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Motivation 

Suppose we see an interesting event at the LHC, how can we describe how likely it is to be 
from the SM or something new? 
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Motivation

Kinematic discriminants attempt to quantitively answer this question by providing 
each event with a probabilistic weight associated with a particular hypothesis 

PFull({x}|Ω1) =

∫
PLO({y}|Ω1)W (x, y)d y (1.4)

P({x}|ΩS)

P({x}|ΩS) + P({x}|ΩB)
(1.5)

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [1], which was defined for final states which do not

contain any jets. Next we extend the formalism to include final states which include jets

in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [1]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [1] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)
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★ Once each event in the data/

MC sample has received 
signal and background 
weights the properties of the 
ensemble can be studied.

★ One can define a kinematic 
discriminant, which classifies 
how “signal like” each event 
is.
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1. Introduction

log PS/PB (1.1)

Notes for Wγ+jet one-loop helicity amplitudes calculation. The integral coefficients

are calculated using analytic unitarity method [1–3]. The results are cross checked against

John’s numerical D-dimensional unitarity code. The amplitudes will be implemented in

MCFM program.
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How are the weights used?

KD =
PS

PS + PB



A KD example : MELA
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Figure 5: The distribution of events selected in the 4� subchannels for the kinematic discrim-
inant KD versus m4�. Events in the three final states are marked by filled symbols (defined in
the legend). The horizontal error bars indicate the estimated mass resolution. In the upper
plot the colour-coded regions show the background expectation; in the lower plot the colour-
coded regions show the event density expected from a SM Higgs boson (mH = 125 GeV) (both
in arbitrary units).
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coded regions show the event density expected from a SM Higgs boson (mH = 125 GeV) (both
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MELA, (Gao, Gritsan, Guo, Melnikov, 
Schulze and Tran) is a nice example of a KD. 

It uses Lorentz invariant final state information to 
discriminant between different types of Lorentz 
structures in ZZ=>4l (i,e. Spin-1 couplings of 
background versus Spin-0 signal). 



Motivation for extensions 

★ Full generality, we should be able to include all final states in 
the discriminant, the production mechanism should naturally be 
included. Each weight should be unique, and well-defined. 

★ A well defined theoretical accuracy, which can be 
systematically improved (in perturbation theory). 

We would like to build algorithms for event by event 
kinematic discrimination which satisfy the following criteria :  

I will address each of these issues in this talk. 



What to use as KD?

★ We will use the Matrix 
Element to build our KDs. 

★ The ME contains a huge 
amount of theoretical 
information. 

★ The ME contains 
production information.

★ And has a rather large 
range of potential 
applications..



The MEM 

Have to map this 
 to this 



Momentum conservation 

★ Define the sum over final state momenta

★ A LO phase space point requires (for momentum conservation and 
regular PDFs)

★ Clearly this is not usually the case in a data (or full simulation MC) 
event. 

boost

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
The left hand side depicts a collision that results in the production of a colour neutral final state
(represented here by four leptons in red) that do not balance in the transverse plane. The resulting
imbalance (X , in blue) represents the remaining event which is not modelled in the Born matrix
element. We apply a Lorentz transformation such that X has no components in the transverse
plane, with the remaining longitudinal and energy components absorbed into the colliding partons.

to find the relations,

xa − xb =
2√
s

(
n∑

i=1

pzi

)

, xa + xb =
2√
s

(
n∑

i=1

Ei

)

. (2.7)

However, matching an experimental point p̃ to the LO kinematics (p) is a challenge. In

particular, any event will always contain additional radiation that is not modelled by the

leading order (Born level) matrix element. In order to proceed we shall define a four vector

X, that balances the momenta of the final state particles. This is illustrated schematically

in Fig. 1 and expressed through the equations,

X = −
n∑

i=1

p̃i. (2.8)

