TOP QUARK PAIRS AT TWO LOOPS, MULTIPLE POLYLOGARITHMS AND REDUZE2

Andreas v. Manteuffel

RADCOR 2013 Lumley Castle 22-27 September

TOP PAIR PRODUCTION AT THE LHC

- LHC precision below NLO accuracy already
- full WWbb at NLO: see talks by S. Kallweit, J. Schlenk
- mass schemes: see talk by Dowling
- recent threshold/resummations, approx. NNLO: Beneke, Falgari, Klein, Piclum, Schwinn, Ubiali, Yan; Aliev, Lacker, Langenfeld, Moch, Uwer, Vogt, Wiedermann; Cacciari, Czakon, Mangano, Mitov, Nason; Ahrens, Ferroglia, Neubert, Pecjak, Yang; Kidonakis, see talk by A. Penin
- full NNLO total σ (numerical methods): Bärnreuther, Czakon, Fiedler, Mitov '08-'13, see talk by M. Czakon

ANALYTIC NNLO CALCULATION

motivation for analytic approach:

- understand structure
- robust, fast, precise numerical evaluations
- cross-check

ingredients:

- **VV**: two-loop ME for $q\bar{q} \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$ leading N_c , (light) fermionic: Bonciani, Ferroglia, Gehrmann, Maitre, AvM, Studerus '08-'13 poles: Ferroglia, Neubert, Pecjak, Yang '09 small mass: Czakon, Mitov, Moch '06 one-loop²: Kniehl, Körner, Merebashvili, Rogal '05-'08, Anastasiou, Aybat '08
- **RV** : one-loop ME for $t\bar{t} + 1$ parton

Dittmaier, Uwer, Weinzierl '07, '09; Bevilacqua, Czakon, Papadopoulos, Worek '10, '11; Melnikov, Schulze '10

- **RR** : tree level ME for $t\bar{t} + 2$ partons
- subtraction terms : up to 2 unresolved partons needed

Kosower '97; Weinzierl '03; Frixione, Grazzini '04; Gehrmann-De Ridder, Gehrmann, Glover '05; Somogyi, Trocsanyi, Del Duca '06-'08; Abelof, Boughezal, Daleo, Dekkers, Gehrmann, Gehrmann-De Ridder, Maitre, Luisoni, Ritzmann '06-'12; Gehrmann-De Ridder, Glover, Pires '10-'11; Bernreuther, Bogner, Dekkers '11; Bierenbaum, Czakon, Mitov '11

METHOD OF CALCULATION

complexity:

- 2 independent ratios of scales, tensor rank 4
- 256 master integrals (w/products, wo/crossings)
- advanced mathematical functions

this talk: light-fermionic two-loop corrections to $gg
ightarrow t ar{t}$

Recipe

- generate Feynman diagrams with QGRAF by Nogueira
- build interference terms with Reduze 2
- o reduce scalar integrals to masters via IBPs with Reduze 2
- renormalize: MS, pole mass
- solve masters with differential equations
- optimisation of functional basis for multiple polylogs
- ⇒ analytic result in terms of multiple polylogarithms, allows fast numerical evaluation, expansions, ...

Reduze 2 - Distributed Feynman Integral Reduction

A.v.M., Studerus arXiv:1201.4330 http://projects.hepforge.org/reduze

uses GiNaC [Bauer, Frink, Kreckel] and Fermat [Lewis]

ANDREAS V. MANTEUFFEL (UNI MAINZ) TOPS AT TWO LOOPS, GPLS, REDUZE 2

RADCOR 2013 5 / 22

Reduze 2: distributed Laporta Algorithm

Removing ambiguities for integrals

Reduze 2: sectors, graphs and matroids

theorem by Bogner, Weinzierl (2010), proof based on Whitney's theorem for isomorphisms of graph matroids

Algorithm: shift finder

- generate graph for sector
- else colour edges according to masses
- onnect external legs with a new vertex
- decompose into triconnected components (Hopcroft, Tarjan '73; Gutwenger, Mutzel '01)
- i minimize graph by twists
- O check for graph isomorphism (McKay '81)

example:

tree of triconnected components (dashed "virtual edges" mark positions for Tutte twists)

