GoSam@ LHC

Algorithms and Applications to Higgs production

Pierpaolo Mastrolia

GoSam team
Cullen van Deurzen Greiner Heinrich Luisoni Mrabelàossóa Perarorechel Schlenk vonsodentrauhofen Iramontano PM

BADCOR2013

Outline

The GoSan Project
The code
Applications $p p>H J j$ in gluon fusion: @ NLO
Novel integrand reduction Ninja
Applications $p p>H$ - 1 @ NLO
Conclusions

Analytic Unitarity \& HJ @ NLO

2006

Berger dél Dúca Dixon Bádger:Gower Riságer Gower WillamsPM
Badger:Gower Williams PM
DixonSofianatos
Badger Campbell Ellis Williams :2009::

- 4D Unitarity cut-constructiole terms
- recurrence relation orational part
- PV Tensorreduction . rational part

Sanural... ossola Reiter Tramontanop.M.

* Integrand Reduction for One Loopintegrals ossola papadopoutos pitau
* Generalised D-dim Unitarity Elisiciele Kunsit Melinikov
* Complete reduction to D reg Máster Integrals
: cut-constructible \& rational terms at once

- Integrand Generation
- Tensor Reduction Library

The GoSam Project

2.0. Gullen van Deurzen Greiner Heinrich Luisoni Mirabelláossola Peraro Reichel Schlenk von Soden rainofen ramontano PM

* D-reg Feynhan Diagranis algebraic generationg

Qgraf Noguelia
Form vermaseren
Spinney cuilenkochondiszagiter
\because Redüctiont:

Ninja Miabolapearopm

- Mástér fitegrals\%

AVHOLO van Hameren
QCDLoop Elis zanderigh
Golem95C Binoth Guiliet Heinrich Pilon Reiter von Soden-Fraunhoten
Looptools Hahn

The GoSam Project

Cüllen van Deurzen Greiner Heinrich Luisoni Mrabellassola Peraro Reiche Schlenk von Soden Fraunhofentramono PM

Monte Garlo Generator

The GoSam Project

Cüllen van Deurzen Greiner Heinrich Luisoni Mrabellassola Peraro Reiche Schlenk von Soden Erauhofen IramontanoP.M.

$$
\sigma_{\text {NLO }}=\int_{n}\left(d \sigma_{\text {Born }}+d \sigma_{\text {Virtual }}+\int_{1} d \sigma_{\text {subtracion }}\right)+\int_{n+1}\left(d \sigma_{\text {Real }}-d \sigma_{\text {subtraction }}\right)
$$

Monte Gano Generator

 Multerocess One-Lop Provider

The GoSam Project

Cullen van Deurzen Greiner Heinrich Luisoni Mrabellassola Peraro Reiche Schlenk von Soden ErauhiofentramontanoP.M.

...a deeper look into the code . .

GoSam: algorithms

Input Card

Monte Carlo

Diagram Generation

Diagram Generation

Diagrams are collected (orizzontally and yerically) according to their topologies: maximal exploitation of the unitarity based integrand -reduction

Diagram Generation

Diagsum : common loop structure

- different tree appendices
- different particles in the loop, but same denominators

Diagram Generation

Diagram Generation

Grouping : sub-topologies structure

Diagram Generation

Clobal Diacram diagsummed and grouped \& super amplitude

Numerator

$$
\mathcal{A}_{n}=\int d^{d} \overline{\bar{q}} A(\bar{q}, \epsilon), \quad A(\bar{q}, \epsilon)=\frac{\mathcal{N}(\overline{\bar{q}}, \epsilon)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{n-1}},
$$

$$
\mathcal{N}(\bar{q}, \epsilon)=N_{0}(\bar{q})+\epsilon N_{1}(\bar{q})+\epsilon^{2} N_{2}(\bar{q}) .
$$

$$
\begin{aligned}
& \bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2}=\left(q+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2} \\
& \bar{q}=q+\mu, \quad \text { with } \quad \bar{q}^{2}=q^{2}-\mu^{2} .
\end{aligned}
$$

$$
\mathcal{N}_{i}(\bar{q})=\sum_{r=0}^{R} C_{\nu_{1} \ldots \nu_{r}} \bar{q}^{\nu_{1}} \cdots \bar{q}^{\nu_{r}}=\sum_{j=0}^{R / 2}\left(\mu^{2}\right)^{j} \sum_{r=0}^{R-2 j} C_{\nu_{1} \ldots \nu_{r}}^{(j)} q^{\nu_{1}} \cdots q^{\nu_{r}}
$$

separation of factors not depending on the loop-momentum (computed once per ps-point)

