Multiloop Integrand Reduction via Multivariate Polynomial Division

Tiziano Peraro

Max-Planck-Institut für Physik Föhringer Ring 6, D-80805 München, Germany

RADCOR 2013 22-27 September

T. Peraro (MPI - München) Multiloop Integrand Reduction via Multivariate Polynomial Division

RADCOR2013

Based on:

- P. Mastrolia, E. Mirabella and **T.P.**, *Integrand reduction of one-loop scattering amplitudes through Laurent series expansion*, JHEP **1206**, 095 (2012) [arXiv:1203.0291 [hep-ph]].

P. Mastrolia, E. Mirabella, G. Ossola and **T.P.**, *Scattering Amplitudes from Multivariate Polynomial Division*, Phys. Lett. B **718**, 173 (2012) [arXiv:1205.7087 [hep-ph]].

P. Mastrolia, E. Mirabella, G. Ossola and **T.P.**, *Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division*, Phys. Rev. D 87, 085026 (2013) [arXiv:1209.4319 [hep-ph]].

H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, **T.P.**, J. F. von Soden-Fraunhofen and F. Tramontano Phys. Lett. B **721**, 74 (2013) [arXiv:1301.0493 [hep-ph]].

G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, **T.P.** and F. Tramontano *NLO QCD* corrections to Higgs boson production plus three jets in gluon fusion, arXiv:1307.4737 [hep-ph].

P. Mastrolia, E. Mirabella, G. Ossola and T.P., Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes, arXiv:1307.5832 [hep-ph].

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and **T.P.**, *NLO QCD corrections to Higgs boson production in association with a top quark pair and a jet*, arXiv:1307.8437 [hep-ph].

Outline

- Introduction and motivation
- 2 The integrand reduction of scattering amplitudes
- Integrand reduction via polynomial division
 - Application at one-loop
- 5 Higher loops
- 6 Conclusions

Introduction and motivation

Motivation

- Understanding the basic analytic and algebraic structure of integrands and integrals of scattering amplitudes
- Exploration of methods for obtaining theoretical predictions in perturbative Quantum Field Theory at higher orders
- Automation of the computation of loop integrals

We developed a coherent framework for the integrand decomposition of Feynman integrals

- based on simple concepts of algebraic geometry
- applicable at all loops

Integrand reduction

- Generic *l*-loop integral:
 - is a rational function in the components of the loop momenta q_i
 - polynomial numerator $\mathcal{N}_{i_1...i_n}$

$$\mathcal{M}_n = \int d^d q_1 \dots d^d q_\ell ~~ \mathcal{I}_{i_1 \dots i_n}, \qquad \mathcal{I}_{i_1 \dots i_n} \equiv rac{\mathcal{N}_{i_1 \dots i_n}}{D_{i_1} \dots D_{i_n}}$$

- quadratic polynomial denominators D_i
 - they correspond to Feynman loop propagators

$$D_i = \left(\sum_j (-)^{s_{ij}} q_j + p_i\right)^2 - m_i^2$$

 $\dots D_i$

2

Integrand reduction

The idea

Manipulate the integrand and reduce it to a linear combination of "simpler" integrands.

• The integrand-reduction algorithm leads to

$$\mathcal{I}_{i_1\cdots i_n} \equiv \frac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \frac{\Delta_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} + \ldots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset}$$

• The residues $\Delta_{i_1...i_k}$ are irreducible polynomials in q_i

- can't be written as a combination of denominators $D_{i_1} \dots D_{i_k}$
- universal topology-dependent parametric form
- the coefficients of the parametrization are process-dependent

From integrands to integrals

• By integrating the integrand decomposition

$$\mathcal{M}_n = \int d^d q_1 \dots d^d q_\ell \left(rac{\Delta_{i_1 \dots i_n}}{D_{i_1} \dots D_{i_n}} + \dots + \sum_{k=1}^n rac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset}
ight)$$

- some terms vanish and do not contribute to the amplitude ⇒ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues

From integrands to integrals

• By integrating the integrand decomposition

$$\mathcal{M}_n = \int d^d q_1 \dots d^d q_\ell \left(rac{\Delta_{i_1 \dots i_n}}{D_{i_1} \dots D_{i_n}} + \dots + \sum_{k=1}^n rac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset}
ight)$$