APPLICATION EXAMPLE

auto-generated shifts for non-planar double box family:

```
🔲 🧿 figures : less
Datei Bearbeiten Ansicht Verlauf Lesezeichen Einstellungen Hilfe
sectormappings:
 name: box2n
 zero sectors:
   t=0: [0]
    t=1: [1, 4, 16, 64, 256]
   t=2: [3, 5, 6, 12, 17, 18, 20, 24, 48, 65, 66, 68, 72, 80, 96, 192, 257, 260, 272, 320]
    [ ... truncated ]
 sectors without graph:
   t=3: [22, 28, 52, 82, 84, 88, 104, 112, 276]
    t=4; [23, 29, 30, 53, 54, 60, 83, 85, 86, 89, 90, 92, 105, 106, 108, 113, 114, 116, 120, 21
    t=5: [31, 55, 61, 87, 91, 93, 94, 107, 109, 110, 115, 117, 118, 121, 122, 124, 211, 213, 21
    [ ... truncated ]
  sector relations:
   3: [[box2p, 3], [[k1, k1], [k2, k2]]]
   6: [[box2p, 3], [[k1, -p1+k2], [k2, k1]]]
   7: [[box2p, 11], [[k1, k1-p1], [k2, k2]]]
    12; [[box2p, 3], [[k1, k1-p1], [k2, k2-p2]]]
    13: [[box2p, 11], [[k1, k1-p1], [k2, k2-p2]]]
    15: [[box2p, 58], [[k1, .p1+k2], [k2, k1-p1-p2]]]
    18; [[box2p, 3], [[k1, k2+p3], [k2, k1]]]
   19: [[box2px13x24, 11], [[k1, k1+p3], [k2, k2]]]
    24: [[box2p, 3], [[k1, k2+p3], [k2, k1-p2]]]
    25: [[box2px13x24, 11], [[k1, k1+p3], [k2, k2-p2]]]
    26; [[box2px12x34, 11], [[k1, k2+p3], [k2, k1-p2]]]
    27: [[box2px13, 58], [[k1, k2+p3], [k2, k1-p2+p3]]]
    [ ... truncated ]
 crossed sector relations:
    x12:
      207: [[box2n, 207], [[k1, -k2-p2], [k2, -k1-p1]]]
      335: [[box2n, 335], [[k1, -k2-p2], [k2, -k1-p1]]]
      463; [[box2n, 463], [[k1, -k2-p2], [k2, -k1-p1]]]
    x123:
      335; [[box2n, 335], [[k1, -k2-p2], [k2, k1+p1-k2]]]
    x1234;
      335: [[box2nx14x23, 335], [[k1, -k1+p1+k2-p3]]]
    x124:
      335; [[box2nx14x23, 335], [[k1, -k1+p1+k2-p3], [k2, -k1+p1+p2-p3]]]
    x1243:
      335: [[box2nx12x34, 335], [[k2, k1-k2+p2]]]
  sector symmetries:
    207.

    [[k1, ·k1·p1], [k2, ·k2·p2]]

      - [[k1, -k2-p2], [p1, p2], [k2, -k1-p1], [p2, p1], [p3, p1+p2-p3]]
      - [[k1, k2], [p1, p2], [k2, k1], [p2, p1], [p3, p1+p2-p3]]
    463
        [[k1, k2], [p1, p2], [k2, k1], [p2, p1], [p3, p1+p2-p3]]
 END)
                       figures : less
```

New features in Reduze 2

new features in upcoming release:

• bilinear propagators (shift finder etc.)

$$\frac{1}{q_1q_2 - m^2}$$

used extensively for 3-loop heavy flavour Wilson coefficients in DIS, see talk by A. de Freitas

- cut propagators
- Symanzik polynomial based integral matcher (see also Pak (2011))
- family finder

NEW MASTER INTEGRALS

(thick line: massive, thin line: massless, dot: squared propagator, ticks: numerator)

AvM, Studerus [arXiv:1306.3504]

- solved with method of differential equations see talks by L. Tancredi, J. Henn
- constants: regularity, symmetry, Mellin-Barnes
- used MB.m by Czakon '05, planar: AMBRE by Gluza, Kajda, Riemann '07 + Yundin '10
- checks: SecDec 2.1 by Borowka, Heinrich '13
- crossed+uncrossed subtopos: non-trivial functional identities, explicite imaginary parts

Multiple polylogarithms

Remiddi, Gehrmann; Goncharov:

