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Introduction and motivation

Introduction and motivation

Motivation
Understanding the basic analytic and algebraic structure of
integrands and integrals of scattering amplitudes
Exploration of methods for obtaining theoretical predictions in
perturbative Quantum Field Theory at higher orders
Automation of the computation of loop integrals

We developed a coherent framework for the integrand decomposition
of Feynman integrals

based on simple concepts of algebraic geometry
applicable at all loops
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The integrand reduction of scattering amplitudes

Integrand reduction

Generic `-loop integral:
is a rational function in the components of the loop momenta qi

polynomial numerator Ni1...in

Mn =

∫
ddq1 . . . ddq` Ii1...in , Ii1...in ≡

Ni1...in

Di1 . . .Din

quadratic polynomial denominators Di
they correspond to Feynman loop propagators

D2

D3

D1

D7

D4

D6

D5 Di =

(∑

j

(−)sij qj + pi

)2

−m2
i
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The integrand reduction of scattering amplitudes

Integrand reduction

The idea
Manipulate the integrand and reduce it to a linear combination of
“simpler” integrands.

The integrand-reduction algorithm leads to

Ii1···in ≡
Ni1...in

Di1 . . .Din
=

∆i1···in
Di1 . . .Din

+ . . .+

n∑

k=1

∆ik

Dik
+ ∆∅

The residues ∆i1...ik are irreducible polynomials in qi

can’t be written as a combination of denominators Di1 . . .Dik
universal topology-dependent parametric form
the coefficients of the parametrization are process-dependent
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The integrand reduction of scattering amplitudes

From integrands to integrals

By integrating the integrand decomposition

Mn =

∫
ddq1 . . . ddq`

(
∆i1···in

Di1 . . .Din
+ . . .+

n∑

k=1

∆ik

Dik
+ ∆∅

)

some terms vanish and do not contribute to the amplitude
⇒ spurious terms
non-vanishing terms give Master Integrals (MIs)

The amplitude is a linear combination of MIs

The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues

⇒ reduction to MIs ≡ polynomial fit of the residues
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The integrand reduction of scattering amplitudes

The one-loop decomposition

At one loop the result is well known:
the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

Ii1···in =
Ni1···in

Di1 · · ·Din
=
∑

j1...j5

∆j1j2j3j4j5

Dj1 Dj2 Dj3 Dj4 Dj5
+
∑

j1j2j3j4

∆j1j2j3j4

Dj1 Dj2 Dj3 Dj4

+
∑
j1j2j3

∆j1j2j3

Dj1 Dj2 Dj3
+
∑
j1j2

∆j1j2

Dj1 Dj2
+
∑

j1

∆j1

Dj1

the integral decomposition

+= c4,0 c3,0 + +c2,0 c1,0

+ + +c3,7 d+ 2 c2,9 d+ 2c4,4 d+ 4
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Integrand reduction via polynomial division

Integrand reduction and polynomials

At `-loops we want to achieve the integrand decomposition:

Ii1...in(q1, . . . , q`) ≡
Ni1...in

Di1 . . .Din
=

∆i1···in
Di1 . . .Din

+ . . .+

n∑

k=1

∆ik

Dik
︸ ︷︷ ︸

they must be irreducible

+ ∆∅

We trade (q1, . . . , q`) with their coordinates z ≡ (z1, . . . , zm)

⇒ numerator and denominators ≡ polynomials in z

Ii1...in(z) ≡ Ni1...in(z)

Di1(z) . . .Din(z)

⇒ Integrand reduction ≡ problem of multivariate polynomial division

The problem of the determination of the residues of a generic diagram
has been solved. [Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)]
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Integrand reduction via polynomial division

Residues via polynomial division
Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Define the Ideal of polynomials

Ji1···in ≡ 〈Di1 , . . . ,Din〉 =

{
p(z) : p(z) =

∑

j

hj(z)Dj(z), hj ∈ P[z]

}

Take a Gröbner basis GJi1···in
of Ji1···in

GJi1···in
= {g1, . . . , gs} such that Ji1···in = 〈g1, . . . , gs〉

Perform the multivariate polynomial division Ni1...in/GJi1···in

Ni1···in(z) =

n∑

k=1

Ni1···ik−1ik+1···in(z) Dik (z)

︸ ︷︷ ︸
quotient ∈ Ji1···in

+ ∆i1···in(z)

︸ ︷︷ ︸
remainder

The remainder ∆i1···in is irreducible⇒ can be identified with the residue
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Integrand reduction via polynomial division

