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Analytic Unitarity & Hjj @ NLO

4D-Unitarity :: cut-constructible terms

recurrence relation :: rational part

PV Tensor-reduction :: rational part 
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FIG. 3: The recursive diagrams for computing the rational parts of A
[0]
5;1(1

−, 2−, 3+, 4+, 5+) with

the shift of legs 1,2 given in eq. (5.1). ‘T ’ signifies a tree vertex and ‘L’ a loop vertex.

It is not difficult to verify that this shift has the required property that the rational part of

the cut term ĈR5, given in eq. (4.31), vanishes at large z, as required.

This shift yields a version of the rational-recursion (3.30), where each term is represented

by one of the recursive diagrams depicted in fig. 3. We have dropped diagrams with a

trivially vanishing tree amplitude. Consider the first diagram in fig. 3,

D(a)
5 = Atree

3 (2̂−, 3+,−K̂−
23) ×

i

s23
× R4(1̂

−, K̂+
23, 4

+, 5+) . (5.2)

It vanishes,

D(a)
5 = 0 , (5.3)

because [9]

Atree
3 (2̂−, 3+,−K̂−

23) ∝ 〈2̂ K̂23〉
3

∝
(〈
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〉
−

s23
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= 0 . (5.4)

Diagram (b) also vanishes,

D(b)
5 = 0 , (5.5)

because the loop three-vertex (4.30) vanishes. Similarly, it is not difficult to show that

diagrams (d) and (e) vanish,

D(d)
5 = D(e)

5 = 0 . (5.6)

We are left with just two direct-recursion diagrams. Diagram (c) is given by

D(c)
5 = Atree

3 (2̂−, 3+,−K̂+
23) ×

i

s23
× R4(1̂

−, K̂−
23, 4

+, 5+) . (5.7)
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Decomposition

Decomposition: allowed due to Lorentz covariance in D-dimensions

Bµ = pµ
1 B1

Bµν = gµνB00 + pµ
1 p

ν
1 B11

Cµ = pµ
1 C1 + pµ

2 C2
Cµν = gµνC00 + pµ

1 p
ν
1C11 + (pµ

1 p
ν
2 + pµ

2 p
ν
1 )C12 + pµ

2 p
ν
2C22

...

All loop integrals can be reduced to basic "scalar" integrals A0, B0, C0, D0, . . . .
They do not contain any Lorentz index in the numerator.

So it means that integrals Aµν ,A2,Bµ,B1, . . . can be expressed only through
scalar integrals.

Passarino-Veltman integrals and tensor reduction H. Hluchá



Samurai...
Integrand Reduction for One-Loop Integrals

Generalised D-dim Unitarity
:: Complete reduction to D-reg Master Integrals
:: cut-constructible & rational terms at once

Ossola Reiter Tramontano P.M.

...meets Golem

Ossola Papadopoulos Pittau

Ellis Giele Kunszt Melnikov

Binoth Guillet Heinrich Pilon Reiter

Integrand Generation

Tensor Reduction Library



The GoSam Project

D-reg Feynman Diagrams :: algebraic generation ::
Qgraf 
Form
Spinney

Reduction :: 
Samurai Ossola Reiter Tramontano P.M. + van Deurzen Mirabella Peraro

Golem95  Binoth Guillet Heinrich Pilon Reiter

Ninja  Mirabella Peraro P.M.

Master Integrals ::
AvHOLO
QCDLoop
Golem95C 
Looptools
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The GoSam framework

σNLO =

∫

n

(

dσBorn + dσVirtual +

∫

1

dσSubtraction

)

+

∫

n+1

(dσReal − dσSubtraction)

GOSAM computes virtual contributions:

dσVirtual =
∫

dd" N
D1···Dk

=
∑

i di +
∑

j cj +
∑

k bk

dσVirtual =
∫

dd" N
D1···Dk

= +
∑

! a! + Rational

Generation of N
Computation of the coefficients & R

Convolution with scalar integrals

Modular structure
new ideas and techniques are easily implemented
the GOSAM framework evolves!

What about the other ingredients?

QCD@LHC 2013 – p.3/8

Monte Carlo Generator
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The GoSam Project



Monte Carlo Generator
Multi Process One-Loop Provider
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New Methods for Scattering
Amplitudes in Gauge Theories

Abstract

Our research focuses on the development of integrand reduction methods for the evaluation of multi-loop scattering amplitudes in quantum field theories (QFTs). We have developed a coherent
mathematical framework for the integrand decomposition of Feynman graph integrals, based on algebraic geometry. This method is applicable both for phenomenological studies and for the
investigation of more formal properties of QFTs. Our algorithm has been implemented in the reduction libraries of the GOSAM package, a tool dedicated to the evaluation of one-loop amplitudes,
and used for phenomenological analyses relevant for the LHC. We demonstrate the completeness of our reduction algorithm by applying it to generic dimensionally regulated massive multi-loop
integrals in gauge theories.

Introduction

Scattering amplitudes in Quantum Field Theories:
• analytic functions of kinematic variables, determined by

their singularity structure
– accessible via graph techniques

(on-shell conditions $ cut-diagrams)
• decomposed in terms of independent (ir)rational or tran-

scendental functions, according to the number of loops

Generalized unitarity cuts as projectors isolating each
function through its analytic structure

Integrand reduction methods:
• based on generalized unitarity
• yield the decomposition of the amplitude from integrating

the decomposition of the integrands
• rely on the integrand reduction master formula:

– numerators of Feynman integrals as a combination of
(products of) denominators

– the residues at the multiple cuts are the coefficients of
the combination

· amplitude decomposition , algebraic problem
· i.e. the determination of the residues of the multiple cuts

Integrand reduction

Generic `-loop integral:

Mn =

Z
ddq1 . . . d

dq` Ii
1

...in, Ii
1

...in ⌘
Ni

1

...in

Di
1

. . . Din

• The numerator Ni
1

...in $ polynomial in qi

• The denominators Di $ (quadratic) polynomials in qi

The integrand-reduction method leads to:

Ii
1

...in =
�i

1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

• The residues �i
1

...ik $ polynomials in qi

– topology-dependent parametric form (independent of
the numerators)

– the coefficients of the parametrization are process-
dependent

Integrand-reduction via multivariate division:
• Trade (q1, . . . , q`) with their coordinates z ⌘ (z1, . . . , zm)

• Define the Ideal

I ⌘ hDi
1

, . . . , Dini =

8
<

:p(z) : p(z) =
X

j

hj(z)Dj(z)

9
=

;

– p(z) and hj(z) $ multivariate polynomials in z

• Take a Gröbner basis GI of I

GI = {g1, . . . , gs} such that I = hg1, . . . , gsi

• Perform the multivariate division Ni
1

...in/GI

Ni1...in =
X

k

Ni1···ik�1ik+1···in Dk + �i1...in

Ii1...in =
X

k

Ii1···ik�1ik+1···in +
�i1...in

Di1 . . .Din

· remainder of the division $ residue of Di
1

, . . . , Din
· recursive relation for the integrand decomposition

Two approaches to integrand reduction:
• Fit-on-the-cut approach

– use generic N to get the parametric form of the �’s
– determine the coefficients sampling on the cuts

• Divide-and-Conquer approach
– generate the N of the process
– compute the residues iteratively
– no multiple-cut solutions needed

From integrand to integral by integrating:

Mn =

Z
ddq1 . . . d

dq`

0

@ �i
1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

1

A

• spurious terms vanish upon integration
• other terms lead to Master Integrals (MIs)

One loop

The d-dimensional decomposition is:

From Amplitudes to observables:

• (NLO event generator) = (GoSam) + (Monte Carlo)
• Interface GoSam – Monte Carlo:

– via Binoth Les Houches Accord
– implemented for Madevent, Powheg, and Sherpa

Integrand reduction via Laurent expansion:
• Uses asymptotic limits to simplify the reconstruction
• Main features:

– fewer coefficients have to be determined
– the subtraction works at the coefficient level

· faster and more stable algorithm
• Implemented in the C++ library Ninja

– semi-numerical implementation via polynomial division
– interfaced with the GoSam package

• Application: p p ! t t̄ H + 1 jet

ed + 1894 diagrams  0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0  50  100  150  200

pt,H [GeV]

d
σ

/d
p

t,
H

 [
p
b
/G

e
V

]

PRELIMINARY

pt,H NLO

pt,H LO

Integrand reduction and higher rank numerators:
• Higgs production via gluon fusion

– in the mt ! 1 limit

– leads to integrands with rank = (# denominators) +1
• Extension of the algorithm

– new coefficients enter the residues �j
1

···jk
– extended sampling implemented in Samurai
– extended Laurent expansion implemented in Ninja

• Application: p p ! H + 2 jets

ed + 925 diagrams

• Application: p p ! H + 3 jets

ed + 13178 diagrams
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Higher loops

Reduction of N = 4 SYM and N = 8 SUGRA amplitudes

• Fit-on-the-cut approach
• Unitarity-based construction of the integrand
• Illustrative example:

Reduction of the photon self-energy diagrams in QED

• Divide-and-conquer approach
• d-dimensional rank-four numerators
• Massive particle in the loop
• Reduction in presence of higher powers of propagators

Maximum Cut Theorem
• Maximum Cut : cut constraining all the qi’s

– Assumption: ns non-degenerate solutions
Theorem The residue is parametrized by ns coefficients.
Theorem It exists an univariate polynomial representation
• Examples
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...a deeper look into the code...



GoSam: algorithms

G.Luisoni, 2nd May 2013 

Generation of the 1-loop code 

gosam 

qraf 

form 

Skeleton code: 
no expressions for 

amplitude 

haggies 

Input Card 

Monte Carlo Full code for evaluation 
of 1-loop virtual 

amplitude 

[Vermaseren] 

spinney



Diagram Generation
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G.Luisoni, 2nd May 2013 



Diagram Generation

G.Luisoni, 2nd May 2013 

Making the evaluation faster… 

# propagators 

 . . . . .  

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 

Diagrams are collected (orizzontally and vertically)
according to their topologies:
maximal exploitation of the unitarity based integrand-reduction 



Diagram Generation

G.Luisoni, 2nd May 2013 

Making the evaluation faster… 

# propagators 

 . . . . .  

Diagsum 

+ 

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 

Diagsum :: common loop structure 
- different tree appendices
- different particles in the loop, but same denominators



Diagram Generation

G.Luisoni, 2nd May 2013 

Making the evaluation faster… 

# propagators 

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 



Diagram Generation
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Making the evaluation faster… 

# propagators 

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 

G.Luisoni, 2nd May 2013 

Making the evaluation faster… 

# propagators Grouping 

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 

Grouping :: sub-topologies structure



Diagram Generation
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Making the evaluation faster… 

# propagators Grouping 
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Making the evaluation faster… 

# propagators 

 . . . . .  

