SCET+PS Discussion Session

Frank Tackmann

Deutsches Elektronen-Synchrotron

Resummation and Parton Showers Durham, July 15-17, 2013

< (7) >

Overview ●OO	Transition Region	Other Observables	MPI and Double Counting O
The Plan			

- Introduction (very brief)
- 3 important/interesting issues I'd like to bring up:
 - Transition between pure resummation (PS) and pure fixed order (ME)
 - Accuracy when resumming one thing and looking at another
 - Double-counting and separation between soft+collinear radiation and soft MPI
- Please feel free to raise more

This is meant as a discussion session, so please discuss ...

Disclaimer:

Nothing here is really SCET specific, so I'm going to think more of a "Higher-order Resummation + PS/MC" discussion

Frank Tackmann (DESY)

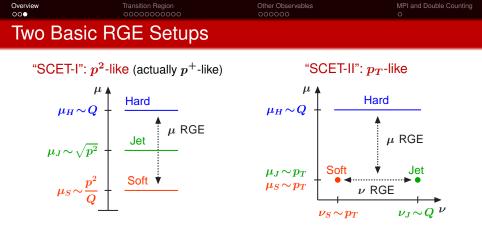
SCET+PS Discussion Session

2013-07-15 1 / 21

< 69 >

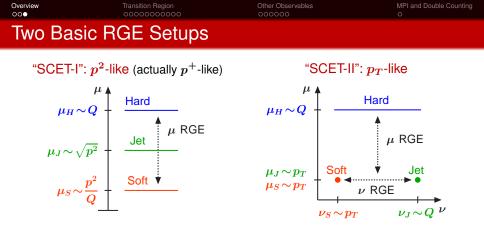
Other Observable

MPI and Double Counting O


1-page Introduction to SCET

SCET is the effective field theory of QCD in the soft and collinear limit

[Bauer, Fleming, Pirjol, Stewart (+Rothstein; Beneke, Chapovsky, Diehl, Feldmann)]


Advantages of effective-field theory setup

- Power counting and expansion in soft and collinear limits manifest at the Lagrangian level
- Clean separation of different relevant energy scales
- \Rightarrow Logarithms can be resummed using standard RGE methods
 - → Can go to higher order in a systematic way ("only" need to know higher-order matching and anomalous dimensions)
 - → Systematic control of perturbative uncertainties (evaluation through variations of matching/resummation scales)
- ⇒ "Nonsingular" corrections to recover full QCD are formal power corrections and can be added systematically

Appropriate setup depends on kinematics of the observable in question

- At e^+e^- some bias toward p^2 -like (many event shapes are)
 - → notable exception: jet broadening
- At LHC some bias toward p_T -like
 - $\rightarrow\,$ notable exceptions: jet mass and dijet inv. mass

Relation to parton-shower evolution at (N)LL

- p^2 -ordered: $U_{\mathrm{PS}}(Q,\sqrt{p^2}) = U_H(Q,\sqrt{p^2}) imes U_S(p^2/Q,\sqrt{p^2})$
- p_T -ordered: $U_{PS}(Q, p_T) = U_H(Q, p_T)$

(Rapidity ν RGE becomes relevant at NNLL, which is why a p_T -ordered shower has a chance to be NLL correct at leading color)

Frank Tackmann (DESY)

Transition Region

Frank Tackmann (DESY)

< 🗗 >

Transition Region

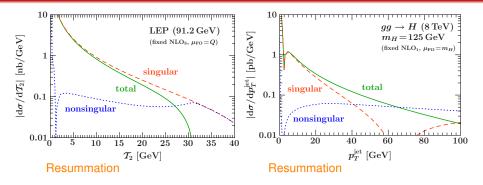
Other Observables

MPI and Double Counting O

Singular vs. Nonsingular

Differential spectrum in some IR-sensitive variable τ has all-order structure (e.g. $\tau = T_2/Q = 1 - T$)

- singular: large logs which are resummed
 - constant c_{k,-1} belongs to singular
- nonsingular: treated in fixed order
 - $f_k^{nons}(\tau)$ has only integrable divergences


•
$$F_k^{\mathrm{nons}}(\tau^{\mathrm{cut}} \to 0) \to 0$$

Transition Region

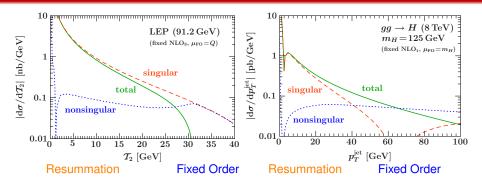
Other Observables

MPI and Double Counting O

Perturbative Regions

Resummation region

- Singular dominate and must be resummed, nonsingular are power-suppressed
- Fixed-order by itself becomes meaningless here


