# Multiloop Integrand Reduction via Multivariate Polynomial Division 

Tiziano Peraro

Max-Planck-Institut für Physik
Föhringer Ring 6, D-80805 München, Germany

## RADCOR 2013 <br> 22-27 September

## Based on:

P. Mastrolia, E. Mirabella and T.P., Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 1206, 095 (2012) [arXiv:1203.0291 [hep-ph]].
P. Mastrolia, E. Mirabella, G. Ossola and T.P., Scattering Amplitudes from Multivariate Polynomial Division, Phys. Lett. B 718, 173 (2012) [arXiv:1205.7087 [hep-ph]].
P. Mastrolia, E. Mirabella, G. Ossola and T.P., Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division, Phys. Rev. D 87, 085026 (2013) [arXiv:1209.4319 [hep-ph]].
H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P., J. F. von Soden-Fraunhofen and F. Tramontano Phys. Lett. B 721, 74 (2013) [arXiv:1301.0493 [hep-ph]].
S. Heinemeyer,. .. ,T.P. et al. [ The LHC Higgs Cross Section Working Group Collaboration], Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [hep-ph].
G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. and F. Tramontano NLO QCD corrections to Higgs boson production plus three jets in gluon fusion, arXiv:1307.4737 [hep-ph].
P. Mastrolia, E. Mirabella, G. Ossola and T.P., Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes, arXiv:1307.5832 [hep-ph].
H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T.P., NLO QCD corrections to Higgs boson production in association with a top quark pair and a jet, arXiv:1307.8437 [hep-ph].

## Outline

(1) Introduction and motivation
(2) The integrand reduction of scattering amplitudes
(3) Integrand reduction via polynomial division

4 Application at one-loop
(5) Higher loops

6 Conclusions

## Introduction and motivation

Motivation

- Understanding the basic analytic and algebraic structure of integrands and integrals of scattering amplitudes
- Exploration of methods for obtaining theoretical predictions in perturbative Quantum Field Theory at higher orders
- Automation of the computation of loop integrals

We developed a coherent framework for the integrand decomposition of Feynman integrals

- based on simple concepts of algebraic geometry
- applicable at all loops


## Integrand reduction

- Generic $\ell$-loop integral:
- is a rational function in the components of the loop momenta $q_{i}$
- polynomial numerator $\mathcal{N}_{i_{1} \ldots i_{n}}$

$$
\mathcal{M}_{n}=\int d^{d} q_{1} \ldots d^{d} q_{\ell} \mathcal{I}_{i_{1} \ldots i_{n}}, \quad \mathcal{I}_{i_{1} \ldots i_{n}} \equiv \frac{\mathcal{N}_{i_{1} \ldots i_{n}}}{D_{i_{1}} \ldots D_{i_{n}}}
$$

- quadratic polynomial denominators $D_{i}$
- they correspond to Feynman loop propagators


$$
D_{i}=\left(\sum_{j}(-)^{s_{i j}} q_{j}+p_{i}\right)^{2}-m_{i}^{2}
$$

## Integrand reduction

## The idea

Manipulate the integrand and reduce it to a linear combination of "simpler" integrands.

- The integrand-reduction algorithm leads to

$$
\mathcal{I}_{i_{1} \cdots i_{n}} \equiv \frac{\mathcal{N}_{i_{1} \ldots i_{n}}}{D_{i_{1}} \ldots D_{i_{n}}}=\frac{\Delta_{i_{1} \cdots i_{n}}}{D_{i_{1}} \ldots D_{i_{n}}}+\ldots+\sum_{k=1}^{n} \frac{\Delta_{i_{k}}}{D_{i_{k}}}+\Delta_{\emptyset}
$$

- The residues $\Delta_{i_{1} \ldots i_{k}}$ are irreducible polynomials in $q_{i}$
- can't be written as a combination of denominators $D_{i_{1}} \ldots D_{i_{k}}$
- universal topology-dependent parametric form
- the coefficients of the parametrization are process-dependent


## From integrands to integrals

- By integrating the integrand decomposition

$$
\mathcal{M}_{n}=\int d^{d} q_{1} \ldots d^{d} q_{\ell}\left(\frac{\Delta_{i_{1} \cdots i_{n}}}{D_{i_{1}} \ldots D_{i_{n}}}+\ldots+\sum_{k=1}^{n} \frac{\Delta_{i_{k}}}{D_{i_{k}}}+\Delta_{\emptyset}\right)
$$