Diagsum 

+ 

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 

G.Luisoni, 2nd May 2013 

Making the evaluation faster… 

# propagators Grouping 

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 

Global Diagram Global Diagram :: diagsummed and grouped ~ super-amplitude



Numerator

G.Luisoni, 2nd May 2013 

Making the evaluation faster… 

# propagators Grouping 

ͻ To reduce the number of calls to the reduction program, diagrams 
are collected both “horizontally“  and “vertically“ in the number of 
propagators: 

J
H
E
P
0
8
(
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1
0
)
0
8
0

The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic
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regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).

– 4 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).

– 4 –

J
H
E
P
0
8
(
2
0
1
0
)
0
8
0

2.1 Integrands

samurai can reduce integrands of one-loop amplitudes which can be defined in two ways,

either as numerator functions (sitting on products of denominators), or as products of tree-

level amplitudes (sewn along cut-lines). The former definition accommodates a reduction

based on a diagrammatic method, while the latter is proper of a unitarity-based technology.

According to the chosen dimensional regularization scheme, the most general numer-

ator of one-loop amplitudes N (q̄, ε) can be thought as composed of three terms,

N (q̄, ε) = N0(q̄) + εN1(q̄) + ε2N2(q̄). (2.3)

The coefficients of this ε-expansion, N0, N1 and N2, are functions of qν and µ2, therefore

in our discussion, except when a distinction between them is necessarily required, we will

simply talk about N , giving as understood that the same logic would apply to each of the

three contributions Ni.

2.1.1 Decomposition

According to [80, 89], the numerator N(q̄) can be expressed in terms of denominators D̄i,

as follows

N(q̄) =
n−1
∑

i<<m

∆ijk"m(q̄)
n−1
∏

h "=i,j,k,",m

D̄h +
n−1
∑

i<<"

∆ijk"(q̄)
n−1
∏

h "=i,j,k,"

D̄h +

+
n−1
∑

i<<k

∆ijk(q̄)
n−1
∏

h "=i,j,k

D̄h +
n−1
∑

i<j

∆ij(q̄)
n−1
∏

h "=i,j

D̄h +
n−1
∑

i

∆i(q̄)
n−1
∏

h "=i

D̄h , (2.4)

where i << m stands for a lexicographic ordering i < j < k < " < m. The functions

∆(q̄) = ∆(q, µ2) are polynomials in the components of q and in µ2. By using the decom-

position (2.4) in eq. (2.1), the multi-pole nature of the integrand of any one-loop n-point

amplitude becomes trivially exposed,

A(q̄) =
n−1
∑

i<<m

∆ijk"m(q̄)

D̄iD̄jD̄kD̄"D̄m
+

n−1
∑

i<<"

∆ijk"(q̄)

D̄iD̄jD̄kD̄"
+

n−1
∑

i<<k

∆ijk(q̄)

D̄iD̄jD̄k
+

+
n−1
∑

i<j

∆ij(q̄)

D̄iD̄j
+

n−1
∑

i

∆i(q̄)

D̄i
, (2.5)

which, as we will see, is responsible of the decomposition of any dimensional regulated

one-loop amplitude in terms of Master Integrals (MI) associated to 4-, 3-, 2-, and 1-point

functions, respectively called boxes, triangles, bubbles, and tadpoles.

2.2 Polynomial structures and discrete Fourier transform

The calculation of a generic scattering amplitude amounts to the problem of extracting

the coefficients of multivariate polynomials, generated at every step of the multiple-cut

analysis. To determine these coefficients we implement a semi-numerical algorithm whose

main features are:
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R/2X
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(µ2)j
R�2jX

r=0

C(j)
⌫1...⌫r

q⌫1 · · · q⌫r (5)

1

separation of factors not depending on the loop-momentum
(computed once per ps-point)



The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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d+4

The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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Numerator

m-cut residue (universal polynomial)

Master Integrals



Integrand decomposition algorithm
2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

�ijk�m(q̄) = Resijk�m

�
N(q̄)

D̄0 · · · D̄n�1

�
(2.11)

can be parametrized as [99],

�ijk�m(q̄) = c(ijk�m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄� = 0, defined as,
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can be interpolated by the following form,
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can be interpolated as follows,
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2.2.7 Discrete Fourier Transform

As proposed in [94], the coe�cients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n�

�=0

c� x� , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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D̄i1D̄i2 . . . D̄in

�
5X

k=(m+1)

X

i1<i2<...<ik

�i1i2...ik(q, µ
2)

D̄i1D̄i2 . . . D̄ik

�

(1)

c5,0 +c4,0 +c4,4 +c3,0 +c3,7 (2)

+c2,0 + c2,1 + c2,2 + c2,9 + c1,0
(3)

+c3,14 +c2,13 +c2,10 +c1,14 +c1,15
(4)

Ni(q̄) =
RX

r=0

C⌫1...⌫r q̄⌫1 · · · q̄⌫r =

R/2X

j=0

(µ2)j
R�2jX

r=0

C(j)
⌫1...⌫r

q⌫1 · · · q⌫r (5)

Ni(q̄) =
RX

r=0

C(0)
⌫1...⌫r

q⌫1 · · · q⌫r +

R/2X

j=1

(µ2)j
R�2jX

r=0

C(j)
⌫1...⌫r

q⌫1 · · · q⌫r (6)
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2013 Activities
Beyond SM

MC Interfaces
EW Physics
Top Physics

Diphoton and jets
Higgs & Jets

Outline

2013 Credits:
T. Gehrmann, N. Greiner & G. Heinrich, “Precise QCD predictions for the production of a photon pair in association with two jets,” arXiv:1308.3660

[hep-ph].
N. Greiner, G. Heinrich, J. Reichel & J. F. von Soden-Fraunhofen, “NLO QCD corrections to diphoton plus jet production through graviton

exchange,” arXiv:1308.2194 [hep-ph].
H. van Deurzen, G. Luisoni, P. Mastrolia, EM, G. Ossola & T. Peraro, “NLO QCD corrections to Higgs boson production in association with a top

quark pair and a jet,” arXiv:1307.8437 [hep-ph].
G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, EM, G. Ossola, T. Peraro & F. Tramontano, “NLO QCD corrections to Higgs boson

production plus three jets in gluon fusion,” arXiv:1307.4737 [hep-ph].
S. Hoeche, J. Huang, G. Luisoni, M. Schoenherr & J. Winter, “Zero and one jet combined NLO analysis of the top quark forward-backward

asymmetry,” arXiv:1306.2703 [hep-ph]
G. Luisoni, P. Nason, C. Oleari & F. Tramontano, “Merging HW/HZ + 0 and 1 jet at NLO with no merging scale using the POWHEG BOX

interfaced to GoSam,” arXiv:1306.2542 [hep-ph]
M. Chiesa, G. Montagna, L. Barze‘, M. Moretti, O. Nicrosini, F. Piccinini & F. Tramontano, “Electroweak Sudakov Corrections to New Physics

Searches at the CERN LHC,”arXiv:1305.6837 [hep-ph]
T. Gehrmann, N. Greiner & G. Heinrich, “Photon isolation effects at NLO in gamma gamma + jet final states in hadronic collisions,” JHEP 1306,

058 (2013)
H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, EM, G. Ossola, T. Peraro, J. F. von Soden-Fraunhofen & F. Tramontano, “NLO QCD

corrections to the production of Higgs plus two jets at the LHC,” Phys. Lett. B 721, 74 (2013)
G. Cullen, N. Greiner & G. Heinrich, “Susy-QCD corrections to neutralino pair production in association with a jet,” Eur. Phys. J. C 73, 2388 (2013)

Many papers from GOSAM’s . . .
. . . Many topics involved
Beyond Standard Model
Interface with Monte Carlo
Electroweak Physics
Di-photon production
Higgs physics

QCD@LHC 2013 – p.2/8

>>> Luisoni’s talk

>>> Greiner’s talk
>>> Schlenk’s talk

HW/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their
merging within MiNLO



Higgs & Jazz ?



The path to Hjjj @ NLO

reducing the code size 
FORM > 4.0 optimized algebraic expressions 
:: faster generation, smaller code, better runtime
:: we enjoyed FORM O2

effective Hgg-coupling:

higher rank :: r < n+1

Effective Vertices
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Towards Higgs jets in GF @ NLO
H+0j 1 NLO

gg ! H 1 NLO
H+1j 62 NLO

qq ! Hqq 14 NLO
qg ! Hqg 48 NLO

H+2j 926 NLO
qq0 ! Hqq0 32 NLO
qq ! Hqq 64 NLO
qg ! Hqg 179 NLO
gg ! Hgg 651 NLO

H+3j 13179 NLO
qq0 ! Hqq0g 467 NLO
qq ! Hqqg 868 NLO
qg ! Hqgg 2519 NLO
gg ! Hggg 9325 NLO

Computational Challenges:

I Over 10,000 diagrams

I Higher-Rank terms

I 60 Rank-7 hexagons

Complex calculations ! GoSam enhanced
grouping, optimalization through Form4.0, numerical polarization vectors, parallelization
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the rank r of the numerator can be larger than 
the number n of denominators

Challenges 

>>> Vermaseren’s talk



Extended Integrand Red’nExtended rank Integrand decomposition algorithm
2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

�ijk�m(q̄) = Resijk�m

�
N(q̄)

D̄0 · · · D̄n�1

�
(2.11)

can be parametrized as [99],

�ijk�m(q̄) = c(ijk�m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄� = 0, defined as,

�ijk�(q̄) = Resijk�

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m

�
(2.13)

is parametrized as,

�ijk�(q̄)=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 +

+
�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)(q + p0) · e3 � (K3 · e3)(q + p0) · e4

�
=

=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 �

�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)x4 � (K3 · e3)x3

�
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

�ijk(q̄) = Resijk

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�

�
(2.15)

is parametrized as,

�ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+ c(ijk)
3,1 (q + p0) · e3 + c(ijk)

3,2 ((q + p0) · e3)
2 + c(ijk)

3,3 ((q + p0) · e3)
3 +

+ c(ijk)
3,4 (q + p0) · e4 + c(ijk)

3,5 ((q + p0) · e4)
2 + c(ijk)

3,6 ((q + p0) · e4)
3 =

= c(ijk)
3,0 + c(ijk)

3,7 µ2 �
�
c(ijk)
3,1 x4 + c(ijk)

3,4 x3

�
(e1 · e2) +

+
�
c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

�
(e1 · e2)

2 �
�
c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

�
(e1 · e2)

3 . (2.16)
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1!1 coefficient

2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

�ijk�m(q̄) = Resijk�m

�
N(q̄)

D̄0 · · · D̄n�1

�
(2.11)

can be parametrized as [99],

�ijk�m(q̄) = c(ijk�m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄� = 0, defined as,

�ijk�(q̄) = Resijk�

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m

�
(2.13)

is parametrized as,

�ijk�(q̄)=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 +

+
�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)(q + p0) · e3 � (K3 · e3)(q + p0) · e4