Samurai

Numerator

$$
\mathcal{N}_{i}(\bar{q})=\sum_{r=0}^{R} C_{\nu_{1} \ldots \nu_{r}} \bar{q}^{\nu_{1}} \cdots \bar{q}^{\nu_{r}}=\sum_{j=0}^{R / 2}\left(\mu^{2}\right)^{j} \sum_{r=0}^{R-2 j} C_{\nu_{1} \ldots \nu_{r}}^{(j)} q^{\nu_{1}} \cdots q^{\nu_{r}}
$$

m -cut residue (universal polynomial)

$$
\Delta_{i_{1} \ldots i_{m}}\left(q, \mu^{2}\right)=\operatorname{Res}_{i_{1} \ldots i_{m}}\left\{\frac{\mathcal{N}\left(q, \mu^{2}\right)}{\bar{D}_{i_{1}} \bar{D}_{i_{2}} \ldots \bar{D}_{i_{n}}}-\sum_{k=(m+1)}^{5} \sum_{i_{1}<i_{2}<\ldots<i_{k}} \frac{\Delta_{i_{1} i_{2} \ldots i_{k}}\left(q, \mu^{2}\right)}{\bar{D}_{1} \overline{D_{2}} \ldots \overline{D_{i_{k}}}}\right\}
$$

Master Integrals

Samurai costern

Polynomial Residues Q. (\# of den's)

$$
\Delta_{i j k \ell m}(\bar{q})=\operatorname{Res}_{i j k \ell m}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}\right\}
$$

$$
\Delta_{i j k}(\bar{q})=\operatorname{Res}_{i j k}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k \ell m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum_{i \ll \ell}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell}}\right\}
$$

$$
\begin{aligned}
\Delta_{i}(\bar{q})=\operatorname{Res}_{i}\{ & \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k e m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum_{i<\ell \ell}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell}}+ \\
& \left.-\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}}-\sum_{i<j}^{n-1} \frac{\Delta_{i j}(\bar{q})}{\bar{D}_{i} \bar{D}_{j}}\right\}
\end{aligned}
$$

Hexagon: $\binom{6}{5} \cdot 1+\binom{6}{4} \cdot 5+\binom{6}{3} \cdot 10+\binom{6}{2} \cdot 10+\binom{6}{1} \cdot 5=461$ coefficients

Golem95

$$
\mathcal{N}_{i}(\bar{q})=\sum_{r=0}^{R} C_{\nu_{1} \ldots \nu_{r}} \bar{q}^{\nu_{1}} \cdots \bar{q}^{\nu_{r}}
$$

- Tensorthedetor
more stable for degenerate kinematic configurations:
$>$ suitable rescicie systen

The Rational Term in GoSam

Nab-

* implicit mode Samurai reduces the whole $\mathcal{N}_{i}(\bar{q})$

The Rational Term in GoSam

$$
\mathcal{N}_{i}(\bar{q})=\sum_{r=0}^{R} C_{\nu_{1} \ldots \nu_{r}}^{(0)} q^{\nu_{1}} \cdots q^{\nu_{r}}+\sum_{j=1}^{R / 2}\left(\mu^{2}\right)^{j} \sum_{r=0}^{R-2 j} C_{\nu_{1} \ldots \nu_{r}}^{(j)} q^{\nu_{1}} \cdots q^{\nu_{r}}
$$

* implicit iode Samurareduces the wode $\mathcal{N}_{i}(\bar{q})$
- explicit mode

Samurai reduces only $\sum_{r=0}^{R} C_{\nu_{1}, \ldots, r}^{(0)} q^{q_{1}} \ldots q^{q_{r}}$ 等

$$
12=5+12
$$

Evolving GoSam: outward

- MC interfaces

4Applications

2013 Activities

Beyond SM

 EWhahysics Top:Physics >>> schlenks talk Diphotonandets Greiner's talk Higgs:8[^0]
Higgs \& Jazz?