- some terms vanish and do not contribute to the amplitude $\Rightarrow$ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues


## From integrands to integrals

- By integrating the integrand decomposition

$$
\mathcal{M}_{n}=\int d^{d} q_{1} \ldots d^{d} q_{\ell}\left(\frac{\Delta_{i_{1} \cdots i_{n}}}{D_{i_{1}} \ldots D_{i_{n}}}+\ldots+\sum_{k=1}^{n} \frac{\Delta_{i_{k}}}{D_{i_{k}}}+\Delta_{\emptyset}\right)
$$

- some terms vanish and do not contribute to the amplitude $\Rightarrow$ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues
$\Rightarrow$ reduction to MIs $\equiv$ polynomial fit of the residues


## The one-loop decomposition

At one loop the result is well known:

- the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

$$
\begin{aligned}
\mathcal{I}_{i_{1} \cdots i_{n}}=\frac{\mathcal{N}_{i_{1} \cdots i_{n}}}{D_{i_{1}} \cdots D_{i_{n}}}= & \sum_{j_{1} \ldots j_{5}} \frac{\Delta_{j_{1} j_{2} j_{3} j_{4} j_{5}}}{D_{j_{1}} D_{j_{2}} D_{j_{3}} D_{j_{4}} D_{j_{5}}}+\sum_{j_{1} j_{2} j_{3} j_{4}} \frac{\Delta_{j_{1} j_{2} j_{3} j_{4}}}{D_{j_{1}} D_{j_{2}} D_{j_{3}} D_{j_{4}}} \\
& +\sum_{j_{1} j_{2} j_{3}} \frac{\Delta_{j_{1} j_{2} j_{3}}}{D_{j_{1}} D_{j_{2}} D_{j_{3}}}+\sum_{j_{1} j_{2}} \frac{\Delta_{j_{1} j_{2}}}{D_{j_{1}} D_{j_{2}}}+\sum_{j_{1}} \frac{\Delta_{j_{1}}}{D_{j_{1}}}
\end{aligned}
$$

- the integral decomposition



## Integrand reduction and polynomials

- At $\ell$-loops we want to achieve the integrand decomposition:

$$
\mathcal{I}_{i_{1} \ldots i_{n}}\left(q_{1}, \ldots, q_{\ell}\right) \equiv \frac{\mathcal{N}_{i_{1} \ldots i_{n}}}{D_{i_{1}} \ldots D_{i_{n}}}=\underbrace{\frac{\Delta_{i_{1} \ldots i_{n}}}{D_{i_{1}} \ldots D_{i_{n}}}+\ldots+\sum_{k=1}^{n} \frac{\Delta_{i_{k}}}{D_{i_{k}}}}_{\text {they must be irreducible }}+\Delta_{\emptyset}
$$

- We trade $\left(q_{1}, \ldots, q_{\ell}\right)$ with their coordinates $\mathbf{z} \equiv\left(z_{1}, \ldots, z_{m}\right)$
$\Rightarrow$ numerator and denominators $\equiv$ polynomials in $\mathbf{z}$

$$
\mathcal{I}_{i_{1} \ldots i_{n}}(\mathbf{z}) \equiv \frac{\mathcal{N}_{i_{1} \ldots i_{n}}(\mathbf{z})}{D_{i_{1}}(\mathbf{z}) \ldots D_{i_{n}}(\mathbf{z})}
$$

$\Rightarrow$ Integrand reduction $\equiv$ problem of multivariate polynomial division

The problem of the determination of the residues of a generic diagram has been solved. [Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)]

## Residues via polynomial division

Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

- Define the Ideal of polynomials

$$
\mathcal{J}_{i_{1} \cdots i_{n}} \equiv\left\langle D_{i_{1}}, \ldots, D_{i_{n}}\right\rangle=\left\{p(\mathbf{z}): p(\mathbf{z})=\sum_{j} h_{j}(\mathbf{z}) D_{j}(\mathbf{z}), h_{j} \in P[z]\right\}
$$