< (7) >

Transition Region

Other Observables

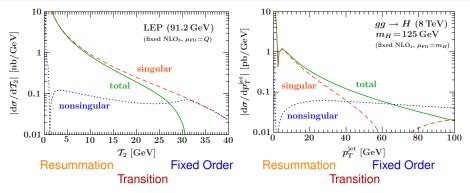
MPI and Double Counting O

Perturbative Regions

Fixed-order region

- Important large cancellations between singular and nonsingular (their distinction is unphysical here)
- Resummation becomes meaningless here and *must be* turned off (otherwise cancellations are spoiled)

2013-07-15 5/21


< 67 →

Transition Region

Other Observables

MPI and Double Counting O

Perturbative Regions

Transition region

- Often experimentally the most relevant while theoretically the most subtle
- Most accurate description requires both resummation and fixed order and a consistent combination
- \rightarrow So in some sense this is where ME+PS is really needed

< (7) >

Transition Region

Other Observable

MPI and Double Counting O

Perturbative Regions

What are the boundaries between different regions?

- Can't say for sure, there are no strict boundaries
 - → Even more relevant to have a consistent combination of both limits (And it won't matter as much anymore once the result is valid everywhere)
- Can get a good idea by looking at relative size of singular vs. nonsingular

What does "consistent" combination require in practice?

• Be correct in either limit and reasonable (= smooth) in the middle

Resummation region:

Include higher-orders through resummed pert. theory

Fixed-order region:

Enforce fixed-order pert. theory by turning off resummation

Overview 000	Transition Region	Other Observables	MPI and Double Counting O
Resumm	hation $+$ Fixed O	rder	

Default conventions:		Fixed-order corrections		Resummation input		
		H,J,S	nonsingular	$\gamma_{H,J,S}$	Γ_{cusp}	\boldsymbol{eta}
	NLL	$\mathcal{O}(1)$	-	1-loop	2-loop	2-loop
		${\cal O}(lpha_s)$	${\cal O}(lpha_s)$	1-loop	2-loop	2-loop
	$NNLL' + NLO_3$	${\cal O}(lpha_s^2)$	${\cal O}(lpha_s^2)$	2-loop	3-loop	3-loop

$$d\sigma^{\rm FO}(\mu_{\rm FO}) = \underline{d\sigma^{\rm sing}(\mu_{\rm FO})} + d\sigma^{\rm nons}(\mu_{\rm FO})$$
$$d\sigma = d\sigma^{\rm resum'}(\mu_S, \mu_J, \mu_H) + d\sigma^{\rm nons}(\mu_{\rm FO})$$

N^kLL' fully contains $\mathcal{O}(\alpha_s^k)$ singular (via α_s^k hard, jet, soft functions) $\Rightarrow d\sigma^{\text{resum'}}(\mu_S = \mu_J = \mu_H = \mu_{\text{FO}}) = d\sigma^{\text{sing}}(\mu_{\text{FO}})$ exactly

(Formally, α_s^k matching contributes at N^{k+1}LL, so NNLL+LO₃ and N³LL+NLO₃ are also ok)

Frank Tackmann (DESY)

< 🗗 🕨

Transition Region

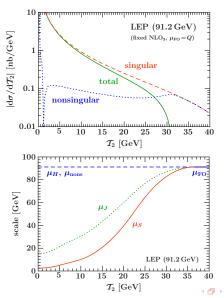
Other Observables

MPI and Double Counting O

Profile Scales

• Resummation region: Logs are resummed using canonical scales: $\mu_H = Q$ $\mu_J = \sqrt{\mu_S \mu_H}$ $\mu_S = T_2$

 $+d\sigma^{nons}$ adds a power correction

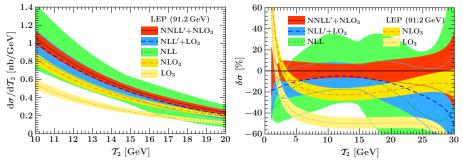

• FO region:

Resummation turned off by taking

 $\mu_S, \mu_J, \mu_H \to \mu_{\rm FO}$

 $\Rightarrow \mathrm{d}\sigma
ightarrow \mathrm{d}\sigma^{\mathrm{FO}}(\mu_{\mathrm{FO}})$

- Transition region: Profiles for μ_S, μ_J provide smooth transition between both limits
 - ⇒ Ambiguity is a scale uncertainty

