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Introduction and motivation

@ Understanding the basic analytic and algebraic structure of
integrands and integrals of scattering amplitudes

@ Exploration of methods for obtaining theoretical predictions in
perturbative Quantum Field Theory at higher orders

@ Automation of the computation of loop integrals

We developed a coherent framework for the integrand decomposition
of Feynman integrals

@ based on simple concepts of algebraic geometry
@ applicable at all loops
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Integrand reduction

@ Generic ¢-loop integral:
@ is a rational function in the components of the loop momenta ¢;

e polynomial numerator NV;, /\

Mn - ddCIl .. -ddCIF Z-i]...i,,7 L]..i =

-In

D; ...D;

@ quadratic polynomial denominators D; \_/

@ they correspond to Feynman loop propagators
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Integrand reduction

Manipulate the integrand and reduce it to a linear combination of
“simpler” integrands.

@ The integrand-reduction algorithm leads to

Ni i AN A,
Ty = i Db A
= DD, Dy..D, T ,;D‘k + Ay

in

@ The residues A, ; are irreducible polynomials in g;

e can’t be written as a combination of denominators D;, ... D;,
e universal topology-dependent parametric form
e the coefficients of the parametrization are process-dependent
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From integrands to integrals

@ By integrating the integrand decomposition

A . "
an/ddQ]...dqu<M+...+Z
D, ...D; e

A,
A
D;, + “’)

e some terms vanish and do not contribute to the amplitude
= spurious terms
@ non-vanishing terms give Master Integrals (Mls)

@ The amplitude is a linear combination of Mls

@ The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues
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From integrands to integrals

@ By integrating the integrand decomposition

A . "
an/ddQ]...dqu<M+...+Z
D, ...D; e

A,
A
D;, + “’)

e some terms vanish and do not contribute to the amplitude
= spurious terms
@ non-vanishing terms give Master Integrals (Mls)

@ The amplitude is a linear combination of Mls

@ The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues

= reduction to Mls = polynomial fit of the residues
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The one-loop decomposition

At one loop the result is well known:

@ the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

7 N, Ajiriys Ay
1

w = DyD,D,D;Dj; = DjD;,D;D;
i jgs D PRPililis s PP Pis i
A

Aj]jzia Ajijy 1
D
2 2 D; Dj, ; D;

iz TITRTS i,

@ the integral decomposition

TN

= €40 + €30
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Integrand reduction via polynomial division

Integrand reduction and polynomials

@ At /-loops we want to achieve the integrand decomposition:

. A . "OA;
:Zil-nin(ql""’qe) = = D; ”mlb oot Z ka * AQ)
. TR k=1 s

1 ° In

they must be irreducible

@ We trade (g1, ..., q¢) with their coordinates z = (zj, ..., zm)
= numerator and denominators = polynomials in z

Ml .. (Z)

L..i,(z) = D, (z)...D; (z)

= Integrand reduction = problem of multivariate polynomial division

The problem of the determination of the residues of a generic diagram
has been solved. [Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)]J
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Integrand reduction via polynomial division

Residues via polynomial division

Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

@ Define the Ideal of polynomials
Tiyin =Dy ..., D) = {p(z) :p(z) = Zhj(z)Dj(z), hj € P[z]}
j
@ Take a Grobner basis Gz, , of Jj,...,
GZI...;n :{g17~--;gs} such that L7i1“~in = <g|7~-~7g5>

@ Perform the multivariate polynomial division /\fil,,,i"/Gjlm,.n

Ni.i(z) = ZM|<-~ik_1ik+]---in(Z) D (z) + Aj..i,(z)
k=1

quotient € J; Leein remainder

@ The remainder A,,...;, is irreducible = can be identified with the residue
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Integrand reduction via polynomial division

Recursive Relation for the integrand decomposition

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

The recursive formula

11 “In E :-/\[11 A1 01 lnle+All in
k=1

Ail in

_ MNii
Liyip = = E +
11-lp — i1 lg—1lk+1"In
- D - D;

1 In

@ Fit-on-the-cut approach

e from a generic NV, get the parametric form of the residues A
e determine the coefficients sampling on the cuts (impose D; = 0)

@ Divide-and-Conquer approach

e generate the N of the process
e compute the residues by iterating the polynomial division algorithm
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Integrand reduction via polynomial division

Fit-on-the-cut approach

[Ossola, Papadopoulos, Pittau (2007)]

The decomposition of the numerator

'/\/il"'in = Ail---i,, + E Ail"'ik—lik+l"'inDik + ...
k

@ Fit the coefficients of the residues sampling on the multiple cuts
@ First step: n-ple cut

@ impose D;, =...=D; =0
Ay = Niyi,
@ Further steps: k-ple cut
e impose D;, = ... =D, = 0for any subset {i; ...}

N, ...;, — higher-point contibrutions
Hh;éil - Dy,
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The reducibility criterion

What happens if a cut has no solution?