�
=

=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 �

�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)x4 � (K3 · e3)x3

�
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

�ijk(q̄) = Resijk

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�

�
(2.15)

is parametrized as,

�ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+ c(ijk)
3,1 (q + p0) · e3 + c(ijk)

3,2 ((q + p0) · e3)
2 + c(ijk)

3,3 ((q + p0) · e3)
3 +

+ c(ijk)
3,4 (q + p0) · e4 + c(ijk)

3,5 ((q + p0) · e4)
2 + c(ijk)

3,6 ((q + p0) · e4)
3 =

= c(ijk)
3,0 + c(ijk)

3,7 µ2 �
�
c(ijk)
3,1 x4 + c(ijk)

3,4 x3

�
(e1 · e2) +

+
�
c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

�
(e1 · e2)

2 �
�
c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

�
(e1 · e2)

3 . (2.16)
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5!6 coefficients

2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

�ijk�m(q̄) = Resijk�m

�
N(q̄)

D̄0 · · · D̄n�1

�
(2.11)

can be parametrized as [99],

�ijk�m(q̄) = c(ijk�m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄� = 0, defined as,

�ijk�(q̄) = Resijk�

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m

�
(2.13)

is parametrized as,

�ijk�(q̄)=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 +

+
�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)(q + p0) · e3 � (K3 · e3)(q + p0) · e4

�
=

=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 �

�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)x4 � (K3 · e3)x3

�
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

�ijk(q̄) = Resijk

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�

�
(2.15)

is parametrized as,

�ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+ c(ijk)
3,1 (q + p0) · e3 + c(ijk)

3,2 ((q + p0) · e3)
2 + c(ijk)

3,3 ((q + p0) · e3)
3 +

+ c(ijk)
3,4 (q + p0) · e4 + c(ijk)

3,5 ((q + p0) · e4)
2 + c(ijk)

3,6 ((q + p0) · e4)
3 =

= c(ijk)
3,0 + c(ijk)

3,7 µ2 �
�
c(ijk)
3,1 x4 + c(ijk)

3,4 x3

�
(e1 · e2) +

+
�
c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

�
(e1 · e2)

2 �
�
c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

�
(e1 · e2)

3 . (2.16)
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10!15 coefficients

2.2.5 Double Cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

�ij(q̄) = Resij

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
�

n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k

�
, (2.17)

can be interpolated by the following form,

�ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+ c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+ c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+ c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+ c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
�
c(ij)
2,1 x1 � c(ij)

2,3 x4 � c(ij)
2,5 x3

�
(e1 · e2) +

+
�
c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 � c(ij)
2,7 x1x4 � c(ij)

2,8 x1x3

�
(e1 · e2)

2 . (2.18)

2.2.6 Single Cut

The residue of the single-cut, D̄i = 0, defined as,

�i(q̄) = Resi

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
+

�
n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k
�

n�1�

i<j

�ij(q̄)

D̄iD̄j

�
(2.19)

can be interpolated as follows,

�i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+ c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

�
c(i)
1,1x2 + c(i)

1,2x1 � c(i)
1,3x4 � c(i)

1,4x3

�
(e1 · e2) . (2.20)

2.2.7 Discrete Fourier Transform

As proposed in [94], the coe�cients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n�

�=0

c� x� , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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10!20 coefficients
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can be interpolated by the following form,
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2 +

+ c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+ c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
�
c(ij)
2,1 x1 � c(ij)
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2,5 x3

�
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+
�
c(ij)
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2.2.6 Single Cut

The residue of the single-cut, D̄i = 0, defined as,
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�
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i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
+

�
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�
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�
(2.19)

can be interpolated as follows,
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1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+ c(i)
1,3((q + p0) · e3) + c(i)
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�
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2.2.7 Discrete Fourier Transform

As proposed in [94], the coe�cients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n�

�=0

c� x� , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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5!15 coefficients
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[Mastrolia, Mirabella, Peraro, 2012]
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I Samurai ! XSamurai [HvD et al.]

Extended rank Integrand decomposition algorithm
2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

�ijk�m(q̄) = Resijk�m

�
N(q̄)

D̄0 · · · D̄n�1

�
(2.11)

can be parametrized as [99],

�ijk�m(q̄) = c(ijk�m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄� = 0, defined as,

�ijk�(q̄) = Resijk�

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m

�
(2.13)

is parametrized as,

�ijk�(q̄)=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 +

+
�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)(q + p0) · e3 � (K3 · e3)(q + p0) · e4

�
=

=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 �

�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)x4 � (K3 · e3)x3

�
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

�ijk(q̄) = Resijk

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�

�
(2.15)

is parametrized as,

�ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+ c(ijk)
3,1 (q + p0) · e3 + c(ijk)

3,2 ((q + p0) · e3)
2 + c(ijk)

3,3 ((q + p0) · e3)
3 +

+ c(ijk)
3,4 (q + p0) · e4 + c(ijk)

3,5 ((q + p0) · e4)
2 + c(ijk)

3,6 ((q + p0) · e4)
3 =

= c(ijk)
3,0 + c(ijk)

3,7 µ2 �
�
c(ijk)
3,1 x4 + c(ijk)

3,4 x3

�
(e1 · e2) +

+
�
c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

�
(e1 · e2)

2 �
�
c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

�
(e1 · e2)

3 . (2.16)
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1!1 coefficient

2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

�ijk�m(q̄) = Resijk�m

�
N(q̄)

D̄0 · · · D̄n�1

�
(2.11)

can be parametrized as [99],

�ijk�m(q̄) = c(ijk�m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄� = 0, defined as,

�ijk�(q̄) = Resijk�

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m

�
(2.13)

is parametrized as,

�ijk�(q̄)=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 +

+
�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)(q + p0) · e3 � (K3 · e3)(q + p0) · e4

�
=

=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 �

�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)x4 � (K3 · e3)x3

�
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

�ijk(q̄) = Resijk

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�

�
(2.15)

is parametrized as,

�ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+ c(ijk)
3,1 (q + p0) · e3 + c(ijk)

3,2 ((q + p0) · e3)
2 + c(ijk)

3,3 ((q + p0) · e3)
3 +

+ c(ijk)
3,4 (q + p0) · e4 + c(ijk)

3,5 ((q + p0) · e4)
2 + c(ijk)

3,6 ((q + p0) · e4)
3 =

= c(ijk)
3,0 + c(ijk)

3,7 µ2 �
�
c(ijk)
3,1 x4 + c(ijk)

3,4 x3

�
(e1 · e2) +

+
�
c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

�
(e1 · e2)

2 �
�
c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

�
(e1 · e2)

3 . (2.16)
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5!6 coefficients

2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,

�ijk�m(q̄) = Resijk�m

�
N(q̄)

D̄0 · · · D̄n�1

�
(2.11)

can be parametrized as [99],

�ijk�m(q̄) = c(ijk�m)
5,0 µ2 . (2.12)

2.2.3 Quadruple Cut

The residue of the quadruple-cut, D̄i = . . . = D̄� = 0, defined as,

�ijk�(q̄) = Resijk�

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m

�
(2.13)

is parametrized as,

�ijk�(q̄)=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 +

+
�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)(q + p0) · e3 � (K3 · e3)(q + p0) · e4

�
=

=c(ijk�)
4,0 + c(ijk�)

4,2 µ2 + c(ijk�)
4,4 µ4 �

�
c(ijk�)
4,1 + c(ijk�)

4,3 µ2
��

(K3 · e4)x4 � (K3 · e3)x3

�
(e1 · e2) ,

(2.14)

where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.

2.2.4 Triple Cut

The residue of the triple-cut, D̄i = D̄j = D̄k = 0, defined as,

�ijk(q̄) = Resijk

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�

�
(2.15)

is parametrized as,

�ijk(q̄) = c(ijk)
3,0 + c(ijk)

3,7 µ2 +

+ c(ijk)
3,1 (q + p0) · e3 + c(ijk)

3,2 ((q + p0) · e3)
2 + c(ijk)

3,3 ((q + p0) · e3)
3 +

+ c(ijk)
3,4 (q + p0) · e4 + c(ijk)

3,5 ((q + p0) · e4)
2 + c(ijk)

3,6 ((q + p0) · e4)
3 =

= c(ijk)
3,0 + c(ijk)

3,7 µ2 �
�
c(ijk)
3,1 x4 + c(ijk)

3,4 x3

�
(e1 · e2) +

+
�
c(ijk)
3,2 x2

4 + c(ijk)
3,5 x2

3

�
(e1 · e2)

2 �
�
c(ijk)
3,3 x3

4 + c(ijk)
3,6 x3

3

�
(e1 · e2)

3 . (2.16)

– 7 –

10!15 coefficients

2.2.5 Double Cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

�ij(q̄) = Resij

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
�

n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k

�
, (2.17)

can be interpolated by the following form,

�ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+ c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+ c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+ c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+ c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
�
c(ij)
2,1 x1 � c(ij)

2,3 x4 � c(ij)
2,5 x3

�
(e1 · e2) +

+
�
c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 � c(ij)
2,7 x1x4 � c(ij)

2,8 x1x3

�
(e1 · e2)

2 . (2.18)

2.2.6 Single Cut

The residue of the single-cut, D̄i = 0, defined as,

�i(q̄) = Resi

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
+

�
n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k
�

n�1�

i<j

�ij(q̄)

D̄iD̄j

�
(2.19)

can be interpolated as follows,

�i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+ c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

�
c(i)
1,1x2 + c(i)

1,2x1 � c(i)
1,3x4 � c(i)

1,4x3

�
(e1 · e2) . (2.20)

2.2.7 Discrete Fourier Transform

As proposed in [94], the coe�cients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n�

�=0

c� x� , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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10!20 coefficients

2.2.5 Double Cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

�ij(q̄) = Resij

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
�

n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k

�
, (2.17)

can be interpolated by the following form,

�ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+ c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+ c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+ c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+ c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
�
c(ij)
2,1 x1 � c(ij)

2,3 x4 � c(ij)
2,5 x3

�
(e1 · e2) +

+
�
c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 � c(ij)
2,7 x1x4 � c(ij)

2,8 x1x3

�
(e1 · e2)

2 . (2.18)

2.2.6 Single Cut

The residue of the single-cut, D̄i = 0, defined as,

�i(q̄) = Resi

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
+

�
n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k
�

n�1�

i<j

�ij(q̄)

D̄iD̄j

�
(2.19)

can be interpolated as follows,

�i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+ c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

�
c(i)
1,1x2 + c(i)

1,2x1 � c(i)
1,3x4 � c(i)

1,4x3

�
(e1 · e2) . (2.20)

2.2.7 Discrete Fourier Transform

As proposed in [94], the coe�cients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n�

�=0

c� x� , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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5!15 coefficients

Hans van Deurzen Associated Higgs production at NLO with GoSam 17 / 29

[Mastrolia, Mirabella, Peraro, 2012]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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At one loop the result is well known:
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[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

