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I he boosted regime

* [he LHC is exploring phenomena at energies above the EVV scale

e //\W/H/top can no longer be considered heavy particles
* [hese particles are abundantly produced with a large boost

* [heir hadronic decays are collimated and can be reconstructed
within a single jet. Need to distinguish:




Grooming and tagging

* [he last few years have seen a rapid development In
substructure techniques: O(10-20) powerful methods to tag jet
substructure

* Many of the methods have been tried out in searches and
worlk; they will be crucial for searches in the years to come

* Many methods can lead to some confusion
* Do we understand how / why they work ?
e Only analytic understanding can give this field robustness



VWhere to start !

Cannot possibly study all tools
These 3 are widely used

Trimming We concentrate on background (QCD jets)
@ recluster % discard subjets
ﬁ
on scale Rsub @ vvlth < Zcut Pt
Krohn, Thaler and Wang (2010)
Pruning
recluster % discard large-angle @
ﬁ #
. soft clusterings
Rorune ~ mj/pt Q

Ellis,Vermillion and Walsh (2009)

Mass-drop tagger (MDT, aka BDRS)

decluster & @ repeat until @
#
discard Soft junk find hard struct

Butterworth, Davison, Rubin and Salam (2008)



Our understanding so far

" .

Boost 2010 proceedings:

The [Monte Carlo] findings discussed above indicate that while |pruning, '
trimming and filtering| have qualitatively similar effects, there are important
f differences. For our choice of parameters, pruning acts most aggressively on the
signal and background followed by trimming and filtering. i

* [0 what extent are the taggers above similar ¢
* How does the statement of aggressive behaviour depend on
the taggers’ parameters and on the jet's kinematics !

SRliE = ricnt MC study can be Instructive
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Comparison of taggers

quark jets: m [GeV], for p; =3 TeV gluon jets: m [GeV], for p; =3 TeV
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Different taggers appear to behave quite similarly
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But only for a limrited kinematic region |
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Comparison of taggers

quark jets: m [GeV], for p; =3 TeV gluon jets: m [GeV], for p; =3 TeV
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Let’s translate from QCD variables to ~search” variables:
p— m,forp:=31TeV,R=1].0




Questions that arise

e Can we understand the different shapes (flatness vs peaks) ?
* What's the origin of the transition points ¢
* How do they depend on the taggers’ parameters !

* \What's the perturbative structure of tagged mass distributions ¢
e Cumulative distribution for plain jet mass contains (soft &
collinear) double logs

e Do the taggers ameliorate this behaviour !
* |f so, what's the applicability of FO calculations ?
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Trimming at LO

trimmed quark jets: LO
m [GeV], for p; = 3 TeV, R=1
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Trimming: all orders

One gets exponentiation of LO (+ running coupling)

do.trim,resum

dp

do.trim,LO

dp

Pythia 6 MC: quark jets
m [GeV], forp; =3 TeV, R =1
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o = m?/(p? R?)
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Analytic Calculation: quark jets
m [GeV], forp, =3 TeV, R =1
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leliEekder calculation done In the small-zeu: lirait



Pruning & MD'T at LO

'he pruning radius Is set dynamically: Rprune < dij
'he 2 prongs are always tested for zqut: single logs

pruned quark jets: LO
m [GeV], for p; = 3 TeV, R=1

10 100 1000
0.2 e
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p = m?/(pf R?)



Structures beyond LO

All-order MDT and pruning distributions are NOT given by
exponentiation of LO

VWhat pruning sometimes does ’
Chooses Rprune based on a soft p3
(dominates total jet mass), and leads to a
single narrow subjet whose mass Is also
dominated by a soft emission (pz2, within ~ §

Rorune Of pi, so not pruned away). ;

[ does v Wrong ’j{
} If the energy condition fails, MDT iterates on ¢
} the more massive subjet. It can follow a soft §

branch (p2tp3 < Yeut Pet), When the “right”
§ answer was that the (massless) hard branch k
: had no Substructure




The modified Mass Dro

* [he soft-branch issue can be considered a flaw of the tagger

* [t worsens the logarithmic structure ~s* L3
* [t makes all-order treatment difficult

* [t calls for a modification: always follow be the subjet with
highest transverse mass

* |n practice the soft-branch
contribution Is very small
* However, this modification

Mmda

D [agger

Pythia 6 MC: quark jets
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m [GeV], forp;, =3 TeV, R =1
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01 F
<es the all-order structure

barticularly interesting
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All-order structure of mMD T

* |n the small ycut Imit, it Is just the exponentiation of LO
* [The mMDT has single logs to all orders (l.e. & L")

Pythia 6 MC: quark jets Analytic Calculation: quark jets
m [GeV], for p;=3 TeV, R =1 m [GeV], for p;=3 TeV, R =1
10 100 1000 10 100 1000
0.2 rrrrr——r———r—rrrrr——r—r—r—rrrr— 0.2 rrrrr——r—r—r—rrrr——r—r—r—rrrr—
mMDT Yout=0.03 = mMDT Yout=0.08 ———
Your=0-13 = = = You=0.13 — — =
Yout=0.35 === - - Yout=0-35 (some finite y ;) === 1
(o8 (o8
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2 2
Q Q
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Remarkable agreement |
Interesting feature: flat mass distribution (more in backup slides)



All-order structure of mMD T

* |n the small ycut Imit, it Is just the exponentiation of LO
* [The mMDT has single logs to all orders (l.e. & L")

LO v. NLO v. resummation (quark jets)

m[GeV], for py=3TeV, R = * Single logs: extended validity
Lo o 10 OILEC] ezlcllEiions
Leading Order '

0.1 | Next-to-Leading Order i
L Resummed w1

Z+jet, R=1.0, pr; > 200 GeV
0.8
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only a qualitative comparison:
different process/kinematics!