The path to Hifi @ NLO

Challenges

* reducing the code size

FORM $>4: 0$ optimzed aigebrac expressions
: faster generation, smaller code better runtime
\because we enjoyed FORM O2
ssiverimaseren'stalk

- effective Hogicociolijas

higherankors $n+1$

the rank r of the numerator can be larger than the number n of denominators

$\mathbf{H + 0 j}$	$\mathbf{1} \mathbf{~ N L O}$
$g g \rightarrow H$	$\mathbf{1} \mathrm{NLO}$
$\mathbf{H + 1 \mathbf { j }}$	$\mathbf{6 2} \mathbf{~ N L O}$
$q q \rightarrow H q q$	14 NLO
$q g \rightarrow H q g$	48 NLO
$\mathbf{H + 2 j}$	$\mathbf{9 2 6} \mathbf{~ N L O}$
$q q^{\prime} \rightarrow H q q^{\prime}$	32 NLO
$q q \rightarrow H q q$	64 NLO
$q g \rightarrow H q g$	179 NLO
$g g \rightarrow H g g$	651 NLO
$\mathbf{H + 3 j}$	$\mathbf{1 3 1 7 9} \mathbf{~ N L O}$
$q q^{\prime} \rightarrow H q q^{\prime} g$	467 NLO
$q q \rightarrow H q q g$	868 NLO
$q g \rightarrow H q g g$	2519 NLO
$g g \rightarrow H g g g$	9325 NLO

- Over 10,000 diagrams
- Higher-Rank terms
- 60 Rank-7 hexagons

Extended Integrand Red'n
 Mirabella Peraro PM

Extending the Polyone a esc e @

$\Delta_{i j k \ell m}(\bar{q})=\operatorname{Res}_{i j k \ell m}\left\{\frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}\right\}$
$1 \rightarrow 1$ coefficient
$5 \rightarrow 6$ coefficients

$$
\Delta_{i j k}(\bar{q})=\operatorname{Res}_{i j k}\left\{\frac{N(\bar{q})}{\overline{D_{0} \cdots D_{n-1}}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k e m}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}-\sum_{i \ll \ell}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell}}\right\}
$$

$10 \rightarrow 15$ coefficients

$$
\begin{aligned}
\Delta_{i}(\bar{q})=\operatorname{Res}_{i}\{ & \frac{N(\bar{q})}{\bar{D}_{0} \cdots \bar{D}_{n-1}}-\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k k_{m}(\bar{q})}^{\overline{D_{i}} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell} \bar{D}_{m}}}{}-\sum_{i \ll \ell}^{n-1} \frac{\Delta_{i j k \ell}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{\ell}}+ \\
& \left.-\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}(\bar{q})}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}}-\sum_{i<j}^{n-1} \frac{\Delta_{i j}(\bar{q}}{\bar{D}_{i} \bar{D}_{j}}\right\}
\end{aligned}
$$

$5 \rightarrow 15$ coefficients

Hexagon: $\binom{6}{5} \cdot 1+\binom{6}{4} \cdot 6+\binom{6}{3} \cdot 15+\binom{6}{2} \cdot 20+\binom{6}{1} \cdot 15=(461 \rightarrow) 786$ coefficients

Extended Integrand Red'n

Extending the Masternieguas@

regular rank

higher rank

Samurai >XSamurai ${ }_{\text {van Deurren }}$

\checkmark explicit mode

: higher rank terms

n implicit mode

:higher rank terms oofot
contributell
they contain always powers of $\bar{q}^{2}=q^{2}-\mu^{2}$ which cancel against denominators.
v. Deurzen Greiner Lưsoni Mirabella Ossola Peraro vi Soden Fraunhofen Tramontano P.M. Phistett:B72t(2013) 74.8jotot:0493 Thep-ph

- our amplitudes confirmed by MCFM (v6.4) Campbell, Ellis, Williams

Virtual Contributions

SUBPROCESS	DIAGRAMS	TIME/PS-POINT [sec]
$q \bar{q} \rightarrow H q^{\prime} \bar{q}^{\prime} g$	467	0.29
$q \bar{q} \rightarrow H q \bar{q} g$	868	0.60
$g g \rightarrow H q \bar{q} g$	2519	3.9
$g g \rightarrow H g g g$	9325	20

Hjjj @ NLO : GoSam+She ea+MacDipole
Cullen ve Deurzen Greiner Luisoni Mirabella: Ossola Peraro Tramontano PM. 13074737 to appearin PR

Hybrid MC setup (HMC)

xsection

- GoSam+Sbersa: Born \& Virtials
* Mad Graph ioodeveht

Reals, Subtractions, Int ed Dipoles

Tests

- NLOH+2.HMG vs:Gosam+Sherpa

- LOH+3: Madgraph vs Sherpa
- NLOH+3. alphaindependence (Subtr'ns + Int'ed Dipoles)

$$
\hat{H}_{T}=\sqrt{m_{H}^{2}+p_{T, H}^{2}}+\sum\left|p_{T, i}\right|
$$

Hjjj @ NLO : GoSam+Sher pa+MaoDipole
Cullen v: Dúrzen Greiner Luisoni Mirabella Ossola Peraro Tramontano PM. 1307.4737.to appear in PRL