Ii
1

···in =
Ni

1

···in
Di

1

· · ·Din
=

X

j
1

...j
5

�j
1

j
2

j
3

j
4

j
5

Dj
1

Dj
2

Dj
3

Dj
4

Dj
5

+
X

j
1

j
2

j
3

j
4

�j
1

j
2

j
3

j
4

Dj
1

Dj
2

Dj
3

Dj
4

+
X

j
1

j
2

j
3

�j
1

j
2

j
3

Dj
1

Dj
2

Dj
3

+
X

j
1

j
2

�j
1

j
2

Dj
1

Dj
2

+
X

j
1

�j
1

Dj
1

the integral decomposition

+= c4,0 c3,0 + +c2,0 c1,0

+ + +c3,7 d+ 2 c2,9 d+ 2c4,4 d+ 4

T. Peraro (MPI - München) Integrand-level reduction at one and higher loops Matter To The Deepest 4

d+4
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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distributions of about 1.5, over a large fraction of kine-
matical range, and a decrease of the scale uncertainty of
about 50%.
The evaluation of the virtual corrections constitutes an

application of the d-dimensional integrand reduction to
theories with higher dimensional operators.
Finally, as an initial step towards the evaluation of pp →

Hjjj at NLO, we presented first results for the one-loop
matrix elements of the partonic processes with a quark-
pair in the final state.
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Appendix A. Effective Higgs-gluon vertices

The operator L in Eq. (1) describes the gluon-Higgs in-
teraction in the large top-mass limit and leads to the fol-
lowing set of Feynman rules:

H

g1

g2

= −igeffFµ1µ2
c1,c2

H

g3

g1

g2 = geffgs Fµ1µ2µ3
c1,c2,c3

H

g2

g3

g1

g4

= igeffg
2
s Fµ1µ2µ3µ4

c1,c2,c3,c4

where we define

Fµ1µ2
c1,c2

= δc1c2 (p
µ2

1 pµ1

2 − p1 · p2 gµ1µ2) ,

Fµ1µ2µ3
c1,c2,c3

= fc1c2c3
[

gµ1µ2 (pµ3

1 − pµ3

2 )

+ gµ2µ3 (pµ1

2 − pµ1

3 )

+ gµ3µ1 (pµ2

3 − pµ2

1 )
]

,

Fµ1µ2µ3µ4
c1,c2,c3,c4

= fc1c2ifc3c4i[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fc1c3ifc2c4i[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fc1c4ifc2c3i[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ].

(A.1)

In Eq. (A.1) sum over repeated indices is understood.

Appendix B. Higher-rank integrands

Higher-rank integrands, i.e. integrands where the pow-
ers of loop momenta in the numerator is higher than the
numbers of denominators, are present in diagrams with
a Higgs boson coupled to a purely gluonic loop involving
only three-gluon vertices. The generic numerator Γε1···εn

of a (n+1)-denominator one-loop diagram can be written
as

Γε1···εn ≡ Fµ1µ2
Gµ1µ2ε1···εn , (B.1)

where Fµ1µ2
is the Hgg vertex defined in Eq. (A.1), and

Gµ1µ2ε1···εn is the numerator of an (n+2)-gluon tree-level
diagram, which can be represented by

ε2

ε1

εn

≡

µ2

µ1

q

µ2

µ1

ε2

ε1

εn

q

We are interested in the leading behaviour in q of Γε1···εn ,
and we want to show that the highest-rank terms, with
rank r = n + 2, are proportional to the loop momentum
squared, q2. In order to show it, we neglect all external
momenta and all the terms proportional to q2.
From Eq. (A.1), one trivially has

Fµ1µ2
= qµ1

qµ2
+O(q2) , (B.2)

while the generic tensor structure of Gµ1µ2ε1···εn is

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn
1 + qµ2T µ1ε1···εn

2 +

+ gµ1µ2T ε1···εn
g +O(q2) , (B.3)

where T1, T2, and Tg are tensors which may depend on q
as well. Indeed Eq. (B.3) is fulfilled for n = 0, 1,

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (B.4)
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while for n > 1 it can be proven by induction over n by
using

Gµ1µ2ε1···εn = G µ2ε1···εn−1
µ Gµ1µεn , (B.5)

that is

≡

ε1 ε2 εn

q
µ2 µ1

ε1 ε2 εn−1

µ2

µ
q

εn

µ1

µ

Combining Eq. (B.2) and Eq. (B.3), it is easy to realize
that each rank-(n+ 2) term of an n+ 1-denominator dia-
gram Γε1···εn is proportional to q2. The factor q2 simplifies
against one denominator leading to a rank n numerator of
an n-denominator integrand.

Appendix C. Benchmark points for pp → Hjj

In this appendix we provide numerical results for the
renormalized virtual contributions to the processes (4), in
correspondence with the phase space point in Table C.1.
The parameters can be read from Eqs. (6), while the renor-
malization and factorization scales are set to the Higgs
mass value. The assignment of the momenta proceeds as
follows

g(p1) g(p2) → H(p3) g(p4) g(p5) ,

g(p1) g(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q
′(p4) q̄

′(p5) . (C.1)

The results are collected in Table C.2 and are computed
using DRED. In the second column of the table we provide
the LO squared amplitude,

c0 ≡
|Mtree-level|2

(4παs)2g2eff
, (C.2)

and the coefficients ai defined in Eq. (12). As a check
on the reconstruction of the renormalized poles, in the
last column we show the values of a−1 and a−2 obtained
by the universal singular behavior of the dimensionally
regularized one-loop amplitudes [65].

Appendix D. Benchmark points for pp → Hjjj

In this appendix we collect first numerical results for the
renormalized virtual contributions to

g(p1) g(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q
′(p4) q̄

′(p5) g(p6) . (D.1)

gg → Hgg

c0 0.1507218951429643 · 10−3

a0 59.8657965614009
a−1 −26.4694115468536 −26.46941154671207
a−2 −12.00000000000001 −12.00000000000000

gg → Hqq̄

c0 0.5677813961826772 · 10−6

a0 66.6635142370683
a−1 −16.5816633315627 −16.58166333155405
a−2 −8.66666666666669 −8.666666666666668

qq̄ → Hqq̄

c0 0.1099527895267439 · 10−5

a0 88.2959834057198
a−1 −10.9673755313443 −10.96737553134440
a−2 −5.33333333333332 −5.333333333333334

qq̄ → Hq′q̄′

c0 0.1011096724203529 · 10−6

a0 33.9521626734153
a−1 −13.8649292834138 −13.86492928341388
a−2 −5.33333333333334 −5.333333333333334
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Appendix A. Effective Higgs-gluon vertices

The operator L in Eq. (1) describes the gluon-Higgs in-
teraction in the large top-mass limit and leads to the fol-
lowing set of Feynman rules:
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2 )
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2 − pµ1

3 )

+ gµ3µ1 (pµ2

3 − pµ2
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Fµ1µ2µ3µ4
c1,c2,c3,c4

= fc1c2ifc3c4i[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fc1c3ifc2c4i[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fc1c4ifc2c3i[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ].

(A.1)

In Eq. (A.1) sum over repeated indices is understood.

Appendix B. Higher-rank integrands

Higher-rank integrands, i.e. integrands where the pow-
ers of loop momenta in the numerator is higher than the
numbers of denominators, are present in diagrams with
a Higgs boson coupled to a purely gluonic loop involving
only three-gluon vertices. The generic numerator Γε1···εn

of a (n+1)-denominator one-loop diagram can be written
as

Γε1···εn ≡ Fµ1µ2
Gµ1µ2ε1···εn , (B.1)

where Fµ1µ2
is the Hgg vertex defined in Eq. (A.1), and

Gµ1µ2ε1···εn is the numerator of an (n+2)-gluon tree-level
diagram, which can be represented by

ε2

ε1

εn

≡

µ2

µ1

q

µ2

µ1

ε2

ε1

εn

q

We are interested in the leading behaviour in q of Γε1···εn ,
and we want to show that the highest-rank terms, with
rank r = n + 2, are proportional to the loop momentum
squared, q2. In order to show it, we neglect all external
momenta and all the terms proportional to q2.
From Eq. (A.1), one trivially has

Fµ1µ2
= qµ1

qµ2
+O(q2) , (B.2)

while the generic tensor structure of Gµ1µ2ε1···εn is

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn
1 + qµ2T µ1ε1···εn

2 +

+ gµ1µ2T ε1···εn
g +O(q2) , (B.3)

where T1, T2, and Tg are tensors which may depend on q
as well. Indeed Eq. (B.3) is fulfilled for n = 0, 1,

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (B.4)
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while for n > 1 it can be proven by induction over n by
using

Gµ1µ2ε1···εn = G µ2ε1···εn−1
µ Gµ1µεn , (B.5)

that is

≡

ε1 ε2 εn

q
µ2 µ1

ε1 ε2 εn−1

µ2

µ
q

εn

µ1

µ

Combining Eq. (B.2) and Eq. (B.3), it is easy to realize
that each rank-(n+ 2) term of an n+ 1-denominator dia-
gram Γε1···εn is proportional to q2. The factor q2 simplifies
against one denominator leading to a rank n numerator of
an n-denominator integrand.

Appendix C. Benchmark points for pp → Hjj

In this appendix we provide numerical results for the
renormalized virtual contributions to the processes (4), in
correspondence with the phase space point in Table C.1.
The parameters can be read from Eqs. (6), while the renor-
malization and factorization scales are set to the Higgs
mass value. The assignment of the momenta proceeds as
follows

g(p1) g(p2) → H(p3) g(p4) g(p5) ,

g(p1) g(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q
′(p4) q̄

′(p5) . (C.1)

The results are collected in Table C.2 and are computed
using DRED. In the second column of the table we provide
the LO squared amplitude,

c0 ≡
|Mtree-level|2

(4παs)2g2eff
, (C.2)

and the coefficients ai defined in Eq. (12). As a check
on the reconstruction of the renormalized poles, in the
last column we show the values of a−1 and a−2 obtained
by the universal singular behavior of the dimensionally
regularized one-loop amplitudes [65].