Recursive Relation for the integrand decomposition

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

The recursive formula

Ni1···in =
n∑

k=1

Ni1···ik−1ik+1···in Dik + ∆i1···in

Ii1···in ≡
Ni1···in

Di1 · · ·Din
=
∑

k

Ii1···ik−1ik+1···in +
∆i1···in

Di1 · · ·Din

Fit-on-the-cut approach
from a generic N , get the parametric form of the residues ∆
determine the coefficients sampling on the cuts (impose Di = 0)

Divide-and-Conquer approach
generate the N of the process
compute the residues by iterating the polynomial division algorithm
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Integrand reduction via polynomial division

Fit-on-the-cut approach
[Ossola, Papadopoulos, Pittau (2007)]

The decomposition of the numerator

Ni1···in = ∆i1···in +
∑

k

∆i1···ik−1ik+1···in Dik + . . .

Fit the coefficients of the residues sampling on the multiple cuts

First step: n-ple cut
impose Di1 = . . . = Din = 0

∆i1···in = Ni1···in

Further steps: k-ple cut
impose Di1 = . . . = Dik = 0 for any subset {i1 . . . ik}

∆i1···ik =
Ni1···in − higher-point contibrutions∏

h 6=i1,...,ik Dh
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The reducibility criterion
What happens if a cut has no solution?

The reducibility criterion

If a cut Di1 = . . . = Dik = 0 has no solutions, the associated residue
vanishes. In other words, any numerator is completely reducible.

This generally happens with overdetermined systems i.e. when the
number of cut denominators is higher than the one of loop coordinates.

When Di1 = . . . = Dik = 0 has no solution:

∆i1...ik = 0 ⇒ no need to perform the fit

Ni1···in =

n∑

k=1

Ni1···ik−1ik+1···in Dik

Ii1···in =
∑

k

Ii1···ik−1ik+1···in
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The maximum-cut theorem

The maximum-cut theorem

We define maximum-cut, a cut where

#(cut-denominators) ≡ #(components-of-loop-momenta)

In non-special kinematic configurations it has a finite number of solutions

#(coefficients-of-the-residue) = #(solutions-of-the-cut)

The fit-on-the-cut approach therefore gives a number of equations which
is equal to the number of unknown coefficients.
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The maximum-cut theorem

Examples:
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Integrand reduction via polynomial division

Fit-on-the-cut approach

Pros:
each multiple cut projects out the corresponding residue
⇒ the systems of equations for the coefficients are much smaller

can be implemented either analytically or numerically
very successful application at one-loop

Cons:
at higher-loops the solutions of the cuts can be difficult to find
it cannot be applied in the presence of higher powers of
denominators

a cut denominator might be equal to an uncut denominator

it that case

Ni1···in − higher-point contibrutions∏
h6=i1,...,ik Dh

=
0
0
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Integrand reduction via polynomial division

Fit-on-the-cut approach

Pros:
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Cons:
at higher-loops the solutions of the cuts can be difficult to find
it cannot be applied in the presence of higher powers of
denominators

a cut denominator might be equal to an uncut denominator
it that case

Ni1···in − higher-point contibrutions∏
h 6=i1,...,ik Dh

=
0
0

OBSERVATION:
these issues are not present

in the divide-and-conquer approach
which instead can be applied to

any integrand
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Application at one-loop

One-loop decomposition from polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Start from the most general one-loop amplitude in d = 4− 2ε

Apply the recursive formula for the integrand decomposition

⇒ it reproduces the OPP result
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

Drop the spurious terms

⇒ Get the most general integral decomposition (well knwon result)

+= c4,0 c3,0 + +c2,0 c1,0

+ + +c3,7 d+ 2 c2,9 d+ 2c4,4 d+ 4
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Application at one-loop

One-loop decomposition from polynomial division
At one loop in 4− 2ε dimensions:

5 coordinates z = (z1, z2, z3, z4, z5)

4 components (z1,z2,z3,z4) of q w.r.t. a 4-dimensional basis
z5 = µ2 encodes the (−2ε)-dependence on the loop momentum

we start with

In ≡ I1...n =
N1...n(z)

D1(z) . . .Dn(z)

most general 1-loop numerator
generic 1-loop denominators

if m > 5 any integrand Ii1...im is reducible (reducibility criterion)

Ii1···im =
∑

k

Ii1...ik−1ik+1...im , ⇒ ∆i1···im = 0 for m > 5

for m ≤ 5 the polynomial-division algorithm gives the already-known
parametric form of the residues ∆ijk...
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Application at one-loop

Choice of 4-dimensional basis for an m-point residue

e2
1 = e2

2 = 0 , e1 · e2 = 1 , e2
3 = e2

4 = δm4 , e3 · e4 = −(1− δm4)