- some terms vanish and do not contribute to the amplitude ⇒ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues

 \Rightarrow reduction to MIs \equiv polynomial fit of the residues

The one-loop decomposition

At one loop the result is well known:

• the integrand decomposition [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

$$\begin{aligned} \mathcal{I}_{i_1 \cdots i_n} &= \frac{\mathcal{N}_{i_1 \cdots i_n}}{D_{i_1} \cdots D_{i_n}} = \sum_{j_1 \dots j_5} \frac{\Delta_{j_1 j_2 j_3 j_4 j_5}}{D_{j_1} D_{j_2} D_{j_3} D_{j_4} D_{j_5}} + \sum_{j_1 j_2 j_3 j_4} \frac{\Delta_{j_1 j_2 j_3 j_4}}{D_{j_1} D_{j_2} D_{j_3} D_{j_4}} \\ &+ \sum_{j_1 j_2 j_3} \frac{\Delta_{j_1 j_2 j_3}}{D_{j_1} D_{j_2} D_{j_3}} + \sum_{j_1 j_2} \frac{\Delta_{j_1 j_2}}{D_{j_1} D_{j_2}} + \sum_{j_1} \frac{\Delta_{j_1}}{D_{j_1}} \end{aligned}$$

the integral decomposition

$$= c_{4,0} + c_{3,0} + c_{2,0} + c_{1,0} + c_{1,0} + c_{4,4} + c_{3,7} + c_{2,9} + c_$$

5

Integrand reduction and polynomials

• At *l*-loops we want to achieve the integrand decomposition:

$$\mathcal{I}_{i_1\dots i_n}(q_1,\dots,q_\ell) \equiv \frac{\mathcal{N}_{i_1\dots i_n}}{D_{i_1}\dots D_{i_n}} = \underbrace{\frac{\Delta_{i_1\dots i_n}}{D_{i_1}\dots D_{i_n}}}_{\text{they must be irreducible}} + \dots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset}$$

We trade (q₁,...,q_ℓ) with their coordinates z ≡ (z₁,..., z_m)
 ⇒ numerator and denominators ≡ polynomials in z

$$\mathcal{I}_{i_1\ldots i_n}(\mathbf{z})\equiv rac{\mathcal{N}_{i_1\ldots i_n}(\mathbf{z})}{D_{i_1}(\mathbf{z})\ldots D_{i_n}(\mathbf{z})}$$

 \Rightarrow Integrand reduction \equiv problem of multivariate polynomial division

The problem of the determination of the residues of a generic diagramhas been solved.[Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)]

T. Peraro (MPI - München) Multiloop Integrand Reduction via Multivariate Polynomial Division RADCOR2013 6

Residues via polynomial division

- Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)
 - Define the Ideal of polynomials

$$\mathcal{J}_{i_1\cdots i_n} \equiv \langle D_{i_1},\ldots,D_{i_n} \rangle = \left\{ p(\mathbf{z}) \, : \, p(\mathbf{z}) = \sum_j h_j(\mathbf{z}) D_j(\mathbf{z}), \, h_j \in P[\mathbf{z}] \right\}$$

• Take a Gröbner basis
$$G_{\mathcal{J}_{i_1\cdots i_n}}$$
 of $\mathcal{J}_{i_1\cdots i_n}$

$$G_{\mathcal{J}_{i_1\cdots i_n}} = \{g_1, \dots, g_s\}$$
 such that $\mathcal{J}_{i_1\cdots i_n} = \langle g_1, \dots, g_s \rangle$

• Perform the multivariate polynomial division $\mathcal{N}_{i_1...i_n}/G_{\mathcal{J}_{i_1...i_n}}$

$$\mathcal{N}_{i_1\cdots i_n}(z) = \underbrace{\sum_{k=1}^n \mathcal{N}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n}(z) D_{i_k}(z)}_{\text{quotient} \in \mathcal{J}_{i_1\cdots i_n}} + \underbrace{\Delta_{i_1\cdots i_n}(z)}_{\text{remainder}}$$

• The remainder $\Delta_{i_1 \cdots i_n}$ is irreducible \Rightarrow can be identified with the residue