All-order structure of mMMD T

* |n the small ycut Imit, it 1s just the exponentiation of LO
* [The mMDT has single logs to all orders (l.e. & L")

V. V. resummation uark jets ' L
" NLr:[GeV],forptngeV,(:=1 o * Single logs: extended validity
R _— of FO calculations

Leading Order
0.1 | Next-to-Leading Order
L Resummed w1

* Single logs of collinear origin

E * Remarkable consequence:
2 | mMMDT is free of non-global
[ Prjet >3 TeV : Dgs—
[ mMDT (y,; = 0.13) '
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Pruning: | &Y components

* Pruning @ NLO ~a? L (like plain jet mass)

* Single-pronged component (I-pruning) Is active for p < Zeut
* A simple modification: require at least one successful
merging with AR > Rprune and z > zeit (Y-pruning)

2

* [t s convenient to resum the two components separately

* Y-pruning: essentially Sudakov suppression of LO ~ o" 2!
* |-pruning: convolution between the pruned and the original

mass ~ o{" 4"



All-order results

* Full Pruning: single-log region for zcu? <p<zcu
* We control " 2" and & L*™! in the expansion
* NG logs present but deferred to NNLO

Pythia 6 MC: quark jets Analytic Calculation: quark jets
m [GeV], forp; =3 TeV, R =1 m [GeV], forp; =3 TeV, R =1
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leliEekder calculation done In the small-zeu: lirait



Non-perturbative effects

hadron / parton wUE / noUE
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* Most taggers have reduced sensitivity to NP physics

e mMMDT particularly so (it's the most calculable)

* Y-pruning sensitive to UE because of the role played by
the fat jet mass



Performances for finding signals (Ws)

signal significance with quark bkgds
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Y-pruning gives a visible improvement



In summary ..

* Analytic studies of the taggers reveal their properties
e Particularly useful It MCs don't agree



In summary ..

e Analytic studies of the taggers reveal their properties
e Particularly useful it MCs don't agree

Different showers
m [GeV], forp, =3 TeV, R =1
10 100 1000

[ v6.425 (DW) virtuality ordered = = = ]
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In summary ..

e Analytic studies of the taggers reveal their properties
e Particularly useful It MCs don't agree

* [hey also indicate how to develop better taggers
® Y-pruning:

* improved log behaviour wrt pruning (" L™ vs ots" L")
e better rejection of QCD background

* MMDT:

e exceptionally simple structure (single logs, no non-global)
* reduced sensitivity to non-perturbative physics
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Summary table

highest logs  transition(s) Sudakov peak NGLs NP:m? <
plain mass  o?L*" - L ~1/\/a yes unp pr R
trimming a?LQ” Zeuts T2 Zeut L~1/\/as—2Inr yes UNP Pt Rsub
pruning a?l)zn Zeut s zgut L ~2.3/\/as yes unp pr R
MDT alL*N yents 10200 Yo — yes  pnppe R
Y-pruning at L*n—1 Zeut (Sudakov tail) yes unp pr R




Lund diagrams for mMD |
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Lund diagrams for pruning

Pruning

Z(:ut pfat <p< Zcut

emission that //4)
sets pfat and Q

& Rprune




Hadronisation effects for mMD T

hadronisation v. analytics (quark jets)

m[GeV] forpy = 3TeV, R=1 Hadronisation produces:

T MO 00 - - - | a shift in the squared
' 0-mass mMDT (z; =0.10) ==« = '

1.5 _-\-\| 0-mass mMMDT (yy,; =0.11) ====== - Jet MASS

ey MMPT =01 = = - 2. ashift in the jet's (or

L A lytics (x2.4) —— | )
= By analyties | pDrong’s) momentum
Same power behaviour

REETCH but with competing signs:

dO‘NP S dO’PT 1+CLANP_

dm dm m
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Other properties of mMD T

* Fatness of the background is a desirable property (data-driven
analysis, side bands)

* vt Can be adjusted to obtain it (analytic relation)

* Role of U, not mentioned so far

* [t contributes to subleading logs and has small iImpact if not too

small (p>0.4)
e Filtering only affects subleading (NMLL) terms

Effect of n parameter: quark jets Effect of filtering: quark jets
m [GeV], forp,=3 TeV,R=1 m [GeV], forp,=3 TeV,R=1
10 100 1000 10 100 1000
[ w=1.00 ' ' MMDT (yg=0.13) ——— |
u=0.67 = == mMDT + filtering = = =
01 F W=040 ----- - 01 F -
a u=0.30 = == =
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R 3
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L et T, *
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AITLAS MDT
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AITLAS MDT
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* We hope that future studies will R D)
be able to avoid this