DEFINITION OF GONCHAROV'S MULTIPLE POLYLOGARITHMS (GPLs)

$$G(\vec{0}_n; x) = \frac{1}{n!} \log^n(x),$$

$$G(a; x) = \int_0^x dt \ f_a(t), \quad \text{for } a \neq 0$$

$$G(a, \vec{b}; x) = \int_0^x dt \ f_a(t)G(\vec{b}; t), \quad \text{for } a \neq 0$$

with weight functions for (complex) weight a:

$$f_a(x) = \frac{1}{x-a}$$

- $G(a \neq 0; x) = \log\left(\frac{a-x}{a}\right), \ G(\vec{0}_{n-1}, 1; x) = Li_n(x), \ G(\vec{0}_n, \vec{1}_p; x) = S_{n,p}(x)$
- for weights 0, 1, -1, GPLs specialize to harmonic polylogarithms (HPLs), Remiddi, Vermaseren (1999)
- shuffle algebra

GENERALISED WEIGHTS

generalised integration measure

$$\frac{\mathrm{d}t}{t-w} \to \frac{f'(t)}{f(t)} \mathrm{d}t = \mathrm{d}\ln(f(t))$$

defines generalised weight [f(o)]:

$$G([f(o)], w_2, \ldots, w_n; x) = \int_0^x \mathrm{d}t \frac{f'(t)}{f(t)} G(w_2, \ldots, w_n; t)$$

example:

$$G([o^{2}+1];x) = \int_{0}^{x} \mathrm{d}t \frac{2t}{t^{2}+1} = \int_{0}^{x} \mathrm{d}t \frac{1}{t-i} + \int_{0}^{x} \mathrm{d}t \frac{1}{t+i} = G(i;x) + G(-i;x)$$

root-free symbol:

$$\mathcal{S}(G([f(o)];x)) = \mathcal{S}(\ln(f(x))) = f(x).$$

- see: integrated jet mass distribution in SCET, AvM, Schabinger, Zhu [arXiv:1309.3560]
- related: Ablinger, Blümlein, Schneider '11 (cyclotomic polylogs)

$$\begin{split} &= \frac{x^2}{m^4(1-x)^2(1-x+x^2+xy)} \sum_{i=-4}^0 l_i \epsilon^i + \mathcal{O}(\epsilon) \,, \\ l_{-4} &= \frac{7}{384} \\ l_{-3} &= -\frac{5}{192} G(-(1-x+x^2)/x;y) + \frac{1}{64} G(-1;y) - \frac{5}{192} G([1-o+o^2];x) - \frac{1}{16} G(1;x) \\ &+ \frac{11}{192} G(0;x) - \frac{5}{192} i\pi \\ l_{-2} &= +\frac{1}{192} G(-(1-x+x^2)/x;y)^2 - \frac{1}{32} G(-(1-x+x^2)/x;y) G(-1;y) \\ &+ \frac{1}{96} G(-(1-x+x^2)/x;y) G([1-o+o^2];x) + \frac{1}{8} G(-(1-x+x^2)/x;y) G(1;x) \\ &- \frac{7}{96} G(-(1-x+x^2)/x;y) G(0;x) - \frac{1}{64} G(-1;y)^2 - \frac{1}{32} G(-1;y) G([1-o+o^2];x) \\ &+ \frac{1}{32} G(-1;y) G(0;x) + \frac{1}{192} G([1-o+o^2];x)^2 + \frac{1}{8} G([1-o+o^2];x) G(1;x) \\ &- \frac{7}{96} G([1-o+o^2];x) G(0;x) + \frac{1}{16} G(1;x)^2 - \frac{3}{16} G(0;x) G(1;x) + \frac{1}{12} G(0;x)^2 \\ &+ \frac{1}{96} i\pi G(-(1-x+x^2)/x;y) - \frac{3}{32} i\pi G(-1;y) + \frac{1}{96} i\pi G([1-o+o^2];x) \\ &+ \frac{1}{8} i\pi G(1;x) - \frac{7}{96} i\pi G(0;x) - \frac{35}{1152} \pi^2 \\ l_{-1} &= \dots (very lengthy) \end{split}$$

where $x\equiv rac{\sqrt{1-4m^2/s}-1}{\sqrt{1-4m^2/s}+1}$, $y=-t/m^2$

$$= \frac{x^2}{m^4(1-x)^2(1-x+x^2+xy)} \sum_{i=-4}^0 l_i \epsilon^i + \mathcal{O}(\epsilon)$$