Recursive Relation for the integrand decomposition

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

The recursive formula

$$\mathcal{N}_{i_1\cdots i_n} = \sum_{k=1}^n \mathcal{N}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} D_{i_k} + \Delta_{i_1\cdots i_n}$$
 $\mathcal{I}_{i_1\cdots i_n} \equiv rac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \sum_k \mathcal{I}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} + rac{\Delta_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}}$

- Fit-on-the-cut approach
 - from a generic ${\cal N},$ get the parametric form of the residues Δ
 - determine the coefficients sampling on the cuts (impose $D_i = 0$)
- Divide-and-Conquer approach
 - $\bullet\,$ generate the ${\cal N}$ of the process
 - compute the residues by iterating the polynomial division algorithm

[Ossola, Papadopoulos, Pittau (2007)]

The decomposition of the numerator

$$\mathcal{N}_{i_1\cdots i_n} = \Delta_{i_1\cdots i_n} + \sum_k \Delta_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} D_{i_k} + \dots$$

- Fit the coefficients of the residues sampling on the multiple cuts
- First step: n-ple cut

• impose
$$D_{i_1} = \ldots = D_{i_n} = 0$$

$$\Delta_{i_1\cdots i_n}=\mathcal{N}_{i_1\cdots i_n}$$

- Further steps: k-ple cut
 - impose $D_{i_1} = \ldots = D_{i_k} = 0$ for any subset $\{i_1 \ldots i_k\}$

$$\Delta_{i_1\cdots i_k} = \frac{\mathcal{N}_{i_1\cdots i_n} - \text{higher-point contibutions}}{\prod_{h\neq i_1,\dots,i_k} D_h}$$

T. Peraro (MPI - München)

Fit-on-the-cut approach: The reducibility criterion

What happens if a cut has no solution?

The reducibility criterion

- If a cut D_{i1} = ... = D_{ik} = 0 has no solutions, the associated residue vanishes. In other words, any numerator is completely reducible.
- This generally happens with overdetermined systems i.e. when the number of cut denominators is higher than the one of loop coordinates.

• When
$$D_{i_1} = \ldots = D_{i_k} = 0$$
 has no solution:

 $\Delta_{i_1...i_k} = 0 \implies \text{no need to perform the fit}$ $\mathcal{N}_{i_1...i_n} = \sum_{k=1}^n \mathcal{N}_{i_1...i_{k-1}i_{k+1}...i_n} D_{i_k}$ $\mathcal{I}_{i_1...i_n} = \sum_k \mathcal{I}_{i_1...i_{k-1}i_{k+1}...i_n}$

Fit-on-the-cut approach: The maximum-cut theorem

The maximum-cut theorem

We define maximum-cut, a cut where

 $#(cut-denominators) \equiv #(components-of-loop-momenta)$

In non-special kinematic configurations it has a finite number of solutions

#(coefficients-of-the-residue) = #(solutions-of-the-cut)

• The fit-on-the-cut approach therefore gives a number of equations which is equal to the number of unknown coefficients.

Fit-on-the-cut approach: The maximum-cut theorem

Examples:

diagram	Δ	n_s	diagram	Δ	n_s
$\langle \downarrow \rangle$	c_0	1	Ц	$c_0 + c_1 z$	2
$\langle \square$	$\sum_{i=0}^{3} c_i z^i$	4	$\langle \times$	$\sum_{i=0}^{3} c_i z^i$	4
E	$\sum_{i=0}^{7} c_i z^i$	8		$\succ \sum_{i=0}^{7} c_i z^i$	8

Pros:

- each multiple cut projects out the corresponding residue
 - \Rightarrow the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:

- at higher-loops the solutions of the cuts can be difficult to find
- it cannot be applied in the presence of higher powers of denominators
 - a cut denominator might be equal to an uncut denominator

Pros:

- each multiple cut projects out the corresponding residue
 - \Rightarrow the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:

- at higher-loops the solutions of the cuts can be difficult to find
- it cannot be applied in the presence of higher powers of denominators
 - a cut denominator might be equal to an uncut denominator
 - it that case

$$\frac{\mathcal{N}_{i_1\cdots i_n} - \text{higher-point contibutions}}{\prod_{h \neq i_1, \dots, i_k} D_h} = \frac{0}{0}$$