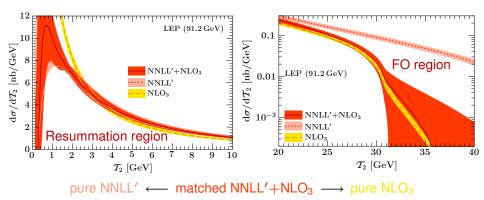


Transition Region

Other Observables

MPI and Double Counting O

Example: Thrust in e^+e^-

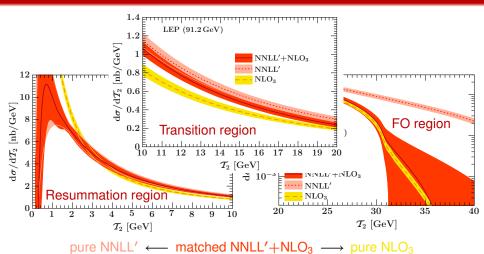

- Fixed order does not converge well for spectrum (well-known)
- Uncertainties in resummed from $\Delta_{total} = \Delta_{FO} \oplus \Delta_{resum}$ where
 - Δ_{FO} from overall μ_{FO} factor 2 variation
 - Δ_{resum} from μ_S , μ_J profile scale variations
- \Rightarrow Even N³LL'+NNLO₃ is known and within the N²LL'+NLO₃ uncertainties, so in the following I'll use the latter as the correct result to compare to

Transition Region

Other Observables

MPI and Double Counting O

Example: Thrust in e^+e^-


< (7) >

Transition Region

Other Observables

MPI and Double Counting

Example: Thrust in e^+e^-

In transition region

• Neither pure NNLL' nor pure NLO₃ alone give NLO-accurate result

Frank Tackmann (DESY)

SCET+PS Discussion Session

2013-07-15 10 / 21

Transition Region

Other Observables

MPI and Double Counting O

Relation to ME+PS Merging

In usual ME+PS matching/merging, resummation and FO do not match up in the same way, since PS is only (N)LL_{(σ)}

"Additive" merging (a la MC@NLO)

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{\mathrm{resum}} + \left[\mathrm{d}\sigma^{\mathrm{FO}} - \mathrm{d}\sigma^{\mathrm{resum}}\Big|_{\mathrm{FOexpanded}}\right]$$

• For resum = (N)NLL' and FO = (N)LO₃ the term in brackets precisely gives $d\sigma^{nons}$

"Multiplicative" (a la CKKW, POWHEG)

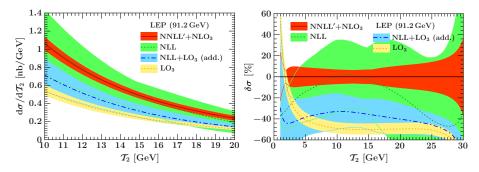
$$\mathrm{d}\sigma = \mathrm{d}\sigma^{\mathrm{resum}} imes rac{\mathrm{d}\sigma^{\mathrm{FO}}}{\mathrm{d}\sigma^{\mathrm{resum}}}\Big|_{\mathrm{FOexpanded}}$$

(Obviously there are many differences to MC implementations: Different Sudakovs, profiles vs. canonical scales, evolution/resummation variables etc. ... Nevertheless, regarding the resummation and FO pert. accuracy these are equivalent.)

Frank Tackmann (DESY)

SCET+PS Discussion Session

2013-07-15 11 / 21


Transition Region

Other Observables

MPI and Double Counting O

Merging NLL and LO₃

Using additive merging of NLL and LO_3

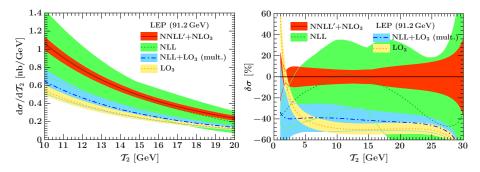
- Expanding the resummed and correcting it to LO₃ pushes the result toward LO₃: That's precisely as one should expected
- ⇒ However: Central value gets worse while the scale uncertainties shrink (uncertainties would be even smaller without profile scale variations)

Frank Tackmann (DESY)

SCET+PS Discussion Session

2013-07-15 12/21

< (7) >


Transition Region

Other Observables

MPI and Double Counting O

Merging NLL and LO₃

Using multiplicative merging of NLL and LO3

- Expanding the resummed and correcting it to LO₃ pushes the result toward LO₃: That's precisely as one should expected
- ⇒ However: Central value gets worse while the scale uncertainties shrink (uncertainties would be even smaller without profile scale variations)

Frank Tackmann (DESY)