simplified version (via symbols):

$$\begin{split} & l_{-4} = \frac{7}{384} \\ & l_{-3} = -\frac{1}{32} \ln(y_1 + z_1) + \frac{1}{64} \ln y_1 - \frac{5}{192} \ln z_1 + \frac{1}{32} i \pi \\ & l_{-2} = \frac{1}{64} \ln^2(y_1 + z_1) - \frac{1}{64} \ln^2 y_1 + \frac{1}{192} \ln^2 z_1 - \frac{1}{32} \ln y_1 \ln z_1 + \frac{1}{16} \ln z_1 \ln(y_1 + z_1) \\ & - \frac{1}{32} i \pi \ln(y_1 + z_1) - \frac{1}{16} i \pi \ln z_1 - \frac{47}{1152} \pi^2 \\ & l_{-1} = -\frac{1}{32} G \left(1, 0, 0; \frac{y_1 z_1}{y_1 + z_1} \right) - \frac{1}{32} i \pi G \left(1, 0; \frac{y_1 z_1}{y_1 + z_1} \right) + \frac{1}{16} \ln^2 y_1 \ln z_1 - \frac{1}{16} \ln z_1 \ln^2(y_1 + z_1) \\ & + \frac{1}{8} i \pi \ln z_1 \ln(y_1 + z_1) + \frac{5}{96} \pi^2 \ln(y_1 + z_1) - \frac{1}{24} \pi^2 \ln y_1 - \frac{1}{144} \ln^3 z_1 + \frac{29}{288} \pi^2 \ln z_1 \\ & - \frac{55\zeta(3)}{192} - \frac{5}{96} i \pi^3 \end{split}$$

new functional basis: Li₃ $(\frac{y_1z_1}{y_1+z_1})$, Li₂ $(\frac{y_1z_1}{y_1+z_1})$, ln $(y_1 + z_1)$, log y_1 , ln z_1 where $y_1 \equiv -t/m^2 + 1$, $z_1 \equiv -u/m^2 + 1$

similarly for poles of corner integral, instead of 28 (65 expanded) GPLs

Algorithms for Multiple Polylogarithms

main algorithms:

Inormal form for specific arguments

- independent of symbol calculus
- uses Vollinga, Weinzierl '04 for numerical evaluation, fits constants

Oproduct based normal form for general choice of basis

- based on Goncharov '02, Brown '11, Duhr '12, Duhr, Gangl, Rhodes '11
- handles generalised weights
- identifies products (e.g. $G(0, 1; x) + G(1, 0; x) \rightarrow G(0; x)G(1; x)$)
- matches irreducible factors at symbol level
- uses Vollinga, Weinzierl '04 for numerical evaluation, fits constants

construct new basis with desired properties

based on Duhr, Gangl, Rhodes '11, apply to generalised weights

DEFINITION OF SYMBOL MAP

Let G be a multiple polylogarithm with

$$\mathrm{d} G = \sum_{i} \hat{G}_{i} \,\mathrm{d} \ln(R_{i})$$

where R_i is a rational function of the polylog arguments. The symbol map S

$$\mathcal{S}(G) = \sum_{i} \mathcal{S}(\hat{G}_i) \otimes R_i ,$$

associates a tensor with the polylogarithm.

- N = 4 remainder function simplification: Goncharov, Spradlin, Vergu, Volovich ('10)
- extension to coproduct formalism: const × polylog
- simple example: supplementary slides

LIGHT FERMIONIC TWO-LOOP CORRECTIONS TO $gg \to t\bar{t}$

Bonciani, Ferroglia, Gehrmann, AvM, Studerus [arXiv:1309.4450]

ANDREAS V. MANTEUFFEL (UNI MAINZ)

STRUCTURE OF RESULT AND OPTIMISATION OF BASIS

(A) initial form given by masters: evaluation time $\mathcal{O}(\min)$, not very stable

(B) primary normal form:

$$\begin{split} & G(\ldots;y), \quad \text{weights} \in \left\{-1, 0, -\frac{1}{x}, -x, -\frac{(1+x^2)}{x}, -\frac{(1-x+x^2)}{x}\right\} \\ & G(\ldots;x), \quad \text{weights} \in \{-1, 0, 1, [1+o^2], [1-o+o^2]\} \end{split}$$

note: jump in transcendentality weight from 2 for ϵ^{-1} to 4 for ϵ^{0} for E_{l} , F_{l} , G_{l}