Pros:

- each multiple cut projects out the corresponding residue
 - \Rightarrow the systems of equations for the coefficients are much smaller
- can be implemented either analytically or numerically
- very successful application at one-loop

Cons:

One-loop decomposition from polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

- Start from the most general one-loop amplitude in $d = 4 2\epsilon$
- Apply the recursive formula for the integrand decomposition
 - ⇒ it reproduces the OPP result [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
- Drop the spurious terms
- ⇒ Get the most general integral decomposition (well knwon result)

One-loop decomposition from polynomial division

At one loop in $4 - 2\epsilon$ dimensions:

- 5 coordinates $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5)$
 - 4 components (z_1, z_2, z_3, z_4) of q w.r.t. a 4-dimensional basis
 - $z_5 = \mu^2$ encodes the (-2ϵ) -dependence on the loop momentum

we start with

$$\mathcal{I}_n \equiv \mathcal{I}_{1...n} = \frac{\mathcal{N}_{1...n}(\mathbf{z})}{D_1(\mathbf{z}) \dots D_n(\mathbf{z})} \qquad \text{most general 1-loop numerator}$$
generic 1-loop denominators

• if m > 5 any integrand $\mathcal{I}_{i_1...i_m}$ is reducible (reducibility criterion)

$$\mathcal{I}_{i_1\cdots i_m} = \sum_k \mathcal{I}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_m}, \quad \Rightarrow \quad \Delta_{i_1\cdots i_m} = 0 \quad \text{for } m > 5$$

 for *m* ≤ 5 the polynomial-division algorithm gives the already-known parametric form of the residues Δ_{ijk...} Choice of 4-dimensional basis for an *m*-point residue

$$e_1^2 = e_2^2 = 0$$
, $e_1 \cdot e_2 = 1$, $e_3^2 = e_4^2 = \delta_{m4}$, $e_3 \cdot e_4 = -(1 - \delta_{m4})$

• Coordinates: $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5) \equiv (x_1, x_2, x_3, x_4, \mu^2)$

$$q_{4-\text{dim}}^{\mu} = -p_{i_1}^{\mu} + x_1 \ e_1^{\mu} + x_2 \ e_2^{\mu} + x_3 \ e_3^{\mu} + x_4 \ e_4^{\mu}, \qquad q^2 = q_{4-\text{dim}}^2 - \mu^2$$

Generic numerator

$$\mathcal{N}_{i_1\cdots i_m} = \sum_{j_1,\cdots,j_5} \alpha_{\vec{j}} \, z_1^{j_1} \, z_2^{j_2} \, z_3^{j_3} \, z_4^{j_4} \, z_5^{j_5}, \qquad (j_1 \dots j_5) \quad \text{such that} \quad \operatorname{rank}(\mathcal{N}_{i_1 \dots i_m}) \le m$$

Residues

$$\begin{aligned} \Delta_{i_1 i_2 i_3 i_4 i_5} &= c_0 \\ \Delta_{i_1 i_2 i_3 i_4} &= c_0 + c_1 x_4 + \mu^2 (c_2 + c_3 x_4 + \mu^2 c_4) \\ \Delta_{i_1 i_2 i_3} &= c_0 + c_1 x_3 + c_2 x_3^2 + c_3 x_3^3 + c_4 x_4 + c_5 x_4^2 + c_6 x_4^3 + \mu^2 (c_7 + c_8 x_3 + c_9 x_4) \\ \Delta_{i_1 i_2} &= c_0 + c_1 x_2 + c_2 x_3 + c_3 x_4 + c_4 x_2^2 + c_5 x_3^2 + c_6 x_4^2 + c_7 x_2 x_3 + c_9 x_2 x_4 + c_9 \mu^2 \\ \Delta_{i_1} &= c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \end{aligned}$$

It can be easily extended to higher-rank numerators

Fit-on-the-cut at 1-loop

Integrand decomposition: $=\Sigma$ Fit-on-the cut fit *m*-point residues on *m*-ple cuts $=\Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma + \Sigma + (1 + 2 + 2) + (1 + 2) + ($

