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Some non SUSY avenues beyond the SM

Large extra dimension model (ADD) provides an alternate vie

the EW (~ 1 TeV) and the Planck scale ( 10'® TeV)— additional structure in the gravity

sector in contrast to previous approaches which introduced

physics sector
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Brane world scenarios

Hierarchy problem has been one of the main motivation for phy sics beyond the SM
e Apparent weakness of gravity accounted for by
e Large extra dimensions (ADD) e Warped extra dimension (RS1)

e Only gravity allowed to propagate the compact extra spacial dimensions, SM is
constrained on a 3-brane

e For ADD and RS models, the KK spectrum and their effective int eractions with SM
particles in 4-dim are very distinct

e |nteraction of the KK tower with SM fields on the 3-brane
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RULE OF THUMB: ATTACH A GRAVITON TO ANY SM LEG OR VERTEX
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Feynman Rules
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Feynman Rules
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Feynman Rules
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Feynman Rules: Implemented in FeynRules
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Probe Extra dimensions @ Colliders— ADD

e Massless graviton and KK modes couple with SM fields with coup ling M;l

e Effects of KK modes
e Real KK modes emission e Virtual KK modes exchange

e Have to sum over the tower of KK modes to get observable effect
e Real case = Inclusive production cross section of KK mode

Phase space enhancement compensates M;l suppression for production
of a single KK mode. All statesupto  m., = 4/s can be emitted— integral
cut off by kinematics

e Virtual case = contact interaction

In contrast to real KK emission the summation of virtual KK mo des depends
on the UV cutoff

-p. 6124



Virtual Exchange

e Being virtual all states in fact contribute, not kinematica lly bound— but
bounded by the validity of the effective theory

e KK density of state
Rdmc_i._
PUIma) = (gmyarT (d/2)
e Sum over KK mode propagator

o 1
2 2
— dmi 7 :
K Zs— 2 + i€ - " /0 mnp(m)s—m%—I—ze
R =V 167T/Mp
e Dominated by UV contribution:
d=1 d—=2 d> 2
s 1 A d—2 1
convergent ln(A_g) E (MS) = 3

Modifying spin-2 propagator, summation over KK modes incor porated
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Di-photon Process

e Prompt photon can be produced as a result of (a) hard subproce ss (direct

photons) and (b) fragmentation subprocess of partons (frag mentation
photons)

e Fragmentation functions of the photon are needed to compute the
fragmentation subprocess— additional non-perturbative in puts which are

poorly known

bz —Q D3 (2) T

e In the subprocess gq — g~~, final state quark-photon collinear singularity
appears. These singularities can be factorised and absorbe d into the
fragmentation functions D, /4 (2, #F)

e Fragmentation photon will be accompanied by hadronic activ ity in its vicinity

e Hadronic jets can be misidentified as photons when their leadi ng hadron is a
72 or 1. Rejected by photon isolation criteria
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Isolation criterion used by collider experiments:

e Define a cone of radius R in the rapidity (7)), azimuthal angle (¢) plane
around the photon direction

e Amount of deposited hadronic transverse energy S EZ2din the cone is less
then some value E%*° (chosen by the experiment)

> Er* < Er°® inside (n—m,)°+ (¢ —¢,)°) < R

e Standard cone isolation criterion in addition to rejecting b ackground of
secondary photons, also reduces the fragmentation contrib ution
e A tight isolation cut, though gets rid of fragmentation effe cts, it also forbids

region of available phase space to gluons— not IR safe
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Frixione photon isolation

e Fragmentation mechanism is a collinear phenomenon, to elim inate its contribution—
sufficient to veto only collinear configurations D ~ (2) =0

q,g z=1
e Frixione smooth cone isolation is a modification of the stand ard cone isolation

ZE%ad < E¥° H(r) insideany 2= (n—n,)%+ (¢ — ¢4)?) < R?

oH(r) -0, r—0 Restricts hadronic activity closer to the photon
oHR) - 1,r > R Coincides with standard cone isolation for outer cone
1 _ n
H(r):( COS(T)) 0< H(r)<1 for 0<r<R
1 — cos(R) - - -
e Fragmentation contribution is entirely suppressed, at the same time no region of

phase space is forbidden to radiation— IR safe observable

e = Cross section oFrix L gStand for same isolation parameters
(E,jfo, R), but there are experimental issues regarding implementati on of the smooth
cone isolation due to finite granularity of the detector

,® Activity in experimental implementation of discretized ve rsion Frixione isolation

' Wielers, ATL-PHYS-2002-004 b, 10/24



Di-photon Process to LO

Pi(p1) + P2(p2) = v(k1) +~v(k2) + X

®qq— Y
SM O(e2) BSM O(k?)
q gl
1 = g
Y - -
_ q
q < v v
©egg —> Y Kk = V16w /Mp
g ! Y g !
7 y 4 - > —
g < K
q q y
SM O(gZe2) BSM O(k?)