(C) optimised functional basis:

choose real valued ln *R*₁, Li_{*n*}(*R*₁), Li_{2,2}(*R*₁, *R*₂) with $R_i \in \left\{ \pm x, \pm x^2, -\frac{1}{y}, -y, -\frac{y}{x}, -x(x+y), \frac{x+y}{y}, -\frac{x+z(x,y)}{x+y}, \ldots \right\}$

structure:

no spurious letters in symbol

• all generalised weights eliminated (multivariate cancelations) numerical evaluation:

- faster by factor 15
- more stable
- eval time $\mathcal{O}(1s)$

CONCLUSIONS

- tt: analytic two-loop corrections
 - leading N_c + (light) fermionic
 - massive non-planar double box (update to appear, Henn, AvM, Smirnov)
 - expansions in kinematical limits
- Reduze 2: open source tool
 - parallelized reductions of Feynman integrals
 - graph matroid algorithm: determine shifts between sectors or diagrams
 - new features: bilinear propagators, ...
 - determination of integral basis: talk by R. Schabinger

multiple polylogarithms:

- highly automated treatment of functional identities (coproduct etc.)
- generalised weights eliminate weights with roots
- optimized basis for fast and stable numerical evaluation
- next big step: iterated integrals beyond multiple polylogs

SUPPLEMENTARY SLIDES

- 0 Available jobs in Reduze 2
- DEFINITION OF MATROID
- 8 Rules for symbol
- Example for symbol calculus
- **O** COPRODUCT: SYSTEMATIC APPROACH

Available jobs in Reduze 2

andreas : bash		×
Datei Bearbeiten Ansicht Verlauf Lesezeichen Einstellungen Hilfe		
andreas@chili:~\$ reduze -h jobs		^
List of available job types:		
apply_crossings: cat_files:Generates reduction results for crossed se Concatenates files.collect_integrals: compute_diagram_interferences: compute_differential_equations: export:Collects all integrals appearing in the in Computes interferences of diagrams. Computes interferences of diagrams. Computes derivatives of integrals wrt inva Exports to FORM, Mathematica or Maple form find_diagram_shifts_alt: generate_identities: generate_seeds: insert_reduction: insert_reduction_info_sectors: print_reduction: files:Matches diagrams to sectors via combinator Generates integrals from a sector. Inserts reductions in a spressions. Simplifies linear combinations and equation Analyzes reductions in a file. Prints diagrams and other information for reduce_sectors: run_reduction: setup_sector_mappings_alt: sum_terms:Generates integrals from a selection of sect Prints diagrams and other information for selects reductions for integrals. Finds shifts between sectors via graphs. Finds shifts between sectors via graphs. Finds shifts between sectors via combinator sum sterms. test: werify_same_terms:	ctors. put file. riants. at. ics. eeds. ns. sectors. ors. rics.	
		 ~
andreas : bash		i

detailed description: see builtin on-line help

DEFINITION OF MATROID

A matroid is a pair (E, \mathcal{I}) where *E* finite ground set, \mathcal{I} collection of subsets of *E*, the "independent sets", and

- $\bullet \ \emptyset \in \mathcal{I}$
- if $I \in \mathcal{I}$ and $I' \subset I$ then also $I' \in \mathcal{I}$
- if $I_1, I_2 \in \mathcal{I}$, $|I_1| < |I_2|$ then $\exists e \in I_2 I_1$ with $I_1 \cup \{e\} \in \mathcal{I}$
- generalises notion of linear dependency
- graph matroid: dependencies of edges
- application to Feynman graph: propagators relevant, no reference to vertices

propagators of two vacuum diagrams related by shift \Leftrightarrow graph matroids isomorphic

DEFINITION OF SYMBOL MAP

Let G be a multiple polylogarithm with

$$\mathrm{d}G = \sum_{i} \hat{G}_{i} \mathrm{d}\ln(R_{i})$$

where R_i is a rational function of the polylog arguments. The symbol map S

$$\mathcal{S}(G) = \sum_{i} \mathcal{S}(\hat{G}_i) \otimes R_i \,,$$

associates a tensor with the polylogarithm.