Improved 1-loop Reduction with NINJA

P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified

Improved 1-loop Reduction with NINJA

P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
- ★ Implemented in the semi-numerical C++ library NINJA
 - Laurent expansions via a simplified polynomial-division algorithm
 - interfaced with the package GOSAM
 - is a faster and more stable integrand-reduction algorithm

Improved 1-loop Reduction with NINJA

P. Mastrolia, E. Mirabella, T.P. (2012)

The integrand reduction via Laurent expansion:

- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
- ★ Implemented in the semi-numerical C++ library NINJA
 - Laurent expansions via a simplified polynomial-division algorithm
 - interfaced with the package GOSAM
 - is a faster and more stable integrand-reduction algorithm
- \Rightarrow see P. Mastrolia's talk for more details

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NGLUONS]
 - has produced (and is still producing) results for LHC [GOSAM (see P. Mastrolia's talk),

FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]

- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NGLUONS]
 - has produced (and is still producing) results for LHC [GOSAM (see P. Mastrolia's talk),

FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]

- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NGLUONS]
 - has produced (and is still producing) results for LHC [GOSAM (see P. Mastrolia's talk),

FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]

- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

• ... we are moving the first steps in this direction

$\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

- Examples in $\mathcal{N} = 4$ SYM and $\mathcal{N} = 8$ SUGRA amplitudes (d = 4)
 - generation of the integrand
 - graph based [Carrasco, Johansson (2011)]
 - unitarity based [U. Schubert (Diplomarbeit)]
 - fit-on-the-cut approach for the reduction
- Results:
- $\mathcal{N}=4~$ linear combination of 8 and 7-denominators MIs
- $\mathcal{N}=8$ linear combination of 8, 7 and 6-denominators MIs

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

The divide-and-conquer approach to the integrand reduction

- does not require the knowledge of the solutions of the cut
- can always be used to perform the reduction in a finite number of purely algebraic operations
- has been automated in a PYTHON package which uses MACAULAY2 and FORM for algebraic operations

 also works in special cases where the fit-on-the-cut approach is not applicable (e.g. in presence of double denominators)

Divide-and-Conquer approach: a simple example

$$\begin{array}{cccc}
\bar{q}_{1} & D_{1} = \bar{q}_{1}^{2} - m^{2}, \\
& & D_{2} = (\bar{q}_{1} - k)^{2} - m^{2}, \\
& & D_{2} = (\bar{q}_{1} - k)^{2} - m^{2}, \\
& & D_{3} = \bar{q}_{2}^{2}, \\
& & D_{4} = (\bar{q}_{1} + \bar{q}_{2})^{2} - m^{2}
\end{array}$$

Divide-and-Conquer approach: a simple example

$$\begin{array}{cccc}
\bar{q}_{1} & & D_{1} = \bar{q}_{1}^{2} - m^{2}, \\
& & D_{2} = (\bar{q}_{1} - k)^{2} - m^{2}, \\
& D_{2} = (\bar{q}_{1} - k)^{2} - m^{2}, \\
& D_{3} = \bar{q}_{2}^{2}, \\
& D_{4} = (\bar{q}_{1} + \bar{q}_{2})^{2} - m^{2}
\end{array}$$

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$ $\bar{q}_1^{(4\text{-dim})} = \sum_i x_i e_i, \qquad \bar{q}_2^{(4\text{-dim})} = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (\bar{q}_i^{(4\text{-dim})} \cdot \bar{q}_j^{(4\text{-dim})}) - \mu_{ij}$

Divide-and-Conquer approach: a simple example

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$ $\bar{q}_1^{(4\text{-dim})} = \sum_i x_i e_i, \qquad \bar{q}_2^{(4\text{-dim})} = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (\bar{q}_i^{(4\text{-dim})} \cdot \bar{q}_j^{(4\text{-dim})}) - \mu_{ij}$ • division of \mathcal{N}_{11234} modulo $\mathcal{G}_{\mathcal{J}_{11234}} (= \mathcal{G}_{\mathcal{J}_{1234}})$ $\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{1234}D_1 + \mathcal{N}_{1134}D_2 + \mathcal{N}_{1124}D_3 + \mathcal{N}_{1123}D_4}_{\mathcal{H}_1} + \underbrace{\Delta_{11234}}_{\mathcal{H}_1}$