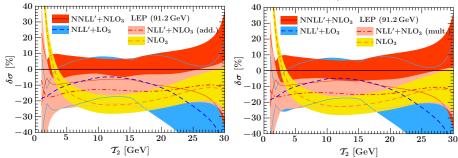
SCET+PS Discussion Session

2013-07-15 12/21

< (7) >

Transition Region

Other Observables


MPI and Double Counting O

NLO₃ Merging

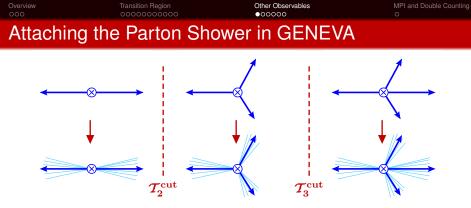
Merging NLL'+LO₃ with NLO₃

Additive

- Improvement seen in the pure FO limit, but as soon as we are in the transition region the result is again worse than lower order (and fully consistent) NLL'+LO₃ result
- This is likely optimistic already since MC@NLO / POWHEG don't have full NLL'+LO₃ (Possibly MiNLO might, but not sure ...)

Frank Tackmann (DESY)

SCET+PS Discussion Session

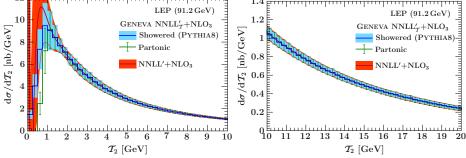

Overview 000	Transition Region ○○○○○○○○○●	Other Observables	MPI and Double Counting
Comments .			

... to instigate discussion ;-)

- Are we really sure that by doing all this merging, matching, mixing of higher fixed-order corrections that we're not shooting ourselves in the foot?
- Shouldn't adding higher fixed orders (keeping everything else as accurate as before) always improve the pert. accuracy?
 - Not necessarily, one can only take this for granted in the region of phase space where fixed-order pert. theory provides the proper organization of the perturbative series
 - In other regions (certainly in the resummation region and maybe also in the transition) at the very minimum one should at least check (which I wouldn't really know how to do without having a consistent combination of resummed and FO pert. theory and having at least two orders to check convergence etc.)

Other Observables

< 67 ►



Partonic events represent resummed jet cross sections. Since the parton shower generates perturbative emissions it should

- only fill jets with radiation below $\mathcal{T} < \mathcal{T}^{\mathrm{cut}}$
- not change resummed jet cross sections
 - ► Requires the shower to not change the jet kinematics, in particular *T*₂, of an event (up to small power corrections)
 - Currently done by repeatedly running Pythia8 shower on the same event. Clearly, there should be a smarter more efficient way ...

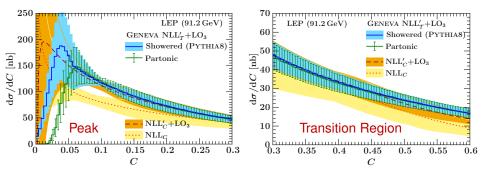
< 67 →

Overview
 ∞ Transition Region
 ∞ Other Observables
 $\omega \circ \infty \circ \infty$ MPI and Double Counting
 ∞ 2-Jettiness $\mathcal{T}_2 = Q(1 - T)$ 12
LEP (91.2 GeV)14
LEP (91.2 GeV)

- For T_2 we get out what we put in by construction
- Shower fills out $T_2 < T_2^{cut} \simeq 1 \text{ GeV}$ ("no-emission" bin) (here shape is Pythia while normalization is still NNLL'+NLO₃)

Interesting Question: What's the formal accuracy for other observables?

• So far we validate numerically against analytic resummed results

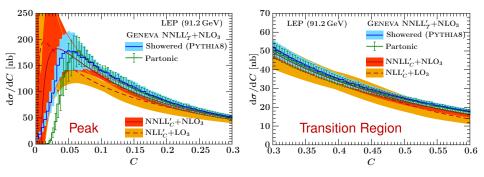

Frank Tackmann (DESY)

SCET+PS Discussion Session

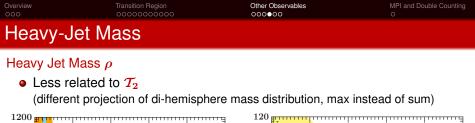
Overview 000	Transition Region	Other Observables	MPI and Double Counting O
C Paramete	er		

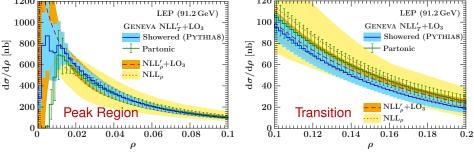
C parameter

 Logarithmic structure closely related to T₂ (differs in soft contributions, more extended resummation and transition regions)