The Born matrix elements, with the beam directions consistently along the z-axis, are

only defined for Xx = Xy = 0, i.e. when there is no pT imbalance between the final

state particles1. Therefore, in order to ensure that the experimental event has a well-

defined interpretation as a Born level phase space point we need to remove the transverse

components of X. This can be achieved by applying a Lorentz transformation Λ(X) on

the momenta p̃ in the event to arrive at a frame in which the transverse components of X

are zero,

pµi = Λµ
ν(X) p̃νi with

n∑

i=1

pxi =
n∑

i=1

pyi = 0 . (2.9)

As desired, the phase space point p is now of the correct form to be used in a Born level

matrix element. For a given transformation, the momentum fractions xa and xb are then

related to the transformed momenta p through the relations in Eq. (2.7). However, we note

1Attempting to evaluate a LO matrix element with a phase space point that does not conserve momentum

is ill-defined. The exact weight obtained depends on which kinematic invariants one has chosen to use in

the expression for the matrix element.

– 5 –

boost

Figure 1: The generation of the Born (and virtual) phase space from a given experimental event.
The left hand side depicts a collision that results in the production of a colour neutral final state
(represented here by four leptons in red) that do not balance in the transverse plane. The resulting
imbalance (X , in blue) represents the remaining event which is not modelled in the Born matrix
element. We apply a Lorentz transformation such that X has no components in the transverse
plane, with the remaining longitudinal and energy components absorbed into the colliding partons.

to find the relations,

xa − xb =
2√
s

(
n∑

i=1

pzi

)

, xa + xb =
2√
s

(
n∑

i=1

Ei

)

. (2.7)

However, matching an experimental point p̃ to the LO kinematics (p) is a challenge. In

particular, any event will always contain additional radiation that is not modelled by the

leading order (Born level) matrix element. In order to proceed we shall define a four vector

X, that balances the momenta of the final state particles. This is illustrated schematically

in Fig. 1 and expressed through the equations,

X = −
n∑

i=1

p̃i. (2.8)

The Born matrix elements, with the beam directions consistently along the z-axis, are

only defined for Xx = Xy = 0, i.e. when there is no pT imbalance between the final

state particles1. Therefore, in order to ensure that the experimental event has a well-

defined interpretation as a Born level phase space point we need to remove the transverse

components of X. This can be achieved by applying a Lorentz transformation Λ(X) on

the momenta p̃ in the event to arrive at a frame in which the transverse components of X

are zero,

pµi = Λµ
ν(X) p̃νi with

n∑

i=1

pxi =
n∑

i=1

pyi = 0 . (2.9)

As desired, the phase space point p is now of the correct form to be used in a Born level

matrix element. For a given transformation, the momentum fractions xa and xb are then

related to the transformed momenta p through the relations in Eq. (2.7). However, we note

1Attempting to evaluate a LO matrix element with a phase space point that does not conserve momentum

is ill-defined. The exact weight obtained depends on which kinematic invariants one has chosen to use in

the expression for the matrix element.

– 5 –



Making the event well-defined
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We need to balance momenta in the transverse plane so that we can 
calculate a ME with usual PDFs. 

This can be done by boosting the event, so that the final state for the 
MEM has no pT. 

However this boost actually introduces the uniqueness problem....



★ Can perform a Lorentz transformation on the final state particles,  

★ This transformation is not unique,  there is freedom in the definition of 
the longitudinal components

★ Recall that the longitudinal components specify the parton fractions, 

★ Our boosts do not fix x uniquely only the product. 

boost
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What about unique?

xaxbs = Q

2



Boosts and uniqueness

To illustrate these ideas in more detail we begin with the usual definition of the total

cross section for the production of n massless final state particles,

⇤LO
� = (2⇥)4�3n

�
dxa dxb

n⌥

m=1

�
d3pm

2Em

⇥
fi(xa)fj(xb)

xaxbs
Bij
� �(4)

⇤
pa + pb �

n⌃

i=1

pi

⌅
.(2.10)

Here we have suppressed the dependence of B on the kinematics and the summation over

i and j for clarity. We wish to factorise Eq. (2.10) into two pieces, one representing initial

state production and the other the decay of a heavy object into the final state particles.