Coordinates: z = (z1, z2, z3, z4, z5) ≡ (x1, x2, x3, x4, µ
2)

qµ4-dim = −pµi1 + x1 eµ1 + x2 eµ2 + x3 eµ3 + x4 eµ4 , q2 = q2
4-dim − µ

2

Generic numerator

Ni1···im =
∑

j1,...,j5

α~j z j1
1 z j2

2 z j3
3 z j4

4 z j5
5 , (j1 . . . j5) such that rank(Ni1···im ) ≤ m

Residues

∆i1i2i3i4i5 = c0

∆i1i2i3i4 = c0 + c1x4 + µ2(c2 + c3x4 + µ2c4)

∆i1i2i3 = c0 + c1x3 + c2x2
3 + c3x3

3 + c4x4 + c5x2
4 + c6x3

4 + µ2(c7 + c8x3 + c9x4)

∆i1i2 = c0 + c1x2 + c2x3 + c3x4 + c4x2
2 + c5x2

3 + c6x2
4 + c7x2x3 + c9x2x4 + c9µ

2

∆i1 = c0 + c1x1 + c2x2 + c3x3 + c4x4

It can be easily extended to higher-rank numerators
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Application at one-loop

Fit-on-the-cut at 1-loop

Integrand decomposition: +
∑

+
∑

+
∑

+
∑

=
∑

=
∑

=
∑

=
∑

+

+
∑

+

+
∑

+
∑

++
∑

+
∑

+
∑

=
∑

=

+

Fit-on-the cut
fit m-point residues on
m-ple cuts
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Application at one-loop

Improved 1-loop Reduction with NINJA

P. Mastrolia, E. Mirabella, T.P. (2012)
The integrand reduction via Laurent expansion:

fits residues by taking their asymptotic expansions on the cuts

yields diagonal systems of equations for the coefficients

requires the computation of fewer coefficients

subtractions of higher point residues is simplified

F Implemented in the semi-numerical C++ library NINJA

Laurent expansions via a simplified polynomial-division algorithm
interfaced with the package GOSAM
is a faster and more stable integrand-reduction algorithm

⇒ see P. Mastrolia’s talk for more details
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Higher loops

Extension to higher loops

The integrand-level approach to scattering amplitudes at one-loop
can be used to compute any amplitude in any QFT
has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NGLUONS]
has produced (and is still producing) results for LHC
[GOSAM (see P. Mastrolia’s talk),
FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP . . . ]

At two or higher loops
no general recipe is available
the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.

. . . we are moving the first steps in this direction
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Higher loops

N = 4 SYM and N = 8 SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Examples in N = 4 SYM and N = 8 SUGRA amplitudes (d = 4)
generation of the integrand

graph based [Carrasco, Johansson (2011)]
unitarity based [U. Schubert (Diplomarbeit)]

fit-on-the-cut approach for the reduction
Results:

N = 4 linear combination of 8 and 7-denominators MIs
N = 8 linear combination of 8, 7 and 6-denominators MIs
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Higher loops

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

The divide-and-conquer approach to the integrand reduction
does not require the knowledge of the solutions of the cut
can always be used to perform the reduction in a finite number of
purely algebraic operations
has been automated in a PYTHON package which uses
MACAULAY2 and FORM for algebraic operations

PYTHON

MACAULAY2 FORM⇒⇐
also works in special cases where the fit-on-the-cut approach is
not applicable (e.g. in presence of double denominators)
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Higher loops

Divide-and-Conquer approach: a simple example

I11234 =
N11234

D2
1D2D3D4

D1 = q̄2
1 − m2 ,

D2 = (q̄1 − k)2 − m2 ,

D3 = q̄2
2 ,

D4 = (q̄1 + q̄2)2 − m2

Basis {ei} ≡ {k, k⊥, e3, e4} and coordinates z = (x1, x2, x3, x4, y1, y2, y3, y4, µ11, µ12, µ22)

q̄(4-dim)
1 =

∑
i

xi ei, q̄(4-dim)
2 =

∑
i

yi ei, (q̄i · q̄j) = (q̄(4-dim)
i · q̄(4-dim)

j )− µij

division of N11234 modulo GJ11234 (= GJ1234 )

N11234 = N1234D1 +N1134D2 +N1124D3 +N1123D4︸ ︷︷ ︸
quotients

+ ∆11234︸ ︷︷ ︸
remainder

division of Ni1i2i3i4 modulo GJi1 i2 i3 i4
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division of N11234 modulo GJ11234 (= GJ1234 )

N11234 = N1234D1 +N1134D2 +N1124D3 +N1123D4︸ ︷︷ ︸
quotients

+ ∆11234︸ ︷︷ ︸
remainder

division of Ni1i2i3i4 modulo GJi1 i2 i3 i4
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Higher loops