- Take a Gröbner basis $G_{\mathcal{J}_{i_{1} \cdots i_{n}}}$ of $\mathcal{J}_{\mathcal{I}_{1} \cdots i_{n}}$

$$
G_{\mathcal{J}_{1} \cdots i_{n}}=\left\{g_{1}, \ldots, g_{s}\right\} \quad \text { such that } \quad \mathcal{J}_{i_{1} \cdots i_{n}}=\left\langle g_{1}, \ldots, g_{s}\right\rangle
$$

- Perform the multivariate polynomial division $\mathcal{N}_{i_{1} \ldots i_{n}} / G_{\mathcal{J}_{1} \ldots i_{n}}$

$$
\mathcal{N}_{i_{1} \cdots i_{n}}(\boldsymbol{z})=\underbrace{\sum_{k=1}^{n} \mathcal{N}_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{n}}(\boldsymbol{z}) D_{i_{k}}(\boldsymbol{z})}_{\text {quotient } \in \mathcal{J}_{i_{1} \cdots i_{n}}}+\underbrace{\Delta_{i_{1} \cdots i_{n}}(\boldsymbol{z})}_{\text {remainder }}
$$

- The remainder $\Delta_{i_{1} \cdots i_{n}}$ is irreducible $\Rightarrow$ can be identified with the residue


## Recursive Relation for the integrand decomposition

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

## The recursive formula

$$
\begin{aligned}
\mathcal{N}_{i_{1} \cdots i_{n}} & =\sum_{k=1}^{n} \mathcal{N}_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{n}} D_{i_{k}}+\Delta_{i_{1} \cdots i_{n}} \\
\mathcal{I}_{i_{1} \cdots i_{n}} \equiv \frac{\mathcal{N}_{i_{1} \cdots i_{n}}}{D_{i_{1}} \cdots D_{i_{n}}} & =\sum_{k} \mathcal{I}_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{n}}+\frac{\Delta_{i_{1} \cdots i_{n}}}{D_{i_{1}} \cdots D_{i_{n}}}
\end{aligned}
$$

- Fit-on-the-cut approach
- from a generic $\mathcal{N}$, get the parametric form of the residues $\Delta$
- determine the coefficients sampling on the cuts (impose $D_{i}=0$ )
- Divide-and-Conquer approach
- generate the $\mathcal{N}$ of the process
- compute the residues by iterating the polynomial division algorithm


## Fit-on-the-cut approach

[Ossola, Papadopoulos, Pittau (2007)]
The decomposition of the numerator

$$
\mathcal{N}_{i_{1} \cdots i_{n}}=\Delta_{i_{1} \cdots i_{n}}+\sum_{k} \Delta_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{n}} D_{i_{k}}+\ldots
$$

- Fit the coefficients of the residues sampling on the multiple cuts
- First step: $n$-ple cut
- impose $D_{i_{1}}=\ldots=D_{i_{n}}=0$

$$
\Delta_{i_{1} \cdots i_{n}}=\mathcal{N}_{i_{1} \cdots i_{n}}
$$

- Further steps: $k$-ple cut
- impose $D_{i_{1}}=\ldots=D_{i_{k}}=0$ for any subset $\left\{i_{1} \ldots i_{k}\right\}$

$$
\Delta_{i_{1} \cdots i_{k}}=\frac{\mathcal{N}_{i_{1} \cdots i_{n}}-\text { higher-point contibrutions }}{\prod_{h \neq i_{1}, \ldots, i_{k}} D_{h}}
$$

## Fit-on-the-cut approach: The reducibility criterion

What happens if a cut has no solution?

## The reducibility criterion

- If a cut $D_{i_{1}}=\ldots=D_{i_{k}}=0$ has no solutions, the associated residue vanishes. In other words, any numerator is completely reducible.
- This generally happens with overdetermined systems i.e. when the number of cut denominators is higher than the one of loop coordinates.
- When $D_{i_{1}}=\ldots=D_{i_{k}}=0$ has no solution:

$$
\begin{aligned}
& \Delta_{i_{1} \ldots i_{k}}=0 \quad \Rightarrow \text { no need to perform the fit } \\
& \mathcal{N}_{i_{1} \cdots i_{n}}=\sum_{k=1}^{n} \mathcal{N}_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{n}} D_{i_{k}} \\
& \mathcal{I}_{i_{1} \cdots i_{n}}=\sum_{k} \mathcal{I}_{i_{1} \cdots i_{k-1} i_{k+1} \cdots i_{n}}
\end{aligned}
$$

## Fit-on-the-cut approach: The maximum-cut theorem

## The maximum-cut theorem

- We define maximum-cut, a cut where

$$
\#(\text { cut-denominators }) \equiv \#(\text { components-of-loop-momenta })
$$

- In non-special kinematic configurations it has a finite number of solutions
\#(coefficients-of-the-residue) = \#(solutions-of-the-cut)
- The fit-on-the-cut approach therefore gives a number of equations which is equal to the number of unknown coefficients.