To this end we define Q = pa + pb and insert the operator
⇧
dQ2 �(xaxbs�Q2) = 1,

⇤LO
� = (2⇥)4�3n

�
dxa dxb dQ

2 �(xaxbs�Q2)

⇥
n⌥

m=1

�
d3pm

2Em

⇥
fi(xa)fj(xb)

xaxbs
Bij
� �(4)

⇤
Q�

n⌃

m=1

pm

⌅
. (2.11)

For the remainder of this paper we will define the phase space element associated with the

final state particles as,

dx = (2⇥)4�3ndQ2
n⌥

m=1

�
d3pm

2Em

⇥
�(4)

⇤
Q�

n⌃

m=1

pm

⌅
. (2.12)

Using this definition we see that,

⇤LO
� =

�
dxa dxb dx �(xaxbs�Q2)

fi(xa)fj(xb)

xaxbs
Bij
� (pa, pb,x) .

=

�
dxLij(Q

2, xl, xu)Bij
� (pa, pb,x). (2.13)

This separation is convenient since Bij
� (pa, pb,x) is Lorentz invariant and need only be

evaluated for a single phase space point. The process independent integration over boosts

is given by,

Lij(sab, xl, xu) =

�
dxadxb

fi(xa)fj(xb)

xaxbs
�(xaxbs� sab)

=

� xu

xl

dxa
fi(xa)fj(sab/(sxa))

sxasab
, (2.14)

where in the second expression we have made the dependence on the upper and lower

bounds explicit.

This factorisation in terms of initial and final state variables is exactly what we require

to build our probability density function for the MEM since the experimental input is always

a final state phase space point x. We can define Eq. (2.1) more formally as,

P(x|�) = 1

⇤LO
�

�
dyLij(sab, xl, xu)Bij

� (pa, pb,y)W (x,y) . (2.15)

For a completely inclusive description of the final state, Eqs. (2.14) and (2.15) are suf-

ficient. However, realistic applications require transverse momentum and pseudo-rapidity

– 6 –

The boost function, 
describes the integration 
over longitudinally 
equivalent boosts. 

Choosing only one boost, means that the weight is not unique. 
We need to integrate over all longitudinally equivalent boosts. 

The Matrix Element is a Lorentz scalar, so can be evaluated once for 
any boost, however the PDFs are not. 



The MEM@LO

cuts in order to define fiducial regions of the detector. It is therefore useful to consider the

forms of the lab frame transverse momentum (plabT ) and pseudo-rapidity (⇥lab) under the

application of a given longitudinal boost parameterized by xa.

The four-momenta of all the particles depend on the boost parameter – the initial

state momenta pa(xa), pb(xa) and the momentum of particle i in the final state, pi(xa).

However we note that invariant masses, sij = 2pi(xa) · pj(xa) cannot depend on the boost

and may therefore be evaluated using any choice of boost parameter. The lab frame

transverse momentum and pseudo-rapidity are defined in terms of such invariants and the

boost parameter xa by,

plab,iT =

⌅
saisib
sab

, ⇥lab,i =
1

2
log

�
x2as

sab

sib
sai

⇥
. (2.16)

From these equations we see that plab,iT does not depend on the boost parameter and

therefore cuts on this quantity can be performed outside the boost integration, i.e. in

Eq. (2.15). On the other hand, ⇥lab,i depends on xa, so that cuts on the lab frame pseudo-

rapidity should be included in Eq. (2.14). These cuts constrain the range of allowed boosts,

i.e. the integration limits xl and xu are fixed by |⇥max|.
In summary, by boosting an event to a frame in which the final state is pT -balanced

we have recovered Born kinematics and can assign a likelihood to the event uniquely.

Frequently in the next sections we will refer to these frames, in which the Born event is

well defined, as the “MEM frame”. As we have discussed, this definition is only unique in

the transverse plane and the “MEM frame” is actually a set of equivalent frames connected

by longitudinal boosts.

For the remainder of the paper we will make a simplification by assuming a “perfect”

detector, i.e. the transfer function is equal to W (x,y) = �(x� y). This assumption is only

valid for well-measured final state particles such as leptons and therefore as examples we

only consider ZZ ⇥ 4⌅ and Z ⇥ ⌅+⌅�. We stress that non-trivial transfer functions do

not pose any conceptual problems for our method and only entail additional integrations.