The reducibility criterion

@ IfacutD;, =... =D, =0 has no solutions, the associated residue
vanishes. In other words, any numerator is completely reducible.

@ This generally happens with overdetermined systems i.e. when the
number of cut denominators is higher than the one of loop coordinates.

@ When D; = ... =D, = 0 has no solution:
A, =0 = no need to perform the fit
n
Niyoiy = ZMl---ik,,ik+l-~~in D,
k=1

Il']"'in = E Iil"'ik—likJr]"'irz

k
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The maximum-cut theorem

The maximum-cut theorem

@ We define maximum-cut, a cut where

#(cut-denominators) = #(components-of-loop-momenta)

@ In non-special kinematic configurations it has a finite number of solutions

#(coefficients-of-the-residue) = #(solutions-of-the-cut)

@ The fit-on-the-cut approach therefore gives a number of equations which
is equal to the number of unknown coefficients.

4
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Integrand reduction via polynomial division

Fit-on-the-cut approach: The maximum-cut theorem

Examples:

| diagram A Tlg H diagram A Tig

CE o 1 j:[ o+ 1z 2
T ket 4O Thesst
IE( Thee' 8 |{I0D Shont 8
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Integrand reduction via polynomial division

Fit-on-the-cut approach

Pros:
@ each multiple cut projects out the corresponding residue
= the systems of equations for the coefficients are much smaller

@ can be implemented either analytically or numerically
@ very successful application at one-loop
Cons:

@ at higher-loops the solutions of the cuts can be difficult to find

@ it cannot be applied in the presence of higher powers of
denominators

@ a cut denominator might be equal to an uncut denominator
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Integrand reduction via polynomial division

Fit-on-the-cut approach

Pros:
@ each multiple cut projects out the corresponding residue
= the systems of equations for the coefficients are much smaller
@ can be implemented either analytically or numerically
@ very successful application at one-loop
Cons:
@ at higher-loops the solutions of the cuts can be difficult to find

@ it cannot be applied in the presence of higher powers of
denominators

@ a cut denominator might be equal to an uncut denominator
e it that case

N, ...;, — higher-point contibrutions 0
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Integrand reduction via polynomial division

Fit-on-the-cut approach

Pros:
@ each multiple cut projects out the corresponding residue
= the systems of equations for the coefficients are much smaller

@ can be implemented either analytically or numerically
@ very successful application at one-loop

Cons:
e at higher-If Yult to find
@ it cannot b OBSERVATION: s of
denominaf these issues are not present

e acutd in the divide-and-conquer approach ninator
e it that which instead can be applied to
any integrand 0

,,,,,
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One-loop decomposition from polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)
@ Start from the most general one-loop amplitude in d = 4 — 2¢
@ Apply the recursive formula for the integrand decomposition

= it reproduces the OPP result
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

@ Drop the spurious terms

= Get the most general integral decomposition (well knwon result)

= €10 + €30 ]> + c20 O + c10 Q
+ 63.7 + 02.9

PN

+

<
'
IS
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One-loop decomposition from polynomial division
At one loop in 4 — 2¢ dimensions:

@ 5 coordinates z = (z1,22, 23,24, 25)

@ 4 components (z1,22,23,24) Of ¢ w.r.t. a 4-dimensional basis
e z5 = ;i encodes the (—2¢)-dependence on the loop momentum

@ we start with
M ..n (Z> ‘/_\ most general 1-loop numerator

=1 . ,= Di(@).. D,z @)...Du() - generic 1-loop denominators

@ if m > 5 any integrand Z,, ., is reducible (reducibility criterion)

Ii]mim = ZIil~~»ik—lik+]---im7 = Ail'“im =0 form>5
k

@ for m < 5 the polynomial-division algorithm gives the already-known
parametric form of the residues Ay. .
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@ Choice of 4-dimensional basis for an m-point residue

A=e=0, ej-ep=1, e

2
=ey = 6m, e3-e4 = —(1 — 6pu)
@ Coordinates: z = (21,22, 23, 24, 25) = (x1,%2, X3, %4, &%)
B = _pt x4+ xp et 4 x3 et 4 xg e 2= — u?
44-dim pi] 1€ 2 €6 3 €3 4 €45 q 94-dim 12