## Fit-on-the-cut approach: The maximum-cut theorem

## Examples:

| diagram | $\Delta$ | $n_{s}$ | diagram | $\Delta$ | $n_{s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $c_{0}$ | 1 |  | $c_{0}+c_{1} z$ | 2 |
|  | $\sum_{i=0}^{3} c_{i} z^{i}$ | 4 |  | $\sum_{i=0}^{3} c_{i} z^{i}$ | 4 |
|  | $\sum_{i=0}^{7} c_{i} z^{i}$ | 8 |  | $\sum_{i=0}^{7} c_{i} z^{i}$ | 8 |

## Fit-on-the-cut approach

## Pros:

- each multiple cut projects out the corresponding residue
$\Rightarrow$ the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:

- at higher-loops the solutions of the cuts can be difficult to find
- it cannot be applied in the presence of higher powers of denominators
- a cut denominator might be equal to an uncut denominator


## Fit-on-the-cut approach

## Pros:

- each multiple cut projects out the corresponding residue
$\Rightarrow$ the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:

- at higher-loops the solutions of the cuts can be difficult to find
- it cannot be applied in the presence of higher powers of denominators
- a cut denominator might be equal to an uncut denominator
- it that case

$$
\frac{\mathcal{N}_{i_{1} \cdots i_{n}}-\text { higher-point contibrutions }}{\prod_{h \neq i_{1}, \ldots, i_{k}} D_{h}}=\frac{0}{0}
$$

## Fit-on-the-cut approach

## Pros:

- each multiple cut projects out the corresponding residue
$\Rightarrow$ the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:

- at higher-l
- it cannot b denominat
- a cut d
- it that


## OBSERVATION:

these issues are not present in the divide-and-conquer approach minator which instead can be applied to any integrand
$\boldsymbol{1} h \neq i_{1}, \ldots, i_{k} \boldsymbol{D}$

## One-loop decomposition from polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

- Start from the most general one-loop amplitude in $d=4-2 \epsilon$
- Apply the recursive formula for the integrand decomposition
$\Rightarrow$ it reproduces the OPP result
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
- Drop the spurious terms
$\Rightarrow$ Get the most general integral decomposition (well knwon result)



## One-loop decomposition from polynomial division

At one loop in $4-2 \epsilon$ dimensions:

- 5 coordinates $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)$
- 4 components $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ of $q$ w.r.t. a 4-dimensional basis
- $z_{5}=\mu^{2}$ encodes the $(-2 \epsilon)$-dependence on the loop momentum
- we start with

$$
\mathcal{I}_{n} \equiv \mathcal{I}_{1 \ldots n}=\frac{\mathcal{N}_{1 \ldots n}(\mathbf{z})}{D_{1}(\mathbf{z}) \ldots D_{n}(\mathbf{z})} \quad \begin{aligned}
& \text { most general 1-loop numerator } \\
& \text { generic 1-loop denominators }
\end{aligned}
$$

- if $m>5$ any integrand $\mathcal{I}_{i_{1} \ldots i_{m}}$ is reducible (reducibility criterion)

$$
\mathcal{I}_{i_{1} \cdots i_{m}}=\sum_{k} \mathcal{I}_{i_{1} \ldots i_{k-1} i_{k+1} \ldots i_{m}}, \quad \Rightarrow \quad \Delta_{i_{1} \cdots i_{m}}=0 \quad \text { for } m>5
$$

- for $m \leq 5$ the polynomial-division algorithm gives the already-known parametric form of the residues $\Delta_{i j k \ldots}$...
- Choice of 4-dimensional basis for an $m$-point residue

$$
e_{1}^{2}=e_{2}^{2}=0, \quad e_{1} \cdot e_{2}=1, \quad e_{3}^{2}=e_{4}^{2}=\delta_{m 4}, \quad e_{3} \cdot e_{4}=-\left(1-\delta_{m 4}\right)
$$