Divide-and-Conquer approach: a simple example

I11234 =
N11234

D2
1D2D3D4

D1 = q̄2
1 − m2 ,

D2 = (q̄1 − k)2 − m2 ,

D3 = q̄2
2 ,

D4 = (q̄1 + q̄2)2 − m2

Basis {ei} ≡ {k, k⊥, e3, e4} and coordinates z = (x1, x2, x3, x4, y1, y2, y3, y4, µ11, µ12, µ22)

q̄(4-dim)
1 =

∑
i

xi ei, q̄(4-dim)
2 =

∑
i

yi ei, (q̄i · q̄j) = (q̄(4-dim)
i · q̄(4-dim)

j )− µij

division of N11234 modulo GJ11234 (= GJ1234 )

N11234 = N1234D1 +N1134D2 +N1124D3 +N1123D4︸ ︷︷ ︸
quotients

+ ∆11234︸ ︷︷ ︸
remainder

division of Ni1i2i3i4 modulo GJi1 i2 i3 i4
, e.g.

N1234/GJ1234 ⇒ N1234 = Q(1234)
234 D1 +Q(1234)

134 D2 +Q(1234)
124 D3 +Q(1234)

123 D4︸ ︷︷ ︸
quotients

+ ∆1234︸ ︷︷ ︸
remainder

N1134/GJ1134 ⇒ N1134 = Q(1134)
134 D1 +Q(1134)

114 D3 +Q(1134)
113 D4︸ ︷︷ ︸

quotients

+ ∆1134︸ ︷︷ ︸
remainder
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I11234 =
N11234

D2
1D2D3D4
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Basis {ei} ≡ {k, k⊥, e3, e4} and coordinates z = (x1, x2, x3, x4, y1, y2, y3, y4, µ11, µ12, µ22)

q̄(4-dim)
1 =

∑
i

xi ei, q̄(4-dim)
2 =

∑
i

yi ei, (q̄i · q̄j) = (q̄(4-dim)
i · q̄(4-dim)

j )− µij

division of N11234 modulo GJ11234 (= GJ1234 )

N11234 = N1234D1 +N1134D2 +N1124D3 +N1123D4︸ ︷︷ ︸
quotients

+ ∆11234︸ ︷︷ ︸
remainder

division of Ni1i2i3i4 modulo GJi1 i2 i3 i4

N11234 = N234D2
1 +N134D1D2 +N124D1D3 +N123D1D4 +N114D2D3 +N113D2D4︸ ︷︷ ︸

(sums of) quotients

+ ∆1234D1 + ∆1134D2 + ∆1124D3 + ∆1123D4︸ ︷︷ ︸
remainders

+ ∆11234
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Higher loops

Divide-and-Conquer approach: a simple example

after a further step (division Ni1i2i3/GJi1 i2 i3
) no quotient remains

N11234 = ∆11234+∆1234D1+∆1134D2+∆1124D3+∆1123D4+∆234D2
1+∆114D2D3+∆113D2D4

the integrand decomposition becomes

I11234 =
N11234

D2
1D2D3D4

=
∆11234

D2
1D2D3D4

+
∆1234

D1D2D3D4
+

∆1134

D2
1D3D4

+
∆1124

D2
1D2D4

+
∆1123

D2
1D2D3

+
∆234

D2D3D4
+

∆114

D2
1D4

+
∆113

D2
1D3

∆11234 = 16m2
(

k2 + 2 m2 − k2ε
)
,

∆1234 = 16
[
(q2 · k)(1− ε)2 + m2

]
,

∆1124 = −∆1123 = 8 (1− ε)
[

k2(1− ε) + 2 m2
]
,

∆1134 = − 16m2 (1− ε) ,

∆113 = −∆114 = ∆234 = 8 (1− ε)2 .
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Higher loops

Examples of divide-and-conquer approach

Photon self-energy in massive QED, (4− 2ε)-dimensions

Diagrams entering gg→ H, in (4− 2ε)-dimensions
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Conclusions

Conclusions and Outlook

Conclusions
We developed a general framework for the reduction at the
integrand level

can be applied to any amplitude in any QFT, at every loop order
At one loop

naturally reproduces known results (OPP)
allows to express any amplitude in terms of known MIs
can be improved with the Laurent-expansion approach (NINJA)

At higher loops
it gives a recursive formula for the integrand decomposition
generates the form of the residue for every cut
can decompose any integrand with purely algebraic operations
(divide-and-conquer approach)

Outlook
application to a full 2-loop QED/QCD process
combine integrand reduction with other techniques (e.g. IBP)
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