$\mathrm{pp}>$ Hijf GoSam-generated code available for pairing with any MC for further common studies

Evolving GoSam: inward

- Improving:and

Extending the Integranomeduction

Improved Integrand Red'n

* Integrand Reduction Algorithm
universal
$\Delta_{i_{1} \ldots i_{m}}\left(q, \mu^{2}\right)=\operatorname{Res}_{i_{1} \ldots i_{m}}\left\{\frac{\mathcal{N}\left(q, \mu^{2}\right)}{\bar{D}_{i_{1}} \bar{D}_{i_{2}} \ldots \bar{D}_{i_{n}}}-\sum_{k=(m+1)}^{5} \sum_{i_{1}<i_{2}<\ldots<i_{k}} \frac{\Delta_{i_{1} i_{2} \ldots i_{k}}\left(q, \mu^{2}\right)}{\bar{D}_{i_{1}} \bar{D}_{i_{2}} \ldots \bar{D}_{i_{k}}}\right\}$
nolynomial
non-polynomial
$a+b x+c x^{\wedge} 2+$
Ossola Papadopoulos Pittau
- khowficelatiesiofes allow for polynomial sampling
\checkmark mandatory integrano subtraction
- multiple cuts are nested
* triangular system solving (chained algorithm)

Improved Integrand Red'n

* Integrand Reduction Algorithm
* .. in combination with Laurent series expansion forde kigore Badger

- each term becomes independent from the others

- expansion of N on the multiple cuts can be performed independently cut by cut : a
4 coefficients of MI's:a $: a+$
- diagonal system solving

Ninja :: Quasi-Analytic Int nd Red'n

- lighter reduction algorithm fáster and more stable
* sampling replaced by series expansion
- integrand subtraction replaced by coefficient corrections
\sim less coefficient to be determined
\checkmark 5-cut not needed
- 4 -cut decoupled fromlower cuts
- coefficients of 3 . 2 and lacut obtained by Laurent expansion (t coefficients corrections)
- Laurent expansions of $3-2$ and 1 cut independent of each other (unchained algorithm)

Ninja :: Quasi-Analytic Int nd Red'n

* lighter reduction algorithm faster and more stable
- sampling replaced by series expansion
- integrand subtraction replaced: by coefficient corrections
\checkmark less coefficient to be: détermined
\wedge 5-cut not needed
- 4 -cut decoupled from lower cuts

4 coefficients of: 3 . 2 and 1 cut obtained by Laurent expansion (t coefficients corrections)

- Laurent expansions of 30 2 and 1 cut independent of each other (unchained algorithm)
- Laurent expansion implemented by Polynomial Division

HtTj @ NLO : GoSam+Ninja+Sherpa

First application of Ninja

Massive Dipoles

Catani, Dittmaier, Seymour, Tocszany

$$
\mathrm{GA}_{T}=\sqrt[3]{m_{T, H} m_{T, t} m_{T, \bar{t}}}+\sum_{\text {iest } ;}\left|p_{T, j}\right|
$$

$t \bar{t} H+1 j$	$\mathbf{1 8 9 5} \mathbf{~ N L O}$
$q q \rightarrow H t \bar{t} g$	320 NLO
$g g \rightarrow H t \bar{t} g$	1575 NLO

Time/psp 80 ms 1685 ms

GoSam + Ninja: more app's

van Deurzen Luisoni Mrabella Ossola Peraro PM.