Taking this simplification and the integration over the longitudinal boost into account,

Eq. (2.15) becomes,

P(x|�) = 1

⇤LO
�

Lij(sab, xl, xu)Bij
� (pa, pb,x) . (2.17)

The above equation defines the LO probability density function for the MEM. We recall

that Bij
� (pa, pb,x) represents the Born Matrix element squared, |Mij,(0)

� (pa, pb,x)|2 and that

⇤� represents the fiducial cross section, calculated using cuts in the lab frame. We define

the following quantity,

B�(x) = Lij(sab, xl, xu)Bij
� (pa, pb,x) , (2.18)

and observe from Eq. (2.13) that
⇤
dxB�(x) = ⇤LO

� . We can thus simplify Eq. (2.17) to,

P(x|�) = 1

⇤LO
�

B�(x). (2.19)
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The following defines the 
probability distribution for 
a given LO final state. 

LO matrix element 

In practical applications, one normally also needs to integrate over 
detector response functions 

As a mere theorist I will mostly neglect these, but they are vital for a real 
analysis.   
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NLO plus shower.

PMEM
LO ({Qn}) =

1

σLO

∫ xmax

xmin

dx1PLO(ΦB)

PMEM
NLO ({Qn}) =

1

σNLO

∫ xmax

xmin

dx1PNLO(ΦB)

(1.1)

P ({x}|Ω1)

P ({x}|Ω2)
> kα (1.2)

PFull({x}|Ω1) =

∫
PLO({y}|Ω1)W (x, y)d y (1.3)

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [1], which was defined for final states which do not

contain any jets. Next we extend the formalism to include final states which include jets

in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [1]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [1] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

– 1 –



Event by Event weighting @ NLO

★ An experimental event is about the most 
exclusive quantity you can think of. 

★ We will also need to think very exclusively at 
NLO, i.e. we want to define our NLO 
calculation in the following format 

★ Once we have done this we can use our LO 
tools to define NLO event by event weights. 

★ For the next few slides we will focus on the 
problem of re-weighting the Born phase 
space point to NLO. 
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Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)
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Imagine a LO event, containing only 
EW final state particles. 

This completely determines the 
LO and virtual corrections. 
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What about the real pieces?

Here we introduce the following notation, weights which are defined using a tilde P̃ are

divergent, whilst weights without a tilde have been rendered finite. We will define the

prescription for rendering the virtual weights finite shortly.

Having defined our weights for the virtual corrections our remaining task is to evaluate

the real corrections which occupy the larger phase space ΦR. The general format of a real

phase space point is as follows,

Φ̂R = (x̂1, x̂2, {Q̂n}, p̂r) (2.6)

here x̂ again define parton momenta fractions, Q̂ represents the EW final state particles,

and p̂r represents the radiated parton. This phase space point is constructed in the usual

manner, i.e. δ(4)(Q̂n+p̂r−p̂1−p̂2). In the traditional approach one would naturally integrate

over this phase space independently to the virtual contributions. The two disparate phase

spaces would then be combined to produce differential quantities for physical observables

the end of the calculation. Our aim is to define a map between the two phases such that

the two calculations can proceed together in a meaningful way. Our real phase space point

will thus be defined in the following way

ΦR(ΦB) = (xa, xb, {Qn}, pr). (2.7)

Here Qn is defined to be identical to that associated with the equivalent born phase space

quantity. In this formalism it is clear that all final state Lorentz invariant quantities are

preserved between the born and the real phase space points. It is clear that it is impossible

to maintain Qn and momentum conservation whilst maintaining collisions along the z axis.

Our setup requires the former, so it is necessary to move the initial state away from the

z-axis. The lab frame is restored by boosting the new phase space point back to the frame

in which the beams are longitudinal. For this reason, it is clear that Lorentz dependent

quantities change in the two phase spaces. Since Qn conserves transverse momentum it is

also clear that the transverse momentum of the beam is equivalent to that of the branched

parton pr. Fully inclusive NLO cross sections are those obtained by integrating over the

emissions over the full phase space. Exclusive NLO cross sections are defined by integrating

upto a pT scale in which the parton would be observed as a (lab frame) jet. We will discuss

this in some more detail in section ??.