Appendix D. Benchmark points for pp → Hjjj

In this appendix we collect first numerical results for the
renormalized virtual contributions to

g(p1) g(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q
′(p4) q̄

′(p5) g(p6) . (D.1)

gg → Hgg

c0 0.1507218951429643 · 10−3

a0 59.8657965614009
a−1 −26.4694115468536 −26.46941154671207
a−2 −12.00000000000001 −12.00000000000000

gg → Hqq̄

c0 0.5677813961826772 · 10−6

a0 66.6635142370683
a−1 −16.5816633315627 −16.58166333155405
a−2 −8.66666666666669 −8.666666666666668

qq̄ → Hqq̄

c0 0.1099527895267439 · 10−5

a0 88.2959834057198
a−1 −10.9673755313443 −10.96737553134440
a−2 −5.33333333333332 −5.333333333333334

qq̄ → Hq′q̄′

c0 0.1011096724203529 · 10−6

a0 33.9521626734153
a−1 −13.8649292834138 −13.86492928341388
a−2 −5.33333333333334 −5.333333333333334

Table C.2: Numerical results for the processes listed in Eq. (C.1)

gg → Hqq̄g

b0 0.6309159660038877 · 10−4

a0 48.68424097859422
a−1 −36.08277727147958 −36.08277728199094
a−2 −11.66666666667209 −11.66666666666667

qq̄ → Hqq̄g

b0 0.3609139855530763 · 10−4

a0 69.32351140490162
a−1 −29.98862932963380 −29.98862932963629
a−2 −8.333333333333339 −8.333333333333334

qq̄ → Hq′q̄′g

b0 0.2687990772405433 · 10−5

a0 15.79262767177915
a−1 −32.35320587070861 −32.35320587073038
a−2 −8.333333333333398 −8.333333333333332

Table D.3: Numerical results for the processes listed in Eq. (D.1)

The results, collected in Table D.3, have been computed
using the parameters in Eqs. (6), with the renormalization
and factorization scales set to the Higgs mass value, and
choosing the phase space point given in Table D.4. In
particular, in the second column of Table D.3, we provide
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distributions of about 1.5, over a large fraction of kine-
matical range, and a decrease of the scale uncertainty of
about 50%.
The evaluation of the virtual corrections constitutes an

application of the d-dimensional integrand reduction to
theories with higher dimensional operators.
Finally, as an initial step towards the evaluation of pp →

Hjjj at NLO, we presented first results for the one-loop
matrix elements of the partonic processes with a quark-
pair in the final state.

Acknowledgements

We thank the Sherpa collaboration for encouraging and
stimulating discussions and feedback on the manuscript.
We also would like to thank Thomas Hahn for his tech-
nical support while structuring the computing resources
needed by our codes, and Joscha Reichel for feedback on
the extended-rank version of samurai.
The work of H.v.D., G.L., P.M., and T.P. was supported

by the Alexander von Humboldt Foundation, in the frame-
work of the Sofja Kovaleskaja Award Project “Advanced
Mathematical Methods for Particle Physics”, endowed by
the German Federal Ministry of Education and Research.
G.O. was supported in part by the National Science

Foundation under Grant PHY-1068550.
H.v.D. and G.L. thank the Center for Theoretical

Physics of New York City College of Technology for hos-
pitality during the final stages of this project.
The Feynman diagrams present in this paper are drawn

using FeynArts [72].

Appendix A. Effective Higgs-gluon vertices

The operator L in Eq. (1) describes the gluon-Higgs in-
teraction in the large top-mass limit and leads to the fol-
lowing set of Feynman rules:

H

g1

g2

= −igeffFµ1µ2
c1,c2

H

g3

g1

g2 = geffgs Fµ1µ2µ3
c1,c2,c3

H

g2

g3

g1

g4

= igeffg
2
s Fµ1µ2µ3µ4

c1,c2,c3,c4

where we define

Fµ1µ2
c1,c2

= δc1c2 (p
µ2

1 pµ1

2 − p1 · p2 gµ1µ2) ,

Fµ1µ2µ3
c1,c2,c3

= fc1c2c3
[

gµ1µ2 (pµ3

1 − pµ3

2 )

+ gµ2µ3 (pµ1

2 − pµ1

3 )

+ gµ3µ1 (pµ2

3 − pµ2

1 )
]

,

Fµ1µ2µ3µ4
c1,c2,c3,c4

= fc1c2ifc3c4i[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fc1c3ifc2c4i[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fc1c4ifc2c3i[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ].

(A.1)

In Eq. (A.1) sum over repeated indices is understood.

Appendix B. Higher-rank integrands

Higher-rank integrands, i.e. integrands where the pow-
ers of loop momenta in the numerator is higher than the
numbers of denominators, are present in diagrams with
a Higgs boson coupled to a purely gluonic loop involving
only three-gluon vertices. The generic numerator Γε1···εn

of a (n+1)-denominator one-loop diagram can be written
as

Γε1···εn ≡ Fµ1µ2
Gµ1µ2ε1···εn , (B.1)

where Fµ1µ2
is the Hgg vertex defined in Eq. (A.1), and

Gµ1µ2ε1···εn is the numerator of an (n+2)-gluon tree-level
diagram, which can be represented by

ε2

ε1

εn

≡

µ2

µ1

q

µ2

µ1

ε2

ε1

εn

q

We are interested in the leading behaviour in q of Γε1···εn ,
and we want to show that the highest-rank terms, with
rank r = n + 2, are proportional to the loop momentum
squared, q2. In order to show it, we neglect all external
momenta and all the terms proportional to q2.
From Eq. (A.1), one trivially has

Fµ1µ2
= qµ1

qµ2
+O(q2) , (B.2)

while the generic tensor structure of Gµ1µ2ε1···εn is

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn
1 + qµ2T µ1ε1···εn

2 +

+ gµ1µ2T ε1···εn
g +O(q2) , (B.3)

where T1, T2, and Tg are tensors which may depend on q
as well. Indeed Eq. (B.3) is fulfilled for n = 0, 1,

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (B.4)

6

distributions of about 1.5, over a large fraction of kine-
matical range, and a decrease of the scale uncertainty of
about 50%.
The evaluation of the virtual corrections constitutes an

application of the d-dimensional integrand reduction to
theories with higher dimensional operators.
Finally, as an initial step towards the evaluation of pp →

Hjjj at NLO, we presented first results for the one-loop
matrix elements of the partonic processes with a quark-
pair in the final state.

Acknowledgements

We thank the Sherpa collaboration for encouraging and
stimulating discussions and feedback on the manuscript.
We also would like to thank Thomas Hahn for his tech-
nical support while structuring the computing resources
needed by our codes, and Joscha Reichel for feedback on
the extended-rank version of samurai.
The work of H.v.D., G.L., P.M., and T.P. was supported

by the Alexander von Humboldt Foundation, in the frame-
work of the Sofja Kovaleskaja Award Project “Advanced
Mathematical Methods for Particle Physics”, endowed by
the German Federal Ministry of Education and Research.
G.O. was supported in part by the National Science

Foundation under Grant PHY-1068550.
H.v.D. and G.L. thank the Center for Theoretical

Physics of New York City College of Technology for hos-
pitality during the final stages of this project.
The Feynman diagrams present in this paper are drawn

using FeynArts [72].

Appendix A. Effective Higgs-gluon vertices

The operator L in Eq. (1) describes the gluon-Higgs in-
teraction in the large top-mass limit and leads to the fol-
lowing set of Feynman rules:

H

g1

g2

= −igeffFµ1µ2
c1,c2

H

g3

g1

g2 = geffgs Fµ1µ2µ3
c1,c2,c3

H

g2

g3

g1

g4

= igeffg
2
s Fµ1µ2µ3µ4

c1,c2,c3,c4

where we define

Fµ1µ2
c1,c2

= δc1c2 (p
µ2

1 pµ1

2 − p1 · p2 gµ1µ2) ,

Fµ1µ2µ3
c1,c2,c3

= fc1c2c3
[

gµ1µ2 (pµ3

1 − pµ3

2 )

+ gµ2µ3 (pµ1

2 − pµ1

3 )

+ gµ3µ1 (pµ2

3 − pµ2

1 )
]

,

Fµ1µ2µ3µ4
c1,c2,c3,c4

= fc1c2ifc3c4i[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fc1c3ifc2c4i[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fc1c4ifc2c3i[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ].

(A.1)

In Eq. (A.1) sum over repeated indices is understood.

Appendix B. Higher-rank integrands

Higher-rank integrands, i.e. integrands where the pow-
ers of loop momenta in the numerator is higher than the
numbers of denominators, are present in diagrams with
a Higgs boson coupled to a purely gluonic loop involving
only three-gluon vertices. The generic numerator Γε1···εn

of a (n+1)-denominator one-loop diagram can be written
as

Γε1···εn ≡ Fµ1µ2
Gµ1µ2ε1···εn , (B.1)

where Fµ1µ2
is the Hgg vertex defined in Eq. (A.1), and

Gµ1µ2ε1···εn is the numerator of an (n+2)-gluon tree-level
diagram, which can be represented by

ε2

ε1

εn

≡

µ2

µ1

q

µ2

µ1

ε2

ε1

εn

q

We are interested in the leading behaviour in q of Γε1···εn ,
and we want to show that the highest-rank terms, with
rank r = n + 2, are proportional to the loop momentum
squared, q2. In order to show it, we neglect all external
momenta and all the terms proportional to q2.
From Eq. (A.1), one trivially has

Fµ1µ2
= qµ1

qµ2
+O(q2) , (B.2)

while the generic tensor structure of Gµ1µ2ε1···εn is

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn
1 + qµ2T µ1ε1···εn

2 +

+ gµ1µ2T ε1···εn
g +O(q2) , (B.3)

where T1, T2, and Tg are tensors which may depend on q
as well. Indeed Eq. (B.3) is fulfilled for n = 0, 1,

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (B.4)

6

distributions of about 1.5, over a large fraction of kine-
matical range, and a decrease of the scale uncertainty of
about 50%.
The evaluation of the virtual corrections constitutes an

application of the d-dimensional integrand reduction to
theories with higher dimensional operators.
Finally, as an initial step towards the evaluation of pp →

Hjjj at NLO, we presented first results for the one-loop
matrix elements of the partonic processes with a quark-
pair in the final state.

Acknowledgements

We thank the Sherpa collaboration for encouraging and
stimulating discussions and feedback on the manuscript.
We also would like to thank Thomas Hahn for his tech-
nical support while structuring the computing resources
needed by our codes, and Joscha Reichel for feedback on
the extended-rank version of samurai.
The work of H.v.D., G.L., P.M., and T.P. was supported

by the Alexander von Humboldt Foundation, in the frame-
work of the Sofja Kovaleskaja Award Project “Advanced
Mathematical Methods for Particle Physics”, endowed by
the German Federal Ministry of Education and Research.
G.O. was supported in part by the National Science

Foundation under Grant PHY-1068550.
H.v.D. and G.L. thank the Center for Theoretical

Physics of New York City College of Technology for hos-
pitality during the final stages of this project.
The Feynman diagrams present in this paper are drawn

using FeynArts [72].

Appendix A. Effective Higgs-gluon vertices

The operator L in Eq. (1) describes the gluon-Higgs in-
teraction in the large top-mass limit and leads to the fol-
lowing set of Feynman rules:

H

g1

g2

= −igeffFµ1µ2
c1,c2

H

g3

g1

g2 = geffgs Fµ1µ2µ3
c1,c2,c3

H

g2

g3

g1

g4

= igeffg
2
s Fµ1µ2µ3µ4

c1,c2,c3,c4

where we define

Fµ1µ2
c1,c2

= δc1c2 (p
µ2

1 pµ1

2 − p1 · p2 gµ1µ2) ,

Fµ1µ2µ3
c1,c2,c3

= fc1c2c3
[

gµ1µ2 (pµ3

1 − pµ3

2 )

+ gµ2µ3 (pµ1

2 − pµ1

3 )

+ gµ3µ1 (pµ2

3 − pµ2

1 )
]

,

Fµ1µ2µ3µ4
c1,c2,c3,c4

= fc1c2ifc3c4i[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fc1c3ifc2c4i[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fc1c4ifc2c3i[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ].