SUBPROCESS	Time/PS-POINT [ms]
pp \rightarrow W $\mathbf{j} \mathbf{j j}$	
$d \bar{u} \rightarrow \bar{\nu}_{e} e^{-} g g g$	226
pp \rightarrow Zjjj	
$d \bar{d} \rightarrow e^{+} e^{-} g g g$	1911.4
$\mathbf{p p} \rightarrow \mathbf{t} \overline{\mathbf{t}} \overline{\mathrm{b}} \quad\left(\mathbf{m}_{\mathbf{b}} \neq \mathbf{0}\right)$	
$d \bar{d} \rightarrow t \bar{t} b \bar{b}$	178
$g g \rightarrow t \bar{t} b \bar{b}$	5685
$\begin{aligned} & \mathbf{p p} \rightarrow \mathbf{W b} \overline{\mathbf{b}} \mathbf{j} \quad\left(\mathbf{m}_{\mathbf{b}} \neq \mathbf{0}\right) \\ & u \bar{d} \rightarrow e^{+} \nu_{e} b \bar{b} g \end{aligned}$	67
$\mathbf{p p} \rightarrow \mathbf{H j} \mathbf{j j} \quad\left(\mathbf{G F}, \mathbf{m}_{\mathbf{t}} \rightarrow \infty\right)$	
$g g \rightarrow H g g g$	11266
$g g \rightarrow H g u \bar{u}$	999
$u \bar{u} \rightarrow H g u \bar{u}$	157
$u \bar{u} \rightarrow H g d \bar{d}$	68
pp \rightarrow Hjjj (VBF)	
$u \bar{u} \rightarrow H g u \bar{u}$	101
pp \rightarrow Hjjjjj (VBF)	
$u \bar{u} \rightarrow H g g u \bar{u}$	669
$u \bar{u} \rightarrow H u \bar{u} u \bar{u}$	600

faster, higher accuracy, more stable, no-problem with multiple masses

Intel i7 960 (3.20GHz) CPU + Intel fortran compiler ifort (with optimization O2).

Conclusions

GoSam ideas \gg technical improvements \ggg exciting results

- GoSam automatic computation of one loop amplituodes
- algebraic generation of integrandsfrom Feyman diagrams
- based on d-dim integrand reduction and tensor reduction
- built-in rational:term
- Interfaced to several MG for pheno stúdies

Applications withinind beyond SM:QCD,EW,BSM; extra-D
Successful computation of $H+n j e t s(n=1 ; 2,3)$ in GF
Nina the new integrand reduction
GoSam Ninja ppo Het

Outlook

Toward Gosam2.0.

- faster code generation
- lighter executable [thanks to -0rm >40]
- new reduction algorithm Nina
- faster and more stable evaluation of virual amp's
- extended and more flexible MC interface

Outlook

Toward Gosam2.0
a new horizon:
Analytic Integrand Reduction via Mülivariate Polynomial Division

All-loop Integrand Decomposition

$$
=\sum_{k=1}^{n}
$$

Mirabella Ossola Peraro P.M.
one loop to begin with

[^0]: - T. Gehrmann, N. Greiner \& G. Heinrich, "Precise QCD predictions for the production of a photon pair in association with two jets," arXiv:1308.3660 [hep-ph].
 e N. Greiner, G. Heinrich, J. Reichel \& J. F. von Soden-Fraunhofen, "NLO QCD corrections to diphoton plus jet production through graviton exchange," arXiv:1308.2194 [hep-ph].
 - H. van Deurzen, G. Luisoni, P. Mastrolia, EM, G. Ossola \& T. Peraro, "NLO QCD corrections to Higgs boson production in association with a top quark pair and a jet," arXiv:1307.8437 [hep-ph].
 - G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, EM, G. Ossola, T. Peraro \& F. Tramontano, "NLO QCD corrections to Higgs boson production plus three jets in gluon fusion," arXiv:1307.4737 [hep-ph].
 - S. Hoeche, J. Huang, G. Luisoni, M. Schoenherr \& J. Winter, "Zero and one jet combined NLO analysis of the top quark forward-backward asymmetry," arXiv:1306.2703 [hep-ph]
 - G. Luisoni, P. Nason, C. Oleari \& F. Tramontano, HW/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO arXiv:1306.2542 [hep-ph]
 - M. Chiesa, G. Montagna, L. Barze‘, M. Moretti, O. Nicrosini, F. Piccinini \& F. Tramontano, "Electroweak Sudakov Corrections to New Physics Searches at the CERN LHC,"arXiv:1305.6837 [hep-ph]
 - T. Gehrmann, N. Greiner \& G. Heinrich, "Photon isolation effects at NLO in gamma gamma + jet final states in hadronic collisions," JHEP 1306, 058 (2013)
 - H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, EM, G. Ossola, T. Peraro, J. F. von Soden-Fraunhofen \& F. Tramontano, "NLO QCD corrections to the production of Higgs plus two jets at the LHC," Phys. Lett. B 721, 74 (2013)
 - G. Cullen, N. Greiner \& G. Heinrich, "Susy-QCD corrections to neutralino pair production in association with a jet," Eur. Phys. J. C 73, 2388 (2013)