Since our phase space takes a Born phase space point and branches the initial state to

produce the real radiation, it is natural to use a forward branching phase space generator [?

]. Such a generator takes a born phase space point and integrates according to the following

measure,

d ΦIS
FBPS =

1

(2π)3
Q2

sab
d tard trbdφ (2.8)

where a and b represent the new initial state momenta, and pr is the branched momenta.

Using this phase space we can define the following real weight

P̃R(ΦB) =

∫
d ΦIS

FBPS(ΦB)Jx
f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2 (2.9)
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The real corrections naturally 
live in a larger (by one parton) 
phase space. 

We need to define a many to one map which defines the real phase space 
as a parameter of the Born phase space. This can be done by collecting all 
real points which share the same final state EW particles. 
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The real corrections naturally 
live in a larger (by one parton) 
phase space. 

We need to define a many to one map which defines the real phase space 
as a parameter of the Born phase space. This can be done by collecting all 
real points which share the same final state EW particles. 
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2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)
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Recall that 



Real pieces cont...

Remember that Q defines 
a LO final state phase 
space, so the EW 
particles balance in 
transverse momentum.
That means that in the 
frame in which the EW 
particles are held fixed the 
beam is moved away 
from the z-axis. 

This is most sensible if we 
only allow small 
departures from the LO 
topology, i.e. we veto 
emissions if they become 
too hard. 
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1. Introduction

NLO plus shower.

PMEM
LO ({Qn}) =

1

σLO

∫ xmax

xmin

dx1PLO(ΦB)

PMEM
NLO ({Qn}) =

1

σNLO

∫ xmax

xmin

dx1PNLO(ΦB)

(1.1)

∫
(1.2)

P ({x}|Ω1)

P ({x}|Ω2)
> kα (1.3)
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Since the real phase 
space is larger we 
integrate out all the 
emissions for each final 
state Born topology. (Over 
both beams!) 

If one integrates over the 
LO final state phase 
space then the NLO 
exclusive cross section 
(governed by the emission 
veto) is recovered. 

But what about the singularities? 



Regularization issues....

A subtlety arises when we attempt to regulate the IR divergences. In the 
usual Catani-Seymour framework (which we were using since the code is 
based on MCFM) one introduces multiple dipole transformations, each with 
a different LO phase space point

�R ! {�ii
LO,�

fi
LO,�

if
LO�

ff
LO}

This breaks our required factorization
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So that individual events depend on the regularization (    parameters) ↵

So we need to use a different formalism which doesnt introduce 
new Borns.....



Phase space slicing 

★ Need our regularizing functions to be 
defined at the Born phase space point  

★ Simplest possible scheme is to use 
phase space slicing (Giele, Glover, 
Kosower), which naturally maps all of the 
singularities to the identified Born phase 
space point. 

★ In the future, we will likely move to FKS 
(Frixione, Kunszt, Signer) subtractions. 
Which have advantages (no smin 
dependence) 



Jets in the final state
The inclusion of jets introduces a couple of new problems. 

1) MC/Data jets will have mass 

2) Jets at NLO can be identified with multiple parton configurations. 

The solution to 1) can be achieved by re-writing the jet co-ordinates. 

J = (p
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pdataZ ! �pLO
Z Edata ! �ELO

Then we define our data=> LO map as  

pdataT ! pLO
T �data ! �LO

� =

s
p2T
p2L

So that m=0, with other jet kinematics 
fixed. 



Final state jets
Its straightforward to map a LO parton level event to our observed 
final state jets (with massless definition). 

CLO({pm}|{Jm}) =
X

perms

mY

i=1

�(pT,i � JT,i)�(�i � �J
i )�(⌘i � ⌘Ji )

At NLO there are two types of contributions, depending on whether 
or not the partons cluster to form the observed jet or not. 