Dashed line denotes the graviton KK mode G
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Theoretical Uncertainties

e As a result of new interactions in BSM models, additional
subprocess contribute at LO

e K-factor for diphoton final state in extra dimension scenario S are
large hence NLO essential for extra dimension searches at the LHC

Phys. Lett. B 672, 45; Nucl. Phys. B 818, 28 with M C Kumar, V Ravindran & A
Tripathi

e Physical observables should be independent of pwr and pg, but
scale dependence to a fixed order is an artifact of perturbati on theory.
Including higher orders, reduces scale dependence and henc e
theoretical uncertainties— improves predictions
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Virtual Contributions qq— v~

O (as) virtual corrections comes from the interference between th e virtual graphs of the
(SM + BSM) and the (SM + BSM) Born graphs

° 0(93(63 + ezk? + n4))
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Virtual contributions gg — v~

e SM gluon fusion via quark loop o(ggegnZ)
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Virtual Corrections

e For diphoton production including gravity there are no UV si ngularities—
o KK modes couple to SM energy momentum tensor which is a conser ved
guantity

e Performing the loop integrals the virtual contributions

do’ = as(pg) de dzs K(e, pik, )
16 12 f'l,'n,
{CF [( ——= T _) doqg(e€) + do, ] Poq(x1,x2)

4 1 11 4 fzn
+Ca [{ — — —|— EC’—A(_CA — gnfTF)} dog,(€) + dol } gg(zcl,azz)}
_TA+5) [ s 2 2\ _ as(pk
o= I'(l+e¢) (47‘['[1,2R> as(pr) = 47
e SM gluon fusion diagram via quark loop would interfere with th e LO gravity

mediated diagram, but this is a finite contribution (LO)

e SM gluon fusion contribution, though at O(a?) is comparable to LO for
small diphoton invariant mass, but falls off rapidly for lar ger invariant mass
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Real Contributions qq —>vYYg

e . {L“
_.__{L“ -

<K

e Real emission correction compute by MadFKS within MADGraph 5
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Real Contributions gg — gy~

T
A

e Virtual corrections are incorporate, using the our analyti cal results

e Numerical cancellation of double and single poles coming fr om real and
virtual checked
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Extra dimension searches @LHC (Diphoton)
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e ADD M, < 2.7(d =6) — 3.7(d = 2) TeV, excluded at 95 % CL, K = 1.6

Phys. Lett. B 672, 45; Nucl. Phys. B 818, 28 with M C Kumar, V Ravindran & A Tripathi
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Numerical Results

e Photon isolation criteria:

Ei° = EJ, n = 2, R =104
e Parton Distribution Functions:
o LO MSTW2008LO68cI
o NLO MSTW2008NLO68cl
o ng = 5 light quark flavours
oOpur = pr = M., (140 GeV < M, < Myg)

e Kinematical cuts:
o py > 40 GeV and py- > 25 GeV
o |n,| < 2.5 for each photon
o Ty~ = 0.4 minimum separation between two photons

e Use lose cuts at the event generation level and at the time of
showering the above cuts are used
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e Effects of parton shower ensures correct resummation of the Sudakov logarithms in
the collinear region, leading to a suppression of the cross s ection in the low p;Y:Y region
. . g - - - - "Y"Y .
e No significant deviation in the high  p.J.” region
e Lower inset displays the scale and PDF, fractional uncertai nties for NLO+PS results
e FO pJ.7 distribution is only LO— sensitive to scale. In the low pJ.’, PSincludes higher

order effects there by reducing scale dependence in that reg ion

- p. 20/24



o/bin [pb/20 GeV]

Invariant mass distribution of the diphoton to NLO+PS accuracy
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e Lower insets gives corresponding scale (varying both pr and ur) & PDF,

fractional uncertainties for NLO+PS (ADD)

e Scale dependence goes down from about 25% at LO to 10% at NLO

I
- p. 21/24



Factorisation & renormalisation scale dependence
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e Fractional uncertainties as a result of g variation (left), g variation (central) and
wrE, g variation (right), for the invariant mass distribution

e As expected inclusion of NLO corrections reduces the p g dependence from about
25% to 5% in the high invariant mass region but at low invarian t mass region this
variation is much smaller

e 1. r dependence enter only at NLO level and will get reduced when N NLO corrections
are included. The g dependence is about 5% and is fairly constant

e On varying both wprz and pur simultaneously, at the low invariant mass region as the
p variation is smaller the NLO  u g variation is larger and hence explains the NLO+PS
variation which is in excess of the LO+PS
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Rapidity distribution of the diphoton to NLO+PS accuracy
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e Rapidity distribution of diphoton pair for SM and ADD. Lower inset displays

corresponding fractional scale and PDF uncertainties of NL O+PS (ADD) results

e \We choose the region where the ADD model dominates ( M=+~ > 600 GeV). Scale

: uncertainties reduces for 20% to 10% when NLO+PS correction s are included :
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Summary

e Diphoton final state in the ADD model to NLO in QCD and matching
to parton shower is implemented using the aMC@NLO framework

e Substantial enhancement of the various distribution due to t he
inclusion of NLO correction

e Significant decrease in theoretical uncertainties NLO corr ections are
Included

e Stand alone codes are now available at http://amcatnlo.cern .ch for
most di-final state processes in ADD model
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