quotients

remainder

Divide-and-Conquer approach: a simple example

$$\begin{array}{cccc}
\bar{q}_{1} & & D_{1} = \bar{q}_{1}^{2} - m^{2} , \\
\bar{q}_{2} & & D_{2} = (\bar{q}_{1} - k)^{2} - m^{2} , \\
\bar{q}_{2} & & D_{2} = (\bar{q}_{1} - k)^{2} - m^{2} , \\
\bar{q}_{2} & & D_{3} = \bar{q}_{2}^{2} , \\
D_{4} = (\bar{q}_{1} + \bar{q}_{2})^{2} - m^{2} \\
\end{array}$$

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$ $\bar{q}_1^{(4-\text{dim})} = \sum_i x_i e_i, \qquad \bar{q}_2^{(4-\text{dim})} = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (\bar{q}_i^{(4-\text{dim})} \cdot \bar{q}_j^{(4-\text{dim})}) - \mu_{ij}$ • division of \mathcal{N}_{11234} modulo $\mathcal{G}_{\mathcal{J}_{11234}} (= \mathcal{G}_{\mathcal{J}_{1234}})$

$$\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{1234}D_1 + \mathcal{N}_{1134}D_2 + \mathcal{N}_{1124}D_3 + \mathcal{N}_{1123}D_4}_{\text{quotients}} + \underbrace{\Delta_{11234}}_{\text{remainder}}$$

• division of
$$\mathcal{N}_{i_1i_2i_3i_4}$$
 modulo $\mathcal{G}_{\mathcal{J}_{i_1i_2i_3i_4}}$, e.g.

$$\mathcal{N}_{1234}/\mathcal{G}_{\mathcal{J}_{1234}} \Rightarrow \mathcal{N}_{1234} = \underbrace{\mathcal{Q}_{234}^{(1234)}D_1 + \mathcal{Q}_{134}^{(1234)}D_2 + \mathcal{Q}_{124}^{(1234)}D_3 + \mathcal{Q}_{123}^{(1234)}D_4}_{\text{quotients}} + \underbrace{\Delta_{1234}}_{\text{remainder}}$$

$$\mathcal{N}_{1134}/\mathcal{G}_{\mathcal{J}_{1134}} \Rightarrow \mathcal{N}_{1134} = \underbrace{\mathcal{Q}_{134}^{(1134)}D_1 + \mathcal{Q}_{114}^{(1134)}D_3 + \mathcal{Q}_{113}^{(1134)}D_4}_{\text{quotients}} + \underbrace{\Delta_{1134}}_{\text{remainder}}$$

$$\text{PI-München)} \qquad \text{Multiloop Integrand Reduction via Multivariate Polynomial Division} \qquad \text{RADCOR2013} \qquad 22$$

T. Peraro (MPI - München)

Divide-and-Conquer approach: a simple example

$$\begin{array}{cccc}
\bar{q}_{1} & D_{1} = \bar{q}_{1}^{2} - m^{2}, \\
& & D_{2} = (\bar{q}_{1} - k)^{2} - m^{2}, \\
& & D_{2} = (\bar{q}_{1} - k)^{2} - m^{2}, \\
& & D_{3} = \bar{q}_{2}^{2}, \\
& & D_{4} = (\bar{q}_{1} + \bar{q}_{2})^{2} - m^{2}
\end{array}$$

• Basis $\{e_i\} \equiv \{k, k_{\perp}, e_3, e_4\}$ and coordinates $\mathbf{z} = (x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4, \mu_{11}, \mu_{12}, \mu_{22})$ $\bar{q}_1^{(4\text{-dim})} = \sum_i x_i e_i, \qquad \bar{q}_2^{(4\text{-dim})} = \sum_i y_i e_i, \qquad (\bar{q}_i \cdot \bar{q}_j) = (\bar{q}_i^{(4\text{-dim})} \cdot \bar{q}_j^{(4\text{-dim})}) - \mu_{ij}$ • division of \mathcal{N}_{11234} modulo $\mathcal{G}_{\mathcal{J}_{11234}} (= \mathcal{G}_{\mathcal{J}_{1234}})$ $\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{1234}D_1 + \mathcal{N}_{1134}D_2 + \mathcal{N}_{1124}D_3 + \mathcal{N}_{1123}D_4}_{\mathcal{H}_1} + \underbrace{\Delta_{11234}}_{\mathcal{H}_1}$

quotients

remainder

22

• division of $\mathcal{N}_{i_1i_2i_3i_4}$ modulo $\mathcal{G}_{\mathcal{J}_{i_1i_2i_3i_4}}$

