Virtual Unresolved Real

LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{had}$

$$|M_0^0|^2 \Delta(s, Q_{\text{had}}^2) = |M_0^0|^2 \left(1 - \int_{Q_{\text{had}}^2}^s d\Phi_{\text{ant}} g_s^2 \mathcal{C} A_{g/q\bar{q}} + \mathcal{O}(\alpha_s^2)\right)$$

Born Sudakov

Approximate Virtual + Unresolved Real

Loop Corrections

Giele, Kosower, Skands, Phys.Rev. D78 (2008) 014026 Hartgring, Laenen, Skands, arXiv:1303.4974

Pedagogical Example: $Z^0 o q ar q$ First Order (~POWHEG)

Fixed Order: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{had}$

$$= |M_0^0|^2 \left(1 + \frac{2\operatorname{Re}[M_0^0 M_0^{1*}]}{|M_0^0|^2} + \int_0^{Q_{\mathrm{had}}^2} \mathrm{d}\Phi_{\mathrm{ant}} \, g_s^2 \, \mathcal{C} \, A_{g/q\bar{q}} \right)$$
 Born Virtual Unresolved Real

LO Vincia: Exclusive 2-jet rate (2 and only 2 jets), at $Q = Q_{had}$

$$|M_0^0|^2 \Delta(s, Q_{\text{had}}^2) = |M_0^0|^2 \left(1 - \int_{Q_{\text{had}}^2}^s d\Phi_{\text{ant}} g_s^2 \mathcal{C} A_{g/q\bar{q}} + \mathcal{O}(\alpha_s^2)\right)$$

Born Sudakov

Approximate Virtual + Unresolved Real

NLO Correction: Subtract and correct by difference

$$\frac{2\operatorname{Re}[M_0^0 M_0^{1^*}]}{|M_0^0|^2} = \frac{\alpha_s}{2\pi} 2C_F \left(2I_{q\bar{q}}(\epsilon, \mu^2/m_Z^2) - 4\right) \\ \int_0^s \!\! \mathrm{d}\Phi_{\mathrm{ant}} 2C_F \, g_s^2 \, A_{g/q\bar{q}} = \frac{\alpha_s}{2\pi} \, 2C_F \left(-2I_{q\bar{q}}(\epsilon, \mu^2/m_Z^2) + \frac{19}{4}\right) \\ \operatorname{IR Singularity Operator}$$

IR Singularity Operators

Gehrmann, Gehrmann-de Ridder, Glover, JHEP 0509 (2005) 056

$$q \bar q o q g \bar q$$
 antenna function

$$X_{ijk}^{0} = S_{ijk,IK} \frac{|\mathcal{M}_{ijk}^{0}|^{2}}{|\mathcal{M}_{IK}^{0}|^{2}}$$

$$A_3^0(1_q, 3_g, 2_{\bar{q}}) = \frac{1}{s_{123}} \left(\frac{s_{13}}{s_{23}} + \frac{s_{23}}{s_{13}} + 2 \frac{s_{12}s_{123}}{s_{13}s_{23}} \right)$$

Integrated antenna

$$\mathcal{P}oles\left(\mathcal{A}_{3}^{0}(s_{123})\right) = -2\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon, s_{123}\right)$$

$$\mathcal{F}inite\left(\mathcal{A}_3^0(s_{123})\right) = \frac{19}{4} .$$

$$\mathcal{X}_{ijk}^{0}(s_{ijk}) = \left(8\pi^{2} (4\pi)^{-\epsilon} e^{\epsilon \gamma}\right) \int d\Phi_{X_{ijk}} X_{ijk}^{0}.$$

for qg→qq'q'

Singularity Operators

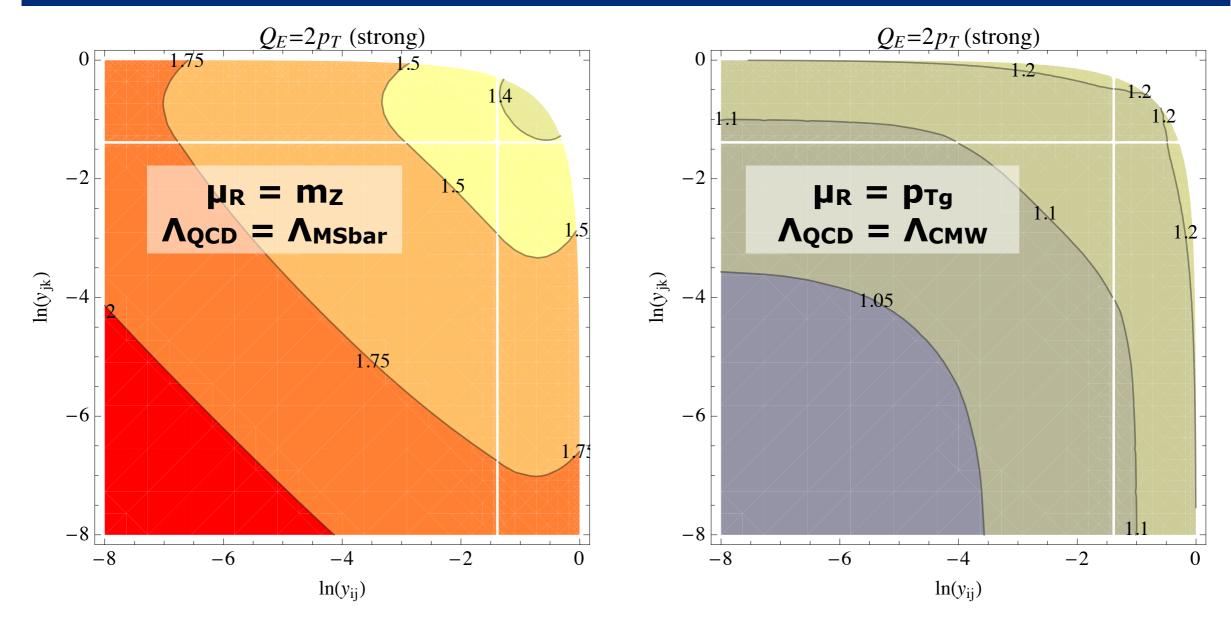
$$\mathbf{I}_{q\bar{q}}^{(1)}\left(\epsilon,\mu^{2}/s_{q\bar{q}}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)}\left[\frac{1}{\epsilon^{2}} + \frac{3}{2\epsilon}\right]\operatorname{Re}\left(-\frac{\mu^{2}}{s_{q\bar{q}}}\right)^{\epsilon}$$

$$\mathbf{I}_{qg}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = -\frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)}\left[\frac{1}{\epsilon^{2}} + \frac{5}{3\epsilon}\right]\operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for qg}\rightarrow\text{qgg}$$

$$\mathbf{I}_{qg,F}^{(1)}\left(\epsilon,\mu^{2}/s_{qg}\right) = \frac{e^{\epsilon\gamma}}{2\Gamma\left(1-\epsilon\right)}\frac{1}{6\epsilon}\operatorname{Re}\left(-\frac{\mu^{2}}{s_{qg}}\right)^{\epsilon} \quad \text{for qg}\rightarrow\text{qq'q}$$

Choice of µR

Renormalization: 1) Choose $\mu_R \sim p_{Tjet}$ (absorbs universal β -dependent terms) 2) Translate from MSbar to CMW scheme ($\Lambda_{CMW} \sim 1.6 \Lambda_{MSbar}$ for coherent showers)



Markov Evolution in: Transverse Momentum, $a_S(M_Z) = 0.12$