- Coordinates: $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \equiv\left(x_{1}, x_{2}, x_{3}, x_{4}, \mu^{2}\right)$

$$
q_{4-\operatorname{dim}}^{\mu}=-p_{i_{1}}^{\mu}+x_{1} e_{1}^{\mu}+x_{2} e_{2}^{\mu}+x_{3} e_{3}^{\mu}+x_{4} e_{4}^{\mu}, \quad q^{2}=q_{4-\operatorname{dim}}^{2}-\mu^{2}
$$

- Generic numerator

$$
\mathcal{N}_{i_{1} \cdots i_{m}}=\sum_{j_{1}, \ldots, j_{5}} \alpha_{\vec{j}} z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}}, \quad\left(j_{1} \ldots j_{5}\right) \quad \text { such that } \quad \operatorname{rank}\left(\mathcal{N}_{i_{1} \cdots i_{m}}\right) \leq m
$$

- Residues

$$
\begin{aligned}
\Delta_{i_{1} i_{2} i_{3} i_{4} i_{5}} & =c_{0} \\
\Delta_{i_{1} i_{2} i_{3} i_{4}} & =c_{0}+c_{1} x_{4}+\mu^{2}\left(c_{2}+c_{3} x_{4}+\mu^{2} c_{4}\right) \\
\Delta_{i_{1} i_{2} i_{3}} & =c_{0}+c_{1} x_{3}+c_{2} x_{3}^{2}+c_{3} x_{3}^{3}+c_{4} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{4}^{3}+\mu^{2}\left(c_{7}+c_{8} x_{3}+c_{9} x_{4}\right) \\
\Delta_{i_{1} i_{2}} & =c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{3}^{2}+c_{6} x_{4}^{2}+c_{7} x_{2} x_{3}+c_{9} x_{2} x_{4}+c_{9} \mu^{2} \\
\Delta_{i_{1}} & =c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}
\end{aligned}
$$

- It can be easily extended to higher-rank numerators


## Fit-on-the-cut at 1-loop

Integrand decomposition:



## Fit-on-the cut

fit $m$-point residues on $m$-ple cuts

## Improved 1-loop Reduction with NinJA

P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified


## Improved 1-loop Reduction with NinJA

P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
* Implemented in the semi-numerical C++ library NiNJA
- Laurent expansions via a simplified polynomial-division algorithm
- interfaced with the package GoSAM
- is a faster and more stable integrand-reduction algorithm


## Improved 1-loop Reduction with NinJA

P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
* Implemented in the semi-numerical C++ library NiNJA
- Laurent expansions via a simplified polynomial-division algorithm
- interfaced with the package GoSAM
- is a faster and more stable integrand-reduction algorithm
$\Rightarrow$ see P. Mastrolia's talk for more details


## Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
- can be used to compute any amplitude in any QFT
- has been implemented in several codes, some of which public [Samural, CutTools, NGluons]
- has produced (and is still producing) results for LHC [GoSam (see P. Mastrolia's talk), FormCalc, BlackHat, MadLoop, NJets, OpenLoop ...]
- At two or higher loops
- no general recipe is available
- the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities


## Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
- can be used to compute any amplitude in any QFT
- has been implemented in several codes, some of which public [Samural, CutTools, NGluons]
- has produced (and is still producing) results for LHC [GoSam (see P. Mastrolia's talk), FormCalc, BlackHat, MadLoop, NJets, OpenLoop ...]
- At two or higher loops
- no general recipe is available
- the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

## Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
- can be used to compute any amplitude in any QFT
- has been implemented in several codes, some of which public [Samural, CutTools, NGluons]
- has produced (and is still producing) results for LHC [GoSam (see P. Mastrolia's talk), FormCalc, BlackHat, MadLoop, NJets, OpenLoop ...]
- At two or higher loops
- no general recipe is available
- the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

- ... we are moving the first steps in this direction


## $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)


- Examples in $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SUGRA amplitudes $(d=4)$
- generation of the integrand
- graph based [Carrasco, Johansson (2011)]
- unitarity based [U. Schubert (Diplomarbeit)]
- fit-on-the-cut approach for the reduction
- Results:
$\mathcal{N}=4$ linear combination of 8 and 7-denominators MIs $\mathcal{N}=8$ linear combination of 8,7 and 6 -denominators MIs


## Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

The divide-and-conquer approach to the integrand reduction

- does not require the knowledge of the solutions of the cut
- can always be used to perform the reduction in a finite number of purely algebraic operations
- has been automated in a Python package which uses MACAULAY2 and FORM for algebraic operations

- also works in special cases where the fit-on-the-cut approach is not applicable (e.g. in presence of double denominators)


## Divide-and-Conquer approach: a simple example



$$
\mathcal{I}_{11234}=\frac{\mathcal{N}_{11234}}{D_{1}^{2} D_{2} D_{3} D_{4}}
$$

$$
\begin{aligned}
& D_{1}=\bar{q}_{1}^{2}-m^{2}, \\
& D_{2}=\left(\bar{q}_{1}-k\right)^{2}-m^{2}, \\
& D_{3}=\bar{q}_{2}^{2}, \\
& D_{4}=\left(\bar{q}_{1}+\bar{q}_{2}\right)^{2}-m^{2}
\end{aligned}
$$

## Divide-and-Conquer approach: a simple example



$$
\mathcal{I}_{11234}=\frac{\mathcal{N}_{11234}}{D_{1}^{2} D_{2} D_{3} D_{4}}
$$

$$
\begin{aligned}
& D_{1}=\bar{q}_{1}^{2}-m^{2}, \\
& D_{2}=\left(\bar{q}_{1}-k\right)^{2}-m^{2}, \\
& D_{3}=\bar{q}_{2}^{2}, \\
& D_{4}=\left(\bar{q}_{1}+\bar{q}_{2}\right)^{2}-m^{2}
\end{aligned}
$$

- Basis $\left\{e_{i}\right\} \equiv\left\{k, k_{\perp}, e_{3}, e_{4}\right\}$ and coordinates $\mathbf{z}=\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}, \mu_{11}, \mu_{12}, \mu_{22}\right)$

$$
\bar{q}_{1}^{(4-\mathrm{dim})}=\sum_{i} x_{i} e_{i}, \quad \bar{q}_{2}^{(4-\mathrm{dim})}=\sum_{i} y_{i} e_{i}, \quad\left(\bar{q}_{i} \cdot \bar{q}_{j}\right)=\left(\bar{q}_{i}^{(4-\mathrm{dim})} \cdot \bar{q}_{j}^{(4-\mathrm{dim})}\right)-\mu_{i j}
$$

## Divide-and-Conquer approach: a simple example



$$
D_{1}=\bar{q}_{1}^{2}-m^{2},
$$

$$
\mathcal{I}_{11234}=\frac{\mathcal{N}_{11234}}{D_{1}^{2} D_{2} D_{3} D_{4}} \quad \begin{aligned}
& D_{2}=\left(\bar{q}_{1}-k\right)^{2}-m^{2} \\
& \\
& D_{3}=\bar{q}_{2}^{2}, \\
& \\
& D_{4}=\left(\bar{q}_{1}+\bar{q}_{2}\right)^{2}-m^{2}
\end{aligned}
$$

- Basis $\left\{e_{i}\right\} \equiv\left\{k, k_{\perp}, e_{3}, e_{4}\right\}$ and coordinates $\mathbf{z}=\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}, \mu_{11}, \mu_{12}, \mu_{22}\right)$

$$
\bar{q}_{1}^{(4-\operatorname{dim})}=\sum_{i} x_{i} e_{i}, \quad \bar{q}_{2}^{(4-\operatorname{dim})}=\sum_{i} y_{i} e_{i}, \quad\left(\bar{q}_{i} \cdot \bar{q}_{j}\right)=\left(\bar{q}_{i}^{(4-\operatorname{dim})} \cdot \bar{q}_{j}^{(4-\operatorname{dim})}\right)-\mu_{i j}
$$

- division of $\mathcal{N}_{11234}$ modulo $\mathcal{G}_{\mathcal{J}_{11234}}\left(=\mathcal{G}_{\mathcal{J}_{1234}}\right)$

$$
\mathcal{N}_{11234}=\underbrace{\mathcal{N}_{1234} D_{1}+\mathcal{N}_{1134} D_{2}+\mathcal{N}_{1124} D_{3}+\mathcal{N}_{1123} D_{4}}_{\text {quotients }}+\underbrace{\Delta_{11234}}_{\text {remainder }}
$$