(A.1)

In Eq. (A.1) sum over repeated indices is understood.

Appendix B. Higher-rank integrands

Higher-rank integrands, i.e. integrands where the pow-
ers of loop momenta in the numerator is higher than the
numbers of denominators, are present in diagrams with
a Higgs boson coupled to a purely gluonic loop involving
only three-gluon vertices. The generic numerator Γε1···εn

of a (n+1)-denominator one-loop diagram can be written
as

Γε1···εn ≡ Fµ1µ2
Gµ1µ2ε1···εn , (B.1)

where Fµ1µ2
is the Hgg vertex defined in Eq. (A.1), and

Gµ1µ2ε1···εn is the numerator of an (n+2)-gluon tree-level
diagram, which can be represented by

ε2

ε1

εn

≡

µ2

µ1

q

µ2

µ1

ε2

ε1

εn

q

We are interested in the leading behaviour in q of Γε1···εn ,
and we want to show that the highest-rank terms, with
rank r = n + 2, are proportional to the loop momentum
squared, q2. In order to show it, we neglect all external
momenta and all the terms proportional to q2.
From Eq. (A.1), one trivially has

Fµ1µ2
= qµ1

qµ2
+O(q2) , (B.2)

while the generic tensor structure of Gµ1µ2ε1···εn is

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn
1 + qµ2T µ1ε1···εn

2 +

+ gµ1µ2T ε1···εn
g +O(q2) , (B.3)

where T1, T2, and Tg are tensors which may depend on q
as well. Indeed Eq. (B.3) is fulfilled for n = 0, 1,

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (B.4)

6

distributions of about 1.5, over a large fraction of kine-
matical range, and a decrease of the scale uncertainty of
about 50%.
The evaluation of the virtual corrections constitutes an

application of the d-dimensional integrand reduction to
theories with higher dimensional operators.
Finally, as an initial step towards the evaluation of pp →

Hjjj at NLO, we presented first results for the one-loop
matrix elements of the partonic processes with a quark-
pair in the final state.

Acknowledgements

We thank the Sherpa collaboration for encouraging and
stimulating discussions and feedback on the manuscript.
We also would like to thank Thomas Hahn for his tech-
nical support while structuring the computing resources
needed by our codes, and Joscha Reichel for feedback on
the extended-rank version of samurai.
The work of H.v.D., G.L., P.M., and T.P. was supported

by the Alexander von Humboldt Foundation, in the frame-
work of the Sofja Kovaleskaja Award Project “Advanced
Mathematical Methods for Particle Physics”, endowed by
the German Federal Ministry of Education and Research.
G.O. was supported in part by the National Science

Foundation under Grant PHY-1068550.
H.v.D. and G.L. thank the Center for Theoretical

Physics of New York City College of Technology for hos-
pitality during the final stages of this project.
The Feynman diagrams present in this paper are drawn

using FeynArts [72].

Appendix A. Effective Higgs-gluon vertices

The operator L in Eq. (1) describes the gluon-Higgs in-
teraction in the large top-mass limit and leads to the fol-
lowing set of Feynman rules:

H

g1

g2

= −igeffFµ1µ2
c1,c2

H

g3

g1

g2 = geffgs Fµ1µ2µ3
c1,c2,c3

H

g2

g3

g1

g4

= igeffg
2
s Fµ1µ2µ3µ4

c1,c2,c3,c4

where we define

Fµ1µ2
c1,c2

= δc1c2 (p
µ2

1 pµ1

2 − p1 · p2 gµ1µ2) ,

Fµ1µ2µ3
c1,c2,c3

= fc1c2c3
[

gµ1µ2 (pµ3

1 − pµ3

2 )

+ gµ2µ3 (pµ1

2 − pµ1

3 )

+ gµ3µ1 (pµ2

3 − pµ2

1 )
]

,

Fµ1µ2µ3µ4
c1,c2,c3,c4

= fc1c2ifc3c4i[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fc1c3ifc2c4i[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fc1c4ifc2c3i[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ].

(A.1)

In Eq. (A.1) sum over repeated indices is understood.

Appendix B. Higher-rank integrands

Higher-rank integrands, i.e. integrands where the pow-
ers of loop momenta in the numerator is higher than the
numbers of denominators, are present in diagrams with
a Higgs boson coupled to a purely gluonic loop involving
only three-gluon vertices. The generic numerator Γε1···εn

of a (n+1)-denominator one-loop diagram can be written
as

Γε1···εn ≡ Fµ1µ2
Gµ1µ2ε1···εn , (B.1)

where Fµ1µ2
is the Hgg vertex defined in Eq. (A.1), and

Gµ1µ2ε1···εn is the numerator of an (n+2)-gluon tree-level
diagram, which can be represented by

ε2

ε1

εn

≡

µ2

µ1

q

µ2

µ1

ε2

ε1

εn

q

We are interested in the leading behaviour in q of Γε1···εn ,
and we want to show that the highest-rank terms, with
rank r = n + 2, are proportional to the loop momentum
squared, q2. In order to show it, we neglect all external
momenta and all the terms proportional to q2.
From Eq. (A.1), one trivially has

Fµ1µ2
= qµ1

qµ2
+O(q2) , (B.2)

while the generic tensor structure of Gµ1µ2ε1···εn is

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn
1 + qµ2T µ1ε1···εn

2 +

+ gµ1µ2T ε1···εn
g +O(q2) , (B.3)

where T1, T2, and Tg are tensors which may depend on q
as well. Indeed Eq. (B.3) is fulfilled for n = 0, 1,

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (B.4)

6

Hjj @ NLO :: a nice surprise



our amplitudes confirmed by MCFM (v6.4) Campbell, Ellis, Williams

and generates the following minimal set of processes

g g → H g g , g g → H q q̄ ,

q q̄ → H q q̄ , q q̄ → H q′ q̄′ . (4)

The other processes are obtained by performing the ap-
propriate symmetry transformation.
The ultraviolet (UV), the infrared, and the collinear

singularities are regularized using dimensional reduction
(DRED). UV divergences have been renormalized in the
MS scheme. In the case of LO [NLO] contributions we de-
scribe the running of the strong coupling constant with
one-loop [two-loop] accuracy, decoupling the top quark
from the running.

The effective Hgg coupling, see Appendix A, leads to
integrands that may exhibit numerators with rank r larger
than the number n of the denominators, i.e. r ≤ n+1. In
general, for these cases, the parametrization of the residues
at the multiple-cut has to be extended as discussed in
Ref. [47]. As a consequence, the decomposition of any
one-loop n-point amplitude in terms of master integrals
(MIs) acquires new contributions, reading as,

Mone-loop

n = An + δAn . (5)

The term An corresponds to the standard decomposition
for the case of a renormalizable theory (r ≤ n), while the
additional contribution δAn enters whenever r ≤ n + 1.
Their actual expressions can be found in Eqs. (2.16) and
(6.11) of [47].
The extended integrand decomposition has been imple-

mented in the samurai library. In particular, the coeffi-
cients multiplying the MIs appearing in An and δAn are
computed by using the discrete Fourier transform as de-
scribed in Refs. [45, 53].

In the case of Higgs plus jets production, higher rank
numerators arise from diagrams where the Higgs boson is
attached to a pure gluonic loop. However, as shown in
Appendix B, the rank-(n + 1) terms of an n-point inte-
grand are proportional to the loop momentum squared, q2,
which simplifies against a denominator. Therefore, they
generate (n−1)-point integrands with rank r = n−1. Con-
sequently, the coefficients of the MIs in δAn have to vanish
identically, as explicitly verified. Since δAn in Eq. (5) does
not play any role, the integrand reduction can be also per-
formed with the current public version of samurai, which
does not contain the extended decomposition - hence, im-
plying a lighter reduction, with fewer coefficients involved.
We remark that, within the integrand reduction algo-

rithm, it is possible to benefit immediately from the pres-
ence of powers of q2 in the numerators, without any alge-
braic cost: the contribution of those terms is automatically
taken into account by the integrand reconstruction of the
subdiagrams (because they give no contribution on the
corresponding massless cut). On the contrary, within a
tensor reduction algorithm, these terms would cancel only
after the algebraic manipulation of the integrand.

The numerical values of the one-loop amplitudes of the
processes (4) in a non-exceptional phase space point are
collected in Appendix C. The values of the double and the
single poles conform to the universal singular behavior of
dimensionally regulated one-loop amplitudes [61–65]. Af-
ter appropriate crossing to the H → 4-parton decay kine-
matics, we compared our results with the ones presented
in Table I of Ref. [26], finding excellent agreement. Fur-
thermore, converting our results for the Hjj-production
channels from DRED to the ’t Hooft-Veltman scheme, we
are in perfect agreement with the most recent version of
MCFM (v6.4).

Figure 1: Transverse momentum pT of the Higgs boson.

Figure 2: Pseudorapidity η of the Higgs boson.
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Figure 3: Transverse momentum pT of the first jet.

Figure 4: Transverse momentum pT of the second jet.

3. Numerical results for pp → Hjj

In this section we present a selection of phenomeno-
logical results for proton-proton collisions at the LHC at√
s = 8 TeV, as a sample of the results that can be easily

obtained with the GoSam-Sherpa automated setup [37–
40]. A more complete analysis of Higgs production in
gluon fusion, which merges several multiplicities [66] and
employs the code for the virtual matrix elements of Hjj
presented here, is going to be discussed in [67].
The results shown in this section are obtained using the

parameters listed below:

MH = 125 GeV , GF = 1.16639 · 10−5 GeV−2 ,

αLO

s (MZ) = 0.129783 , αNLO

s (MZ) = 0.117981 ,

v2 =
1√
2GF

. (6)

Figure 5: Pseudorapidity η of the first jet.

Figure 6: Pseudorapidity η of the second jet.

We use the CTEQ6L1 and CTEQ6mE [68] parton dis-
tribution functions (PDF) for the LO and NLO, respec-
tively. The value of the strong coupling at the scale µ is
taken from the PDF set starting from the initial values in
Eq. (6). The jets are clustered by using the anti-kT algo-
rithm provided by the FastJet package [69–71] with the
following setup:

pt,j ≥ 20 GeV, |ηj | ≤ 4.0, R = 0.5 . (7)

The Higgs boson is treated as a stable on-shell particle,
without including any decay mode. To fix the factorization
and the renormalization scale we define

Ĥt =
√

M2
H + p2t,H +

∑

j

pt,j , (8)

where pt,H and pt,j are the transverse momenta of the
Higgs boson and the jets. The nominal value for the two

4

scales is defined as

µ = µR = µF = Ĥt , (9)

whereas theoretical uncertainties are assessed by vary-
ing simultaneously the factorization and renormalization
scales in the range

1

2
Ĥt < µ < 2Ĥt . (10)

The error is estimated by taking the envelope of the re-
sulting distributions at the different scales.