 $\mathcal{N}_{11234} = \underbrace{\mathcal{N}_{234}D_1^2 + \mathcal{N}_{134}D_1D_2 + \mathcal{N}_{124}D_1D_3 + \mathcal{N}_{123}D_1D_4 + \mathcal{N}_{114}D_2D_3 + \mathcal{N}_{113}D_2D_4}_{(sums of) quotients} + \underbrace{\Delta_{1234}D_1 + \Delta_{1134}D_2 + \Delta_{1124}D_3 + \Delta_{1123}D_4}_{remainders} + \Delta_{11234}$

T. Peraro (MPI - München)

Multiloop Integrand Reduction via Multivariate Polynomial Division RADCOR2013

Divide-and-Conquer approach: a simple example

• after a further step (division $N_{i_1i_2i_3}/\mathcal{G}_{\mathcal{J}_{i_1i_2i_3}}$) no quotient remains

 $\mathcal{N}_{11234} = \Delta_{11234} + \Delta_{1234}D_1 + \Delta_{1134}D_2 + \Delta_{1124}D_3 + \Delta_{1123}D_4 + \Delta_{234}D_1^2 + \Delta_{114}D_2D_3 + \Delta_{113}D_2D_4$

the integrand decomposition becomes

$$\begin{split} \mathcal{I}_{11234} &= \frac{\mathcal{N}_{11234}}{D_1^2 D_2 D_3 D_4} = \frac{\Delta_{11234}}{D_1^2 D_2 D_3 D_4} + \frac{\Delta_{1234}}{D_1 D_2 D_3 D_4} + \frac{\Delta_{1134}}{D_1^2 D_2 D_3} + \frac{\Delta_{1124}}{D_1^2 D_2 D_4} \\ &\quad + \frac{\Delta_{1123}}{D_1^2 D_2 D_3} + \frac{\Delta_{234}}{D_2 D_3 D_4} + \frac{\Delta_{114}}{D_1^2 D_4} + \frac{\Delta_{113}}{D_1^2 D_3} \\ \Delta_{11234} &= 16m^2 \left(k^2 + 2\,m^2 - k^2\epsilon\right) \,, \\ \Delta_{1234} &= 16 \left[(q_2 \cdot k)(1 - \epsilon)^2 + m^2 \right] \,, \\ \Delta_{1124} &= -\Delta_{1123} = 8 \left(1 - \epsilon\right) \left[k^2(1 - \epsilon) + 2\,m^2 \right] \,, \\ \Delta_{1134} &= -16m^2 \left(1 - \epsilon\right) \,, \\ \Delta_{113} &= -\Delta_{114} = \Delta_{234} = 8 \left(1 - \epsilon\right)^2 \,. \end{split}$$

Examples of divide-and-conquer approach

• Photon self-energy in massive QED, $(4 - 2\epsilon)$ -dimensions

• Diagrams entering $gg \rightarrow H$, in $(4 - 2\epsilon)$ -dimensions

Conclusions and Outlook

- Conclusions
 - We developed a general framework for the reduction at the integrand level
 - can be applied to any amplitude in any QFT, at every loop order
 - At one loop
 - naturally reproduces known results (OPP)
 - allows to express any amplitude in terms of known MIs
 - can be improved with the Laurent-expansion approach (NINJA)
 - At higher loops
 - it gives a recursive formula for the integrand decomposition
 - generates the form of the residue for every cut
 - can decompose any integrand with purely algebraic operations (divide-and-conquer approach)
- Outlook
 - application to a full 2-loop QED/QCD process
 - combine integrand reduction with other techniques (e.g. IBP)

THANK YOU FOR YOUR ATTENTION

T. Peraro (MPI - München) Multiloop Integrand Reduction via Multivariate Polynomial Division

RADCOR2013