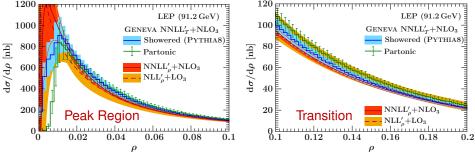
- "No-emission" bin in \mathcal{T}_2 is more spread out now
- Putting in NLL'_T+LO₃ we essentially get out analytic NLL'_C+LO₃ for both central value and uncertainties


Overview	Transition Region	Other Observables	MPI and Double Counting
000		○○●○○○	O
C Paramete	er		


C parameter

 Logarithmic structure closely related to T₂ (differs in soft contributions, more extended resummation and transition regions)

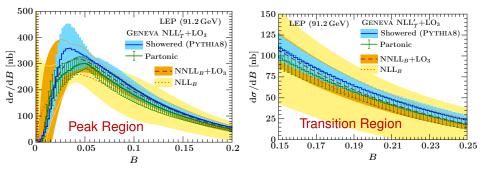
- "No-emission" bin in \mathcal{T}_2 is more spread out now
- Putting in NNLL'_T+NLO₃ we essentially get out analytic NNLL'_C+NLO₃ for both central value and uncertainties



- Expect higher-order corrections to shift spectrum to left due to back radiation into the other hemisphere
 - ⇒ Precisely what the showering "below" T_2 does and which helps getting again close agreement with analytic NLL_C+LO₃

Frank Tackmann (DESY)

- Expect higher-order corrections to shift spectrum to left due to back radiation into the other hemisphere
 - ⇒ Precisely what the showering "below" T_2 does and which helps getting again close agreement with analytic NNLL_C+NLO₃

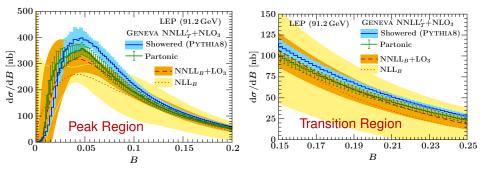

Frank Tackmann (DESY)

< 67 →

Overview 000	Transition Region	Other Observables	MPI and Double Counting O
Jet Broade	ning		

Jet Broadening B

• Very different log structure from T_2 (p_T -like)



- Spectrum gets shifted by showering below *T*₂ (consider including size of shift as additional uncertainty)
 - Remarkably close to NNLL+LO₃ (highest known analytic order)

Overview 000	Transition Region	Other Observables	MPI and Double Counting O
Jet Broader	ning		

Jet Broadening B

• Very different log structure from T_2 (p_T -like)

- Spectrum gets shifted by showering below T₂ (consider including size of shift as additional uncertainty)
 - Remarkably close to NNLL+LO₃ (highest known analytic order)
 - ► If I were to be provocative I'd say that GENEVA's NNLL'_T+NLO₃ is the current best prediction for B

Frank Tackmann (DESY)

SCET+PS Discussion Session

Formal accuracy for other observables cannot be the same as that for \mathcal{T}_2

- Numerically, we clearly are getting very close
- We are "squeezing" from various directions
 - NNLL' resummation in T₂: Improves the distribution of events in the IR-sensitive region and everybody gets their logs from that same region
 - NLO₃ is fully exclusive: So it is right (up to the usual power corrections) for other observables, and since the integrated cross section is exactly the same there cannot be leftover fixed-order logs in other spectra either
 - Showering below T₂: The fully exclusive nature of the shower is certainly helping to "transfer" the accuracy from T₂
- ⇒ Closely related question: What is the actual formal accuracy of various showers for these (and other) observables (beyond "NLLish")?

MPI and Double Counting

Transition Region

Other Observables

MPI and Double Counting

MPI and Double Counting

I have only one slide and a lot of questions here:

 In practice, we can "just" let the MC add additional partonic interactions to model the UE

(basically what everybody does at the moment and which is very unsatisfying)

- We barely know how to factorize/treat hard double parton scattering, do we have any idea about the perturbative/factorized QCD description of soft MPI?
 - What is the relevant scale? Is it perturbative or nonperturbative?
 - What is the factorization/separation between MPI and soft/collinear ISR?
- Do we know what we are doing when merging ME+PS/MPI (i.e. beyond doing ME+PS merging for a parton collider)?
 - Could the sizable soft MPI effects in the MC partly be fixing short-comings of the ISR shower (like wide-angle soft radiation between incoming and outgoing Wilson lines)?
 - If so, we would be ignoring nontrivial double counting between ME and MPI