examples:

- $\mathcal{S}(\ln x) = x$
- $S(\text{Li}_3 x) = -((1-x) \otimes x \otimes x)$
- $S(G(1,0,-1,-1,x)) = (1+x) \otimes (1+x) \otimes x \otimes (1-x)$

Rules for symbols

- $R_1 \cdots \otimes (R_a R_b) \otimes \cdots \otimes R_k = R_1 \cdots \otimes R_a \otimes \cdots \otimes R_k + R_1 \cdots \otimes R_b \otimes \cdots \otimes R_k$ (log law)
- $R_1 \cdots \otimes (cR_a) \otimes \cdots \otimes R_k = R_1 \cdots \otimes R_a \otimes \cdots \otimes R_k$ for constant c
- preserves shuffle product
- N = 4 remainder function simplification: Goncharov, Spradlin, Vergu, Volovich ('10)
- extension to coproduct formalism: $const \times polylog$

EXAMPLE FOR SYMBOL CALCULUS

goal: derive "simplification formula" for Li₂(1/x) with 0 < x < 1, Im $x = \varepsilon$

$$S(\operatorname{Li}_2(1/x)) = -(-1+1/x) \otimes (1/x)$$
$$= (1-x) \otimes x - x \otimes x$$
$$= S(-\operatorname{Li}_2(x) - (1/2) \ln^2 x)$$

reproduces the highest degree part of the full answer

$$Li_2(1/x) = -Li_2(x) - (1/2) \ln^2 x + i\pi \ln x - (2/3)\pi^2$$

note: works at highest degree only

- $S(\ln(-x)) = S(\ln(x))$: no info on discontinuity
- $S(\pi) = S(\zeta_3) = 0$: no constants

"integrating the symbol" \Rightarrow algorithmic reduction (structured with shuffle eliminators) Duhr, Gangl, Rhodes ('11)

What about subleading degree terms (const \times polylog)?

- accessible by coproduct: Goncharov ('02), Brown ('11)
- extended symbol calculus based on coproduct by Duhr ('12) with:

$$\Delta(\pi) = \pi \otimes 1$$

 $\Delta(\zeta_k) = \zeta_k \otimes 1 + 1 \otimes \zeta_k$ for k (odd)

example:
$$\begin{split} \Delta_{1,1}\left(\mathsf{Li}_2(1/x)\right) &= -\ln(1-1/x)\otimes\ln(1/x) \\ &= \ln(1-x)\otimes\ln(x) - \ln(x)\otimes\ln(x) + i\pi\otimes\ln(x) \\ &= \Delta_{1,1}\left(-\mathsf{Li}_2(x) - (1/2)\ln^2(x) + i\pi\ln(x)\right) \end{split}$$

reproduces identity up to pure constant, fix by limits or numerical evaluation:

$$Li_{2}(1/x) - (-Li_{2}(x) - (1/2)\ln^{2}(x) + i\pi\ln(x)) = -6.5797362673929 \dots = -(2/3)\pi^{2}$$

DEFINITION OF THE COPRODUCT

For a multiple polylogarithm

$$I(a_0; a_1, \ldots, a_n; a_{n+1}) = \int_{a_0}^{a_{n+1}} \frac{\mathrm{d}t}{t - a_n} I(a_0; a_1, \ldots, a_{n-1}; t)$$

the coproduct Δ is defined according to Goncharov ('02):

$$\Delta\left(I(a_0; a_1, \dots, a_n; a_{n+1})\right) = \sum_{0=i_1 < \dots < i_{k+1} = n} I(a_0; a_{i_1}, \dots, a_{i_k}; a_{n+1}) \otimes \prod_{p=0}^k I(a_{i_p}; a_{i_p+1}, \dots, a_{i_{p+1}-1}; a$$

examples:

•
$$\Delta(\ln(x)) = 1 \otimes \ln(x) + \ln(x) \otimes 1$$

•
$$\Delta(\operatorname{Li}_2(x)) = 1 \otimes \operatorname{Li}_2(x) - \ln(1-x) \otimes \ln(x) + \operatorname{Li}_2(x) \otimes 1$$

• $\Delta(\ln(x)\ln(y)) = 1 \otimes (\ln(x)\ln(y)) + \ln(x) \otimes \ln(y) + \ln(y) \otimes \ln(x) + (\ln(x)\ln(y)) \otimes 1$