3.1. Results

Within our framework, we find the following total cross
sections for the process pp → Hjj in gluon fusion:

σLO[pb] = 1.90+0.58
−0.41 ,

σNLO[pb] = 2.90+0.05
−0.20 ,

where the error is obtained by varying the renormalization
and factorization scales as given in Eq. (9). The LO distri-
butions have been computed using 2.5 × 107 phase space
points, whereas all NLO distributions have been obtained
using 4.0×106 phase space points for the Born and the vir-
tual corrections and 5.0× 108 points for the real radiation
for each scale.
In Figs. 1 and 2, we present the distribution of the trans-

verse momentum pT of the Higgs boson and its pseudora-
pidity η, respectively. Both of them show a K-factor be-
tween the LO and the NLO distribution of about 1.5−1.6,
which is almost flat over a large fraction of kinematical
range. Furthermore both plots show a decrease of the scale
uncertainty of about 50%. Figures 3 and 4 display the
transverse momentum of the first and second jet, whereas
their pseudorapidities are shown in Figs. 5 and 6. The
previous considerations are also true for these latter plots.
For the transverse momentum distributions, however, we
observe a slight change of shapes. In the case of the lead-
ing jet, increasing the pT , the K-factor decreases from 1.6
to 1.4; while for the second leading jet, it increases from
1.4 to 1.6.

4. Virtual corrections to pp → Hjjj

We explore the possibility of extending our framework
to the production of a Higgs boson plus three jets at NLO.
The independent partonic processes contributing to

Hjjj can be obtained by adding one extra gluon to the
final state of the processes listed in Eq.(4). Accordingly,
we generate the codes for the virtual corrections to the
partonic processes with a quark-pair in the final state,

gg → Hqq̄g , qq̄ → Hqq̄g , qq̄ → Hq′q̄′g . (11)

The missing channel gg → Hggg, together with the phase
space integration, will be discussed in a successive study.
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Figure 7: Finite-term of the virtual matrix-elements for gg → Hqq̄g
(red), qq̄ → Hqq̄g (green), qq̄ → Hq′ q̄′g (blue).

We compute, for the first time, the virtual matrix ele-
ments for the three subprocesses listed above, and show
their results along a certain one-dimensional curve in the
space of final state momenta. We take the initial partons
to have momentum p1 and p2, whose 3-momenta lie along
the z-axis, and choose an arbitrary point for the final state
momenta {p3, p4, p5, p6}. For simplicity, we start with the
same phase space point used in the Appendix D (see Ta-
ble D.4). Then, we create new momentum configurations
by rotating the final state through an angle θ about the
y-axis. Figure 7 displays the behavior of the finite part a0
of the individual 2 → 4 amplitudes defined as

2Re {Mtree-level∗Mone-loop}
(4παs) |Mtree-level|2

≡
a−2

ε2
+

a−1

ε
+ a0 , (12)

when the final external momenta are rotated from θ = 0
to θ = 2π. The plots are obtained by sampling over 100
points.
Numerical values for the one-loop amplitudes of the pro-

cesses listed in (11) are collected in Appendix D.
Also in this case we verify that the values of the dou-

ble and the single poles conform to the universal singu-
lar behavior of dimensionally regulated one-loop ampli-
tudes [65].

5. Conclusions

We presented the calculation of the associated produc-
tion of a Higgs boson and two jets, pp → Hjj, at NLO in
QCD, employing the infinite top-mass approximation.
The results were obtained by using a fully automated

framework for fixed order NLO QCD calculations based
on the interplay of the packages GoSam and Sherpa, in-
terfaced through the BLHA standards. We discussed the
technical aspects of the computation, and showed the nu-
merical impact of the radiative corrections on the distribu-
tion of the transverse momentum of the Higgs boson and
its pseudorapidity, as well as of the transverse momentum
and pseudorapidity of the leading and second leading jet.
All plots show a K-factor between the LO and the NLO
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Virtual parts computed with
GoSam
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Higgs + 3 jets GF @ NLO: cross-section

Cross sections are obtained with a hybrid setup:
I GoSam + Sherpa for Born and of the virtual contributions
I

MadGraph+MadDipole+MadEvent for reals/subtraction/integrated dipoles
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Tests performed on the cross section:
I NLO H+2 jets: Agreement between hybrid scheme and GoSam+Sherpa
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I NLO H+3 jets: Independence from ↵�parameter (subtraction+int. dipoles)
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Hybrid MC setup (HMC)

GoSam+Sherpa: Born & Virtuals

Mad-{Graph/Dipole/Event}
Reals, Subtractions, Int’ed Dipoles

Tests

NLO H+2: HMC vs Gosam+Sherpa

LO H+3: Madgraph vs Sherpa

NLO H+3: alpha-independence
               (Subtr’ns + Int’ed Dipoles)

xsection
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3

employ a combination of MadGraph [42, 43] (matrix el-
ements), MadDipole [44, 45] (subtraction terms), and
MadEvent [46] (numerical integration). We verified the
independence of our result under the variation of the so
called α-parameter that fixes the amount of subtractions
around the divergences of the real corrections.
We first proved the consistency of our hybrid MC in-

tegration on pp → Hjj, verifying that the full cross sec-
tion at NLO agrees with the corresponding result for the
integration of both the virtual and the real corrections
obtained by the interplay of Sherpa and GoSam alone.
Moreover, for the process under consideration, namely
pp → Hjjj, we found excellent agreement betweenMad-
Graph and Sherpa for the LO cross section.

INTEGRATED CROSS SECTION

In the following, we present results for the integrated
cross section of Higgs boson plus three jets production at
the LHC, for a center-of-mass energy of 8 TeV. The mass
of the Higgs boson is set to mH = 125 GeV.
Jets are clustered using the antikt-algorithm imple-

mented in FastJet [47–49] with radius R = 0.5 and
a minimum transverse momentum of pT,jet > 20 GeV
and pseudorapidity |η| < 4.0. The LO cross section
is computed with the LO parton-distribution functions
cteq6L1, whereas at NLO we use cteq6mE [50].
Everywhere, but in the effective coupling of the Higgs

to the gluons, the renormalization and factorization
scales are set to

µF = µR =
ĤT

2
=

1

2

(

√

m2
H + p2T,H +

∑

i

|pT,i|

)

, (3)

where the sum runs over the final state jets. The strong
coupling is therefore evaluated at different scales accord-
ing to α5

s → α2
s(mH)α3

s(ĤT /2). The theoretical uncer-
tainties are estimated by varying the scales by factors
of 0.5 and 2.0 respectively. In the effective coupling the
scale is kept at mH . Within this setup we obtain the
following total cross section at LO and NLO:

σLO[pb] = 0.962+0.51
−0.31 , σNLO[pb] = 1.18+0.01

−0.22 .

The scale dependence of the total cross section, depicted
in Fig. 2, is strongly reduced by the inclusion of the NLO
contributions.
In Figs. 3 and 4, we show the pT distributions of the

three jets and of the Higgs boson, respectively. The NLO
corrections enhance all distributions for pT values lower
than 150− 200 GeV, whereas their contribution is neg-
ative at higher pT . This behavior is explicitly shown in
the lower part of Fig. 4 for the case of the Higgs boson.
This study also shows that the virtual contributions

for pp → Hjjj generated by GoSam can be successfully
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Figure 2. Scale dependence of the total cross section at LO
and NLO.
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Figure 3. Transverse momentum (pT ) distributions for the
first, second, and third leading jet.

paired with available Monte Carlo programs to aim at
further phenomenological analyses.
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APPENDIX: SELECTED RESULTS FOR THE

VIRTUAL CONTRIBUTIONS

The numerical values of the one-loop sub-amplitudes,
defined as

2Re {Mtree-level∗Mone-loop}

(αs/2π) |Mtree-level|2
≡

a−2

ε2
+

a−1

ε
+ a0 , (4)

and evaluated at the non-exceptional phase space point
given in Tab. II, are collected in Tab. III. The values of
the double and the single poles conform to the univer-
sal singular behavior of dimensionally regulated one-loop
amplitudes [39]. The precision of the finite parts is esti-
mated by re-evaluating the amplitudes for a set of mo-
menta rotated by an arbitrary angle about the axis of
collision.
In Fig. 5, we present the results for the finite part a0 of

the virtual matrix elements for the various subprocesses
calculated along a certain one-dimensional curve in the
space of final state momenta. Starting from the phase
space point in Tab. II, in which the initial partons lie
along the z-axis, we generate new configurations by ro-
tating the final state momenta by an angle θ ∈ [0, 2π]
about the y-axis.
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Evolving GoSam: inward

Improving and
Extending the
Integrand Reduction



Improved Integrand Red’n

known Delta-residues allow for polynomial sampling
mandatory integrand subtraction 
multiple cuts are nested
triangular system solving (chained algorithm)

Ossola Papadopoulos Pittau
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each term becomes independent from the others
expansion of Delta => universal counterterms :: a’’
expansion of N on the multiple cuts can be
performed independently cut by cut :: a’
coefficients of MI’s :: a = a’+ a’’
diagonal system solving
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...in combination with Laurent series expansion Forde; Kilgore; Badger
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Improved Integrand Red’n



Ninja :: Quasi-Analytic Int’nd Red’n
lighter reduction algorithm: faster and more stable
sampling replaced by series expansion
integrand subtraction replaced by coefficient corrections
less coefficient to be determined
5-cut not needed
4-cut decoupled from lower cuts
coefficients of 3-, 2- and 1-cut obtained by 
Laurent expansion (+ coefficients corrections)
Laurent expansions of 3-, 2- and 1-cut 
independent of each other (unchained algorithm)

Mirabella Peraro P.M.
Extended rank Integrand decomposition algorithm

2.2.2 Quintuple Cut

The residue of the quintuple-cut, D̄i = . . . = D̄m = 0, defined as,
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where K3 is the third leg of the 4-point function associated to the considered quadruple-cut.
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(2.15)

is parametrized as,
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+ c(ijk)
3,1 (q + p0) · e3 + c(ijk)
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�
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�
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(e1 · e2)
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(2.11)
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2.2.5 Double Cut

The residue of the double-cut, D̄i = D̄j = 0, defined as,

�ij(q̄) = Resij

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
�

n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k

�
, (2.17)

can be interpolated by the following form,

�ij(q̄) = c(ij)
2,0 + c(ij)

2,9 µ2 +

+ c(ij)
2,1 (q + p0) · e2 + c(ij)

2,2 ((q + p0) · e2)
2 +

+ c(ij)
2,3 (q + p0) · e3 + c(ij)