CNLO({pm+1}|{Jm}) =
X

perms

X

j

m+1Y

i=1,i 6=j

�(pT,i � JT,i)�(�i � �J
i )�(⌘i � ⌘Ji )

+
X

perms

X

j

m+1Y

i=1,i 6=j,j+1

✓
�(pT,i � JT,i)�(�i � �J

i )�(⌘i � ⌘Ji )

◆

⇥�(pT,j+(j+1) � JT,i)�(�j+(j+1) � �J
i )�(⌘j+(j+1) � ⌘Ji )
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NLO plus shower.

PMEM
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dx1PLO(ΦB)

PMEM
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σNLO

∫ xmax

xmin

dx1PNLO(ΦB)

(1.1)

∫
(1.2)

P ({x}|Ω1)

P ({x}|Ω2)
> kα (1.3)

– 1 –

With jets in the final state we now have two types of contributions. The first 
is very similar to those found in EW only calculations, where we emitted 
from the beam (and veto hard radiation). 
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The second contribution is new, and occurs when two partons cluster to 
make the Born jet. 



smin cancellation 

Figure 1: The cancellation of the dependence on smin for a single born phase space point (defined
in the text). Renormalization and factorization scales are set to mZ .

singular regions of these amplitudes are controlled by the invariants associated with ad-

jacent coloured partons. Collinear singularities correspond o the case in which one such

invariant vanishes, whilst the soft region corresponds to two pairs of invariants simultane-

ously going to zero. We regulate the cross sections by requiring that if a pair of partons in

a given amplitude posses such a singularity then sij > smin.

For these processes Rv is determined from eq.(3.79) or ref. [? ]

Rv(q1; 1, . . . , n; q2) =
αsNc

2π

1

Γ(1 − ε)

[∑

ij

{
1

ε2

(
µ2

sij

)ε

− log2

(
sij

smin

)}

+
3

2ε

(
µ2

smin

)ε

+
63 + 67n − 10nNf

18
−

π2(n + 1)

3

]

+
αsnβ0

ε

1

Γ(1 − ε)

(
µ2

smin

)ε

(3.1)

where the sum over ij runs over the colour ordered pairs, i.e. (q11), (12), . . . (nq2).

We begin our validation by illustrating the cancellation on the dependence of smin

between the virtual and real corrections at a fixed Born phase space point. As an example

we choose the following born phase space points

Z : pµ+ = (28.7, 14.0,−748.8, 749.5) pµ− = (−28.7,−14.0,−127.9, 131.8) (3.2)
′Z + jet : pµ+ = (17.3, 25.7,−1247.8, 1248.1) pµ+ = (26.7, 62.6,−1224.01225.9)

pj = (−44.0,−36.9,−398.2, 402.3) (3.3)

Given these phase space points we calculate the LO weight, defined by eq ?? and ??. Then

we calculate the virtual plus Rv and real parts of the NLO weights (eqs. ?? and ??). The

differential K factor is then defined as the ratio of these terms. Our results for various

– 6 –

The crucial test that the method is working is that each Born event is the 
logarithmic cancellation of smin. Here I plot the dependence on smin for a 
single Born phase space point for Z+0 and Z+1 jet final states. 



The recoil of an event. 

It is also interesting to look at the 
difference between the LO pT and recoil 
pT for a single Born phase space point. 
(This is unphysical but illustrative). 
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The recoil of an event. 

Virtual + Born 

Real corrections  
(note ~< 5 GeV)

It is also interesting to look at the 
difference between the LO pT and recoil 
pT for a single Born phase space point. 
(This is unphysical but illustrative). 



The master formula! 

The advantage of these jet variables (compared to say (px, py, pz, E)) is that one can define

a “NLO” jet which contains two partons, to have the same kinematic properties as a Born

jet. Since the clustered jet will naturally have a non-zero jet mass (whilst the born jet

always has zero mass) one cannot define a NLO jet to have the same (px, py, pz, E) as a

NLO jet. However by rescaling both the longitudinal components (pz, E) simultaneously

one can achieve a massive jet which possesses the same kinematic properties as a born jet,

whilst gaining a non-zero mass.