RULES FOR THE COPRODUCT

- coassociativity $(\mathsf{id}\otimes\Delta)\,\Delta=(\Delta\otimes\mathsf{id})\,\Delta$
- compatible with product: $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$ where $(a_1 \otimes a_2) \cdot (b_1 \otimes b_2) \equiv (a_1 \cdot b_1) \otimes (a_2 \cdot b_2)$

note: coproduct means "decomposition"

GRADED DECOMPOSITION WITH THE COPRODUCT

Hopf algebra of multiple polylogs graded by weight:

$$\mathcal{H} = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$$

since coproduct preserves weight we may decompose

$$\mathcal{H}_n \xrightarrow{\Delta} \bigoplus_{p+q=n} \mathcal{H}_p \otimes \mathcal{H}_q$$

and define $\Delta_{p,q}$ to be the part with values in $\mathcal{H}_p\otimes\mathcal{H}_q$

• iterated coproduct:

$$\mathcal{H} \xrightarrow{\Delta} \mathcal{H} \otimes \mathcal{H} \xrightarrow{\Delta \otimes \mathsf{id}} \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \xrightarrow{\Delta \otimes \mathsf{id} \otimes \mathsf{id}} \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$$

and corresponding parts $\Delta_{p,q,\ldots,r}$

• symbol S = maximally iterated coproduct $\Delta_{1,...,1} \mod \pi$

systematic procedure: $gg \rightarrow t\bar{t}$ at two-loops application:

- If ix maximum degree 4 part with symbol, substract from original expression
- 2 take $\Delta_{1,1,1,1}$, use unique set of real ln, gives

$i\pi\otimes\Delta_{1,1,1}$ (something)

match "something" at degree 3 to basis functions using symbols \bullet take $\Delta_{2,1,1}$, use unique set of real ln, Li₂, gives

$\pi^2 \otimes \Delta_{1,1}$ (something)

match "something" at degree 2 to basis functions using symbols • take $\Delta_{3,1}$, use unique set of real ln, Li₂, Li₃, gives

$\zeta(3) \otimes \text{something} 1 + i\pi^3 \otimes \text{something} 2$

read off "somethingi" (just logs) at degree 1

Inumerical evaluation, match against

$i\pi\zeta_3$, π^4

(requires matching of degree 3 and lower, obtained by recursion)

expansions at threshold: $\beta \equiv \sqrt{1-4m^2/s} \to 0$ (fixed $\xi = (1-\cos(\theta)/2)$) change GPLs to

$$\begin{split} & G(\ldots;\beta), \quad \text{weights} \in \left\{-1,0,1,\frac{1}{1-2\xi},-\frac{1}{1-2\xi},[1+o^2],[3+o^2],[1+2o(1-2\xi)+o^2],\ldots\right\} \\ & G(\ldots;\xi), \quad \text{weights} \in \{0,1\} \end{split}$$

then expand in β , gives e.g.:

$$\begin{aligned} G_{I} &= \frac{1}{\beta} \left[\frac{\zeta_{2}}{\varepsilon} - \frac{14\zeta_{2}}{3} \right] + \frac{1}{\varepsilon} \left(\frac{\zeta_{2}}{2} - \frac{17}{12} \right) + \frac{1}{36} \left(216\zeta_{2} \ln 2 + 480 \ln 2 - 273\zeta_{2} - 6\zeta_{3} + 211 \right) \\ &+ \beta \left[\frac{3\zeta_{2}}{\varepsilon} - 4c_{\theta}^{2}\zeta_{2} - 8\zeta_{2} \right] + \mathcal{O}(\beta^{2}) \end{aligned}$$

expansion for small mass ("high energy"): $m^2/s \rightarrow 0$ (fixed $\phi = -(t - m^2)/s$) change GPLs to:

$$\begin{split} & G(\ldots;x), \quad \text{weights} \in \left\{-1, 0, 1, -\frac{1-\phi}{\phi}, -\frac{\phi}{1-\phi}, [1+o^2], [1-o+o^2], \left[1+o\frac{1-2\phi}{\phi}+o^2\right], \ldots\right\} \\ & G(\ldots;\phi), \quad \text{weights} \in \{0,1\} \end{split}$$

then expand in m^2/s