2,4 ((q + p0) · e3)
2 +

+ c(ij)
2,5 (q + p0) · e4 + c(ij)

2,6 ((q + p0) · e4)
2 +

+ c(ij)
2,7 ((q + p0) · e2)((q + p0) · e3) + c(ij)

2,8 ((q + p0) · e2)((q + p0) · e4) =

= c(ij)
2,0 + c(ij)

2,9 µ2 +
�
c(ij)
2,1 x1 � c(ij)

2,3 x4 � c(ij)
2,5 x3

�
(e1 · e2) +

+
�
c(ij)
2,2 x2

1 + c(ij)
2,4 x2

4 + c(ij)
2,6 x2

3 � c(ij)
2,7 x1x4 � c(ij)

2,8 x1x3

�
(e1 · e2)

2 . (2.18)

2.2.6 Single Cut

The residue of the single-cut, D̄i = 0, defined as,

�i(q̄) = Resi

�
N(q̄)

D̄0 · · · D̄n�1
�

n�1�

i<<m

�ijk�m(q̄)

D̄iD̄jD̄kD̄�D̄m
�

n�1�

i<<�

�ijk�(q̄)

D̄iD̄jD̄kD̄�
+

�
n�1�

i<<k

�ijk(q̄)

D̄iD̄jD̄k
�

n�1�

i<j

�ij(q̄)

D̄iD̄j

�
(2.19)

can be interpolated as follows,

�i(q̄) = c(i)
1,0 + c(i)

1,1((q + p0) · e1) + c(i)
1,2((q + p0) · e2) +

+ c(i)
1,3((q + p0) · e3) + c(i)

1,4((q + p0) · e4) =

= c(i)
1,0 +

�
c(i)
1,1x2 + c(i)

1,2x1 � c(i)
1,3x4 � c(i)

1,4x3

�
(e1 · e2) . (2.20)

2.2.7 Discrete Fourier Transform

As proposed in [94], the coe�cients of a polynomial of degree n in the variable x, say P (x),

defined as,

P (x) =
n�

�=0

c� x� , (2.21)

can be extracted by means of projections, according to the the Discrete Fourier Transform.

The basic procedure is very simple:
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Ninja :: Quasi-Analytic Int’nd Red’n

Peraro

lighter reduction algorithm: faster and more stable
sampling replaced by series expansion
integrand subtraction replaced by coefficient corrections
less coefficient to be determined
5-cut not needed
4-cut decoupled from lower cuts
coefficients of 3-, 2- and 1-cut obtained by 
Laurent expansion (+ coefficients corrections)
Laurent expansions of 3-, 2- and 1-cut 
independent of each other (unchained algorithm)
Laurent expansion implemented by Polynomial Division

Ninja C++ library  + GoSam...

Mirabella Peraro P.M.
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Figure 3. Invariant mass distributions of the tt̄-pairs for tt̄H
and tt̄Hj at NLO relative to the tt̄Hj at LO for µ = 2×GAT .

pp → tt̄H and pp → tt̄Hj at NLO QCD accuracy,
we also used the GoSam/Ninja+Sherpa framework
to compute the cross section for tt̄H production. We
found excellent agreement with the results presented in
Refs. [7, 47].

NUMERICAL RESULTS

In the following, we present results for the integrated
cross section for a center-of-mass energy of 8 TeV. The
mass of the Higgs boson is set to mH = 126 GeV
and the top quark mass is set to mt = 172.5 GeV.
The parameters of the electroweak sector are fixed by
setting MW = 80.419 GeV, MZ = 91.1876 GeV and
α−1
EW = 132.50698.
To cluster the jets we use the antikt-algorithm imple-

mented in FastJet [48–50] with radius R = 0.5, a mini-
mum transverse momentum of pT,jet > 15 GeV and pseu-
dorapidity |η| < 4.0. The LO cross sections are computed
with the LO parton-distribution functions cteq6L1 [51],
whereas at NLO we use CT10 [52].
In order to study the scale dependence of the total cross

section, we employ two different choices of the renormal-
ization and factorization scales µR = µF = µ0, namely
µ0 = HT and µ0 = 2×GAT with

HT =
∑

final
states f

|pT,f | , (2)

GAT = 3
√
mT,H mT,t mT,t̄ +

∑

jets j

|pT,j | . (3)

Within this setup, for the two scale choices, we obtain
the total LO and NLO cross sections reported in Table I.

Figure 4. Transverse momentum distribution of the Higgs
boson at LO and NLO for µ = HT .

Figure 5. Pseudorapidity η of the Higgs boson at LO and
NLO accuracy for µ = HT .

Central Scale σLO [fb] σNLO [fb]

2×GAT 80.03+35.64
−23.02 100.6+0.00

−9.43

HT 88.93+41.41
−26.13 102.3+0.00

−15.82

Table I. Total cross section for tt̄Hj for different choices of
the central scale at LO and NLO.

The scale dependence of the total cross section, de-
picted in Fig. 2, is strongly reduced by the inclusion of
the NLO contributions. It is worthwhile to notice that
both choices for the central value of the scale provide an
adequate description, being close to the physical scale of
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First application of Ninja

HtTj @ NLO :: GoSam+Ninja+Sherpa

Massive Dipoles
Catani, Dittmaier, Seymour, Tocszany



GoSam + Ninja: more app’s

faster, 
higher accuracy,
more stable, 
no-problem with 
multiple masses

Subprocess Time/PS-point [ms]

pp ! Wjjj
dū ! ⌫̄ee

�ggg 226

pp ! Zjjj
dd̄ ! e+e�ggg 1911.4

pp ! tt̄bb̄ (mb 6= 0)
dd̄ ! tt̄bb̄ 178
gg ! tt̄bb̄ 5685

pp ! Wbb̄j (mb 6= 0)
ud̄ ! e+⌫ebb̄g 67

pp ! Hjjj (GF,mt ! 1)
gg ! Hggg 11266
gg ! Hguū 999
uū ! Hguū 157
uū ! Hgdd̄ 68

pp ! Hjjj (VBF)
uū ! Hguū 101

pp ! Hjjjj (VBF)
uū ! Hgguū 669
uū ! Huūuū 600

2

van Deurzen Luisoni Mirabella Ossola Peraro P.M.

Intel i7 960 (3.20GHz) CPU + Intel fortran compiler ifort (with optimization O2).



Conclusions
GoSam: ideas >> technical improvements >> exciting results
GoSam: automatic computation of one-loop amplitudes
- algebraic generation of integrands from Feynman diagrams
- based on d-dim integrand reduction and tensor reduction
- built-in rational term

Interfaced to several MC for pheno studies
Applications within and beyond SM: QCD, EW, BSM, extra-D
Successful computation of H+n jets (n=1,2,3) in GF
Ninja :: the new integrand reduction
GoSam + Ninja :: pp > HtTj

http://gosam.hepforge.org

http://gosam.hepforge.org
http://gosam.hepforge.org


Toward Gosam2.0 :: 
- faster code generation
- lighter executable [thanks to Form > 4.0]
- new reduction algorithm: Ninja
- faster and more stable evaluation of virtual amp’s
- extended and more flexible MC-interface

Outlook



Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes

P. Mastrolia,1, 2 E. Mirabella,1 G. Ossola,3, 4 and T. Peraro1

1
Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

2
Dipartimento di Fisica e Astronomia, Università di Padova,

and INFN Sezione di Padova, via Marzolo 8, 35131 Padova, Italy

3
New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn NY 11201, USA

4
The Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

We present the integrand reduction via multivariate polynomial division as a natural technique
to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the
integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of
loops and external legs, which can be used to obtain the decomposition of any integrand analytically
with a finite number of algebraic operations. The general results are illustrated by applications to
two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can
also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

Introduction – In the perturbative approach to quan-
tum field theories, the elements of the scattering matrix,
which are the scattering amplitudes, can be expressed in
terms of Feynman diagrams. The latter generally rep-
resent multiple integrals whose integrand is a rational
function of the integration variables. Scattering ampli-
tudes are analytic functions of the kinematic variables of
the interacting particles, hence they are determined by
their singularities, whose location in the complex plane
is specified by a set of algebraic equations. The analysis
of the singularity structure can be used to define the dis-
continuities of a Feynman integral across the branch cuts
attached to the Landau singularities. They are encoded
in the Cutkosky formula and correspond to the unitarity
conditions of the scattering amplitude. In the canonical
formalism, the unitarity cut conditions have been used
for the evaluation of the scattering amplitudes trough
dispersive Cauchy’s integral representations. However,
the dispersive approach is well known to su↵er from am-
biguities which limit its applicability for the quantitative
evaluation of generic Feynman integrals in gauge theo-
ries.

In the more modern interpretation of unitarity, cut
conditions and analyticity are successfully exploited for
decomposing scattering amplitudes in terms of indepen-
dent functions – rather than for their direct evaluation.
The basic functions entering the amplitudes decomposi-
tion are univocally characterised by their singularities.
The singularity structure can be accessed before inte-
gration, at the integrand level [1, 2]. Therefore, the
decomposition of the integrated amplitudes can be de-
duced from the the decomposition of the corresponding
integrands. The integrand-reduction methods [1–7] rely
on the existence of a relation between the numerator and
the denominators of each Feynman integral. A generic
numerator can be expressed as a combination of (prod-
ucts of) denominators, multiplied by polynomial coe�-
cients, which correspond to the residues at the multiple
cuts of the diagrams. The multiple-cut conditions, gen-
erally fulfilled for complex values of the integration vari-

Figure 1. Integrand recurrence relation for a generic `-loop
integrand.

ables, can be viewed as projectors isolating each residue.
The latter, depicted as an on-shell cut diagram, repre-
sents the amplitude factorized into a product of simpler
amplitudes, either with fewer loops or a lower number of
legs.
The residues are multivariate polynomials in those

components of the propagating momenta which corre-
spond to irreducible scalar products (ISPs), that cannot
be decomposed in terms of denominators. The ISPs ei-
ther yield spurious contributions, which vanish upon in-
tegration, or generate the basic integrals entering the am-
plitude decomposition [2, 4].
Within the integrand reduction methods, the problem

of decomposing any scattering amplitude in terms of in-
dependent integrals is therefore reduced to the algebraic
problem of reconstructing the residues at its multiple
cuts.
In Refs. [6, 7] the determination of the residues at the

multiple cuts has been formulated as a problem of mul-
tivariate polynomial division, and solved using algebraic
geometry techniques. These techniques allowed one to
prove that the integrand decomposition, originally formu-
lated for one-loop amplitudes [1], is valid and applicable
at any order in perturbation theory, irrespective of the
complexity of the topology of the involved diagrams, be-
ing them massless or massive, planar or non planar. This
novel reduction algorithm has been applied to the decom-
position of supersymmetric amplitudes at two and three
loops [8, 9]. Also, it has been used for the identification
of the two-loop integrand basis in four dimensions [10],
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