@ Generic numerator

Z a»z 22 13 ziA zéi, (j] .. j5) such that rank(./\/}] .4.,'m) S m

@ Residues

Aiiiyisigis = €0
Aili2i3i4 =co+c1xg + u2(02 + c3xq + M204)
Aiyiyis = €0 + €133 + €233 + 353 + caxy + csx] + coxs + (7 + cgx3 + coxg)
Aiyiy = co + €132 + €2%3 + €34 + €aX3 + €533 + C6Xg + C70X3 + CoXaxy + copt”
Aj = co + c1x1 + c2x2 + ¢3x3 + caxy

@ It can be easily extended to higher-rank numerators
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Application at one-loop

Fit-on-the-cut at 1-loop

Integrand decomposition: K:Z x‘ﬁ‘ +xj:( HAH A O s (O

Fit-on-the cut
B x A fit m-point residues on

m-ple cuts
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Improved 1-loop Reduction with NINJA

P. Mastrolia, E. Mirabella, T.P. (2012)
The integrand reduction via Laurent expansion:

@ fits residues by taking their asymptotic expansions on the cuts
@ yields diagonal systems of equations for the coefficients
@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified
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Improved 1-loop Reduction with NINJA

P. Mastrolia, E. Mirabella, T.P. (2012)
The integrand reduction via Laurent expansion:

@ fits residues by taking their asymptotic expansions on the cuts
@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

* Implemented in the semi-numerical C++ library NINJA

e Laurent expansions via a simplified polynomial-division algorithm
e interfaced with the package GOSAM
e is a faster and more stable integrand-reduction algorithm
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Improved 1-loop Reduction with NINJA

P. Mastrolia, E. Mirabella, T.P. (2012)
The integrand reduction via Laurent expansion:

@ fits residues by taking their asymptotic expansions on the cuts
@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

* Implemented in the semi-numerical C++ library NINJA

e Laurent expansions via a simplified polynomial-division algorithm
e interfaced with the package GOSAM
e is a faster and more stable integrand-reduction algorithm

= see P. Mastrolia’s talk for more details
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Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop
@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CuTToOLS, NGLUONS]

@ has produced (and is still producing) results for LHC
[GOSAM (see P. Mastrolia’s talk),

FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
@ At two or higher loops
@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

T. Peraro (MPI - Minchen) Multiloop Integrand Reduction via Multivariate Polynomial Division RADCOR2013 19



Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop

e can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CuTToOLS, NGLUONS]

@ has produced (and is still producing) results for LHC
[GOSAM (see P. Mastrolia’s talk),

FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.
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Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop

e can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CuTToOLS, NGLUONS]

@ has produced (and is still producing) results for LHC
[GOSAM (see P. Mastrolia’s talk),

FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.

@ ...we are moving the first steps in this direction
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N =4 SYM and N = 8 SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

@ Examples in N =4 SYM and N/ = 8 SUGRA amplitudes (d = 4)
@ generation of the integrand

@ graph based [Carrasco, Johansson (2011)]
@ unitarity based [U. Schubert (Diplomarbeit)]

e fit-on-the-cut approach for the reduction
@ Results:

N =4 linear combination of 8 and 7-denominators Mls
N = 8 linear combination of 8, 7 and 6-denominators Mls
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Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)
The divide-and-conquer approach to the integrand reduction

@ does not require the knowledge of the solutions of the cut

@ can always be used to perform the reduction in a finite number of
purely algebraic operations

@ has been automated in a PYTHON package which uses
MACAULAY2 and FORM for algebraic operations

PYTHON

[ MACAULAY2 ] <: Q 5 :>

@ also works in special cases where the fit-on-the-cut approach is
not applicable (e.g. in presence of double denominators)
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Higher loops

Divide-and-Conquer approach: a simple example

=2 2
Dlqufm }

Nz Dy = (g1 — k)* —m?,
DID:D3D; D3 =14,
Dy = (@1 +q2)* — m?

Tiioza =
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Higher loops

Divide-and-Conquer approach: a simple example

=2 2
Dlqufm }

Mz Dy = (q1 —k)* —m?,
D*D,DsD, D3 =133,
Dy = (G +q@)* — m?

Tiioza =

@ Basis {e;} = {k,ky,e3,e4} and coordinates z = (x1,x2,X3,X4, 1, Y2, V3, Va, (o115 (12, 122)

e _(adi o _(4-dim) _(4-di
g = > xier, gt = > vie,  @-g)= (g™ "’j( ™)~
i i
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Higher loops

Divide-and-Conquer approach: a simple example

=2 2
Dlqufm }

N2 Dy = (g1 — k)* —m?,
D2DyD3D;4 Dy=7;,
Dy= (g1 +3)* —m®

Tiioza =

@ Basis {e;} = {k,ky,e3,e4} and coordinates z = (x1,x2,X3,X4, 1, Y2, V3, Va, (o115 (12, 122)
_(4-di _(4-di _ _(4-di _(4-di
g™ =Y we, @ =Y ve, @) =@ " g ™) -
i i