Using this setup it is straightforward to construct a final state forward branching phase

space generator, which we detail in appendix ??. This phase space generator branches a

born jet, producing two massless partons which, provided they pass the clustering al-

gorithm, cluster to re-produce the kinematic properties of the born jet, whilst having a

non-zero mass. In the event of failing the clustering algorithm the event is rejected. We

can combine the results of this section to define the following NLO weight, defined for an

exclusive final state including jets,

PNLO =
f(x1)f(x2)

2x1x2s

(
(1 + Rv(smin))|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})

+

njets+1∑

i=1

∫

smin

dΦIS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2CIS(i)

+
∑

i!=j,i>j

∫

smin

dΦFS
FBPS(ΦB)Jx

f(xa)f(xb)

2xaxbs
|M (0)

R (ΦR(ΦB))|2CFS(i, j) + O(smin) (2.18)

One can then define a dynamical K-factor to re-weight a LO event to NLO in the same

fashion as for the EW final states. In the following section we will demonstrate applications

of this formula for fixed order calculations, and discuss its similarities and differences to a

traditional lab frame calculation.

In summary, our method takes an exclusive final state containing jets and EW particles

and calculates a NLO K-factor defined relative to the born phase space point associated

with the exclusive final state. All Lorentz invariant observables are, as is necessary, identical

to a traditional NLO calculation. Lorentz dependent quantities change in the real phase

space, but are invariant in the frame in which the born final state is pT balanced. In the

following section we demonstrate how traditional lab frame distributions can be restored.

3. Fixed Order Physics Examples.

This section provides some applications of the techniques described in the previous sections,

we focus on the following examples, Z + 0, 1 jets and Higgs plus and 0, 1 jets

3.1 Validation

We begin by discussing vector boson production in association with either 0 or 1-jets. The

virtual corrections to these processes have been known for some time [? ]. Real matrix ele-

ments for these processes are made from permutations of the amplitudes A(0)(1−q , 2+
q , 3g, 4

+
! , 5−! ),

A(0)(1−q , 2+
q , 3g, 4g, 5

+
! , 6−! ), and the four quark amplitudes A(0)(1−q , 2+

q , 3Q, 4+
Q

, 5−! , 6+
! ). The

– 5 –

The following formula describes the NLO weight as a function of a single 
Born phase space point. 
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Born phase space point. 

Real pieces where two partons cluster to form a jet. 
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The following formula describes the NLO weight as a function of a single 
Born phase space point. 

Real pieces, where the initial state 
branches. 

Real pieces where two partons cluster to form a jet. 
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The following formula describes the NLO weight as a function of a single 
Born phase space point. 

Integrated slice over approximate 
phase space, cancels divergences 
in virtual  

Real pieces, where the initial state 
branches. 

Real pieces where two partons cluster to form a jet. 



The MEM@NLO

★ We now have a procedure to perform the 
MEM@NLO, 

★ Take an input event, perform the usual MEM@LO 
algorithm but reweight each point using the 
following dynamic K-factor

1. Introduction

NLO plus shower.

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)
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Phenomenological applications

★ I’ve focussed on a theoretical overview, but the potential for 
phenomenology with KD’s is rich. The method is computationally 
expensive, so is best applied in searches/measurements where 
advanced tools are needed.

★ Some applications/ongoing projects are : 

★ H=>ZZ (find off-shell Higgs/gg events for Width measurements, 
based on idea by Caola and Melnikov)

★ VBF production, motivated by LO study (Andersen, Englert and 
Spannowsky)

★ Anomalous couplings of Higgs 

★ Searches for EW Chargino/neutralino production 

★ Top mass, Higgs self coupling...........



Summary
★ I have discussed algorithms for event by event weighting which 

can be used for any final state, and extended to higher orders 
in perturbation theory. 

★ Ultimately we would like to release a modified version of MCFM 
(codenamed MemCFM), which can be run in fully exclusive 
mode (appropriate for the MEM). 

★ Primary applications would be to Higgs characterization and 
self-coupling studies. Secondary applications could include 
further BSM searches/ SM measurements, where advanced 
tools are needed.  