## Divide-and-Conquer approach: a simple example



$$
\mathcal{I}_{11234}=\frac{\mathcal{N}_{11234}}{D_{1}^{2} D_{2} D_{3} D_{4}} \quad \begin{aligned}
& D_{1}=\bar{q}_{1}^{2}-m^{2}, \\
& D_{2}=\left(\bar{q}_{1}-k\right)^{2}-m^{2}, \\
& D_{3}=\bar{q}_{2}^{2}, \\
& D_{4}=\left(\bar{q}_{1}+\bar{q}_{2}\right)^{2}-m^{2}
\end{aligned}
$$

- Basis $\left\{e_{i}\right\} \equiv\left\{k, k_{\perp}, e_{3}, e_{4}\right\}$ and coordinates $\mathbf{z}=\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}, \mu_{11}, \mu_{12}, \mu_{22}\right)$

$$
\bar{q}_{1}^{(4-\operatorname{dim})}=\sum_{i} x_{i} e_{i}, \quad \bar{q}_{2}^{(4-\operatorname{dim})}=\sum_{i} y_{i} e_{i}, \quad\left(\bar{q}_{i} \cdot \bar{q}_{j}\right)=\left(\bar{q}_{i}^{(4-\operatorname{dim})} \cdot \bar{q}_{j}^{(4-\operatorname{dim})}\right)-\mu_{i j}
$$

- division of $\mathcal{N}_{11234}$ modulo $\mathcal{G}_{\mathcal{J}_{11234}}\left(=\mathcal{G}_{\mathcal{J}_{1234}}\right)$

$$
\mathcal{N}_{11234}=\underbrace{\mathcal{N}_{1234} D_{1}+\mathcal{N}_{1134} D_{2}+\mathcal{N}_{1124} D_{3}+\mathcal{N}_{1123} D_{4}}_{\text {quotients }}+\underbrace{\Delta_{11234}}_{\text {remainder }}
$$

- division of $\mathcal{N}_{i_{1} i_{2} i_{3} i_{4}}$ modulo $\mathcal{G}_{\mathcal{J}_{1} i_{2} i_{3} i_{4}}$, e.g.

$$
\begin{aligned}
& \mathcal{N}_{1234} / \mathcal{G}_{\mathcal{J}_{1234}} \Rightarrow \mathcal{N}_{1234}=\underbrace{\mathcal{Q}_{234}^{(1234)} D_{1}+\mathcal{Q}_{134}^{(1234)} D_{2}+\mathcal{Q}_{124}^{(1234)} D_{3}}_{\text {quotients }}+\mathcal{Q}_{123}^{(1234)} D_{4}
\end{aligned} \underbrace{\Delta_{1234}}_{\text {remainder }}
$$

## Divide-and-Conquer approach: a simple example



$$
\mathcal{I}_{11234}=\frac{\mathcal{N}_{11234}}{D_{1}^{2} D_{2} D_{3} D_{4}} \quad \begin{aligned}
& D_{2}=\left(\bar{q}_{1}-k\right)^{2}-m^{2} \\
& D_{3}=\bar{q}_{2}^{2} \\
& \\
& D_{4}=\left(\bar{q}_{1}+\bar{q}_{2}\right)^{2}-m^{2}
\end{aligned}
$$

- Basis $\left\{e_{i}\right\} \equiv\left\{k, k_{\perp}, e_{3}, e_{4}\right\}$ and coordinates $\mathbf{z}=\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}, \mu_{11}, \mu_{12}, \mu_{22}\right)$

$$
\bar{q}_{1}^{(4-\operatorname{dim})}=\sum_{i} x_{i} e_{i}, \quad \bar{q}_{2}^{(4-\operatorname{dim})}=\sum_{i} y_{i} e_{i}, \quad\left(\bar{q}_{i} \cdot \bar{q}_{j}\right)=\left(\bar{q}_{i}^{(4-\operatorname{dim})} \cdot \bar{q}_{j}^{(4-\operatorname{dim})}\right)-\mu_{i j}
$$