@ division of N7;1234 modulo gj”234 (= lem)
NMi2ss = Ni2saDy + Nii3aDy + Ni12aD3 + N1io3Dy + Ajiozs
——

quotients remainder
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Higher loops

Divide-and-Conquer approach: a simple example

=2 2
Dlqufm }

N2z Dy = (g — k)’ —
DID,DsDy D3 =7,
Dy= (g1 +3)* —m’

Tiioza =

@ Basis {e;} = {k,k1,e3,e4} and coordinates z = (xy,x2,x3, X4, V1,2, V3, Vi, 4115 [125 H22)
_(4-di _(4-di o 4-d _(4-di
g™ =S "we, E ="y, @-g)= @™ 3™ -
i i

@ division of M1234 modulo G 7,,,., (= G750)
NMi2ss = Ni2saDy + Nii3aDy + Ni12aD3 + N1io3Dy + Ajiozs
——

quotients remainder
@ division of N5, modulo Gz, ., €.

1234 (1234 1234) 1234
Ni234/G Ty = Nizu = Q§34 D + Q134 )D, + Q$24 D; + 9523 )Dy+ Ay
N——
quotients remainder

1134 (1134 1134)

Nisa/Gg = Num= Q§34 Dy + QM )Ds + QEB Dy+ Az

N——~

quotients remainder
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Higher loops

Divide-and-Conquer approach: a simple example

=2 2
Dlqufm }

N2 Dy = (g1 — k)* —m?,
DID:D3D; D3 =14,
Dy= (g1 +3)* —m®

Tiioza =

@ Basis {e;} = {k,ky,e3,e4} and coordinates z = (x1,x2,X3,X4, 1, Y2, V3, Va, (o115 (12, 122)
i _(adi o _(4-dim)  _(4-di
g™ =>we, @ =S we  @-a)=a@"" ")
i i

@ division of M1234 modulo G 7,,,., (= G750)
NMi2ss = Ni2saDy + Nii3aDy + Ni12aD3 + N1io3Dy + Ajiozs
——

quotients remainder

@ division of NV s, modulo Gz, .

Nz = /\/234D% + Ni34D1 Dy + N124aD1 D3 + Nio3D1 Dy + N11aDaD3 + Ni13D2Dy

(sums of) quotients

+ A3aDy + Aq134D2 + A124D3 + Ap123Ds + Ajpza

remainders
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Divide-and-Conquer approach: a simple example

@ after a further step (division N;,;,i,/G.7, ,,,, ) N0 quotient remains

Niizza = Ap123a+ 2123401+ A 113402+ A 124D3+ A 123D4 + D34 D3+ A1 14D2 D3+ A 13D2Dy

@ the integrand decomposition becomes

Tiize =

T. Peraro (MPI - Minchen)

Niuzsa  Ax Az AVEEY!

Aj

DID,D3D; - DID,D3Dy  DiDyD3Dy  D3D3Dy  D3D;Dy

Aji3 JAGEN Ang . Az
DID,D3;  D:D3D,  D3Dy  DID;

Al123s = 16m* (kz =+ 2m? — k2€> s

+

Appzs =16 [(qz k(1 —€)? +m2] ,
Ajg = — Az =8(1 —¢) [kz(l —€) +2m2] ,
Aqzg = — 16m? 1-¢),

Az = — Ay =Dy =8 (1—¢)”.

Multiloop Integrand Reduction via Multivariate Polynomial Division

RADCOR2013
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Higher loops

Examples of divide-and-conquer approach

@ Photon self-energy in massive QED, (4 — 2¢)-dimensions

@ & Q1 ‘
A e
(a) Q) ()

@ Diagrams entering gg — H, in (4 — 2¢)-dimensions

a1
(73 ---- -—-- % -—--
Q1 k q2 k k
q1
(a) O] (o)

T. Peraro (MPI - Minchen) Multiloop Integrand Reduction via Multivariate Polynomial Division
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Conclusions and Outlook

@ Conclusions

o We developed a general framework for the reduction at the

integrand level

@ can be applied to any amplitude in any QFT, at every loop order

o At one loop

@ naturally reproduces known results (OPP)
@ allows to express any amplitude in terms of known Mls

@ can be improved with the Laurent-expansion approach (NINJA)

o At higher loops

@ it gives a recursive formula for the integrand decomposition

@ generates the form of the residue for every cut

@ can decompose any integrand with purely algebraic operations

(divide-and-conquer approach)

@ Outlook
o application to a full 2-loop QED/QCD process

e combine integrand reduction with other techniques (e.g. IBP)

T. Peraro (MPI - Minchen) Multiloop Integrand Reduction via Multivariate Polynomial Division
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