- division of $\mathcal{N}_{11234}$ modulo $\mathcal{G}_{\mathcal{J}_{11234}}\left(=\mathcal{G}_{\mathcal{J}_{1234}}\right)$

$$
\mathcal{N}_{11234}=\underbrace{\mathcal{N}_{1234} D_{1}+\mathcal{N}_{1134} D_{2}+\mathcal{N}_{1124} D_{3}+\mathcal{N}_{1123} D_{4}}_{\text {quotients }}+\underbrace{\Delta_{11234}}_{\text {remainder }}
$$

- division of $\mathcal{N}_{i_{1} i_{2} i_{3} i_{4}}$ modulo $\mathcal{G}_{\mathcal{I}_{1} i_{2} i_{3} i_{4}}$

$$
\begin{aligned}
\mathcal{N}_{11234}= & \underbrace{\mathcal{N}_{234} D_{1}^{2}+\mathcal{N}_{134} D_{1} D_{2}+\mathcal{N}_{124} D_{1} D_{3}+\mathcal{N}_{123} D_{1} D_{4}+\mathcal{N}_{114} D_{2} D_{3}+\mathcal{N}_{113} D_{2} D_{4}}_{\text {(sums of) quotients }} \\
& +\underbrace{\Delta_{1234} D_{1}+\Delta_{1134} D_{2}+\Delta_{1124} D_{3}+\Delta_{1123} D_{4}}_{\text {remainders }}+\Delta_{11234}
\end{aligned}
$$

## Divide-and-Conquer approach: a simple example

- after a further step (division $\mathcal{N}_{i_{1} i_{2} i_{3}} / \mathcal{G}_{\mathcal{J}_{1} i_{2} i_{3}}$ ) no quotient remains

$$
\mathcal{N}_{11234}=\Delta_{11234}+\Delta_{1234} D_{1}+\Delta_{1134} D_{2}+\Delta_{1124} D_{3}+\Delta_{1123} D_{4}+\Delta_{234} D_{1}^{2}+\Delta_{114} D_{2} D_{3}+\Delta_{113} D_{2} D_{4}
$$

- the integrand decomposition becomes

$$
\begin{aligned}
\mathcal{I}_{11234}=\frac{\mathcal{N}_{11234}}{D_{1}^{2} D_{2} D_{3} D_{4}}= & \frac{\Delta_{11234}}{D_{1}^{2} D_{2} D_{3} D_{4}}+\frac{\Delta_{1234}}{D_{1} D_{2} D_{3} D_{4}}+\frac{\Delta_{1134}}{D_{1}^{2} D_{3} D_{4}}+\frac{\Delta_{1124}}{D_{1}^{2} D_{2} D_{4}} \\
& +\frac{\Delta_{1123}}{D_{1}^{2} D_{2} D_{3}}+\frac{\Delta_{234}}{D_{2} D_{3} D_{4}}+\frac{\Delta_{114}}{D_{1}^{2} D_{4}}+\frac{\Delta_{113}}{D_{1}^{2} D_{3}} \\
\Delta_{11234}= & 16 m^{2}\left(k^{2}+2 m^{2}-k^{2} \epsilon\right) \\
\Delta_{1234}= & 16\left[\left(q_{2} \cdot k\right)(1-\epsilon)^{2}+m^{2}\right] \\
\Delta_{1124}= & -\Delta_{1123}=8(1-\epsilon)\left[k^{2}(1-\epsilon)+2 m^{2}\right] \\
\Delta_{1134}= & -16 m^{2}(1-\epsilon) \\
\Delta_{113}= & -\Delta_{114}=\Delta_{234}=8(1-\epsilon)^{2} .
\end{aligned}
$$

## Examples of divide-and-conquer approach

- Photon self-energy in massive QED, (4-2 $\mathbf{~}$ )-dimensions

- Diagrams entering $g g \rightarrow H$, in $(4-2 \epsilon)$-dimensions



## Conclusions and Outlook

- Conclusions
- We developed a general framework for the reduction at the integrand level
- can be applied to any amplitude in any QFT, at every loop order
- At one loop
- naturally reproduces known results (OPP)
- allows to express any amplitude in terms of known MIs
- can be improved with the Laurent-expansion approach (NINJA)
- At higher loops
- it gives a recursive formula for the integrand decomposition
- generates the form of the residue for every cut
- can decompose any integrand with purely algebraic operations (divide-and-conquer approach)
- Outlook
- application to a full 2-loop QED/QCD process
- combine integrand reduction with other techniques (e.g. IBP)


## THANK YOU FOR YOUR ATTENTION

