NNLO QCD corrections to dijet production at hadron colliders

João Pires* ETH Zurich

RADCOR 2013 22. -27. September 2013, Lumley Castle, Chester-le-Street

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich * in collaboration with J.Currie, A.Gehrmann, T.Gehrmann, N.Glover

Inclusive jet and dijet cross sections

□ look at the production of jets of hadrons with large transverse energy in

- $\square \text{ inclusive jet events } pp \to j + X$
- $\square \text{ exclusive dijet events } pp \to 2j$

 \square cross sections measured as a function of the jet p_T , rapidity y and dijet invariant mass m_{jj} in double differential form

Inclusive jet cross section

Motivation for NNLO

- □ experimental uncertainties at high- p_T smaller than theoretical \rightarrow need pQCD predictions to NNLO accuracy
- collider jet data can be used to constrain parton distribution functions
- □ size of NNLO correction important for precise determination of PDF's
- inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross sections

Inclusive jet cross section

Motivation for NNLO

- □ experimental uncertainties at high- p_T smaller than theoretical \rightarrow need pQCD predictions to NNLO accuracy
- collider jet data can be used to constrain parton distribution functions
- □ size of NNLO correction important for precise determination of PDF's
- inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross sections
- \square α_s determination from hadronic jet observables limited by theoretical uncertainty due to scale choice

inclusive jet and dijet cross sections

State of the art:

- dijet production is completely known in NLO QCD [Ellis, Kunszt, Soper '92], [Giele, Glover, Kosower '94], [Nagy '02]
- □ NLO+Parton shower [Alioli, Hamilton, Nason, Oleari, Re '11]
- □ threshold corrections [Kidonakis, Owens '00]

Goal:

 \square obtain the jet cross sections at NNLO accuracy in double differential form

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_T\mathrm{d}|y|} \qquad \frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{jj}\mathrm{d}y^*}$$

This talk:

- present IR structure of the gluons only subleading colour NNLO calculation
- □ present NNLO inclusive jet and dijet cross sections (gluons only full colour)

$pp \rightarrow 2j$ at NNLO: gluonic contributions

[Berends, Giele '87], [Mangano, Parke, Xu '87], [Britto, Cachazo, Feng '06] [Bern, Dixon, Kosower '93] [Anastasiou, Glover, Oleari, Tejeda-Yeomans '01],[Bern, De Freitas, Dixon '02]

$$\mathrm{d}\hat{\sigma}_{NNLO} = \int_{\mathrm{d}\Phi_4} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} + \int_{\mathrm{d}\Phi_3} \mathrm{d}\hat{\sigma}_{NNLO}^{RV} + \int_{\mathrm{d}\Phi_2} \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$$

- explicit infrared poles from loop integrations
- □ implicit poles in phase space regions for single and double unresolved gluon emission
- procedure to extract the infrared singularities and assemble all the parts in a parton-level generator

NNLO antenna subtraction

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{NNLO} &= \int_{\mathrm{d}\Phi_4} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_3} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^T \right) \\ &+ \int_{\mathrm{d}\Phi_2} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV} - \mathrm{d}\hat{\sigma}_{NNLO}^U \right) \end{aligned}$$

□ $d\hat{\sigma}_{NNLO}^{S}$: real radiation subtraction term for $d\hat{\sigma}_{NNLO}^{RR}$

- \square d $\hat{\sigma}_{NNLO}^{T}$: one-loop virtual subtraction term for d $\hat{\sigma}_{NNLO}^{RV}$
- $\Box \ \mathrm{d}\hat{\sigma}_{NNLO}^U: \text{ two-loop virtual subtraction term for } \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$
- □ subtraction terms constructed using the antenna subtraction method at NNLO for hadron colliders \rightarrow presence of initial state partons to take into account
- □ contribution in each of the round brackets is finite, well behaved in the infrared singular regions and can be evaluated numerically

Double-real contribution

 $\hfill\square$ gluons only double-real colour summed cross section

$$d\hat{\sigma}_{NNLO}^{RR} = \left(\frac{\alpha_s}{2\pi}\right)^2 N^4 (N^2 - 1) d\Phi_4(p_3, \dots, p_6; p_1; p_2) J_2^{(4)}(p_3, \dots, p_6) \frac{1}{4!}$$
$$\sum_{\sigma \in S_6/Z_6} \left[|A_6^{(0)}(\sigma)|^2 + \frac{2}{N^2} A_6^0(\sigma) \left(A_6^{\dagger 0}(\sigma \cdot \rho_1) + A_6^{\dagger 0}(\sigma \cdot \rho_2) + A_6^{\dagger 0}(\sigma \cdot \rho_3) \right) \right]$$

□ double-real sub-leading colour contribution written as three interferences summed over permutations. For $\sigma = (1, 2, 3, 4, 5, 6)$

$$(\sigma \cdot \rho_1) = (1, 3, 5, 2, 6, 4)$$
 $(\sigma \cdot \rho_2) = (1, 3, 6, 4, 2, 5)$ $(\sigma \cdot \rho_3) = (1, 4, 2, 6, 3, 5)$

 \Box ($\sigma \cdot \rho_{1,2,3}$) are the only three independent orderings that exist for six gluon scattering which have no common two or three particle poles in common with σ

 \Rightarrow no single, double or triple collinear singularities at subleading colour \checkmark

 \square subtract divergences associated with single and double soft gluons only \checkmark

□ in the single soft limit the interferences factorize in the following way,

$$\mathcal{M}_{n+1}^{0,\dagger}(\cdots,a,i,b,\cdots)\mathcal{M}_{n+1}^{0}(\cdots,c,i,d,\cdots) \xrightarrow{i\to 0} J_{\mu}(p_{a},p_{i},p_{b})\epsilon^{\mu}(p_{j})J_{\nu}(p_{c},p_{i},p_{d})\epsilon^{\nu}(p_{i})\mathcal{M}_{n}^{0,\dagger}(\cdots,a,b,\cdots)\mathcal{M}_{n}^{0}(\cdots,c,d,\cdots)$$
$$= \frac{1}{2}(S_{aid}+S_{bic}-S_{aic}-S_{bid})\mathcal{M}_{n}^{0,\dagger}(\cdots,a,b,\cdots)\mathcal{M}_{n}^{0}(\cdots,c,d,\cdots)$$

where $S_{ajc} = \frac{2s_{ac}}{s_{aj}s_{jc}}$ is the squared eikonal factor

- eikonal factor with uniquely identified radiators and unresolved momenta is mapped to a three parton antenna function
- $\square \ d\sigma_{NNLO}^{S,a} \text{ single unresolved subtraction term constructed from a product of differences of tree-level three parton antenna functions and reduced colour ordered matrix element interferences$

Double unresolved subtraction term

□ in the double soft limit the interferences factorize in the following way,

$$\mathcal{M}_{n+1}^{0,\dagger}(\cdots,a,i,j,b,\cdots)\mathcal{M}_{n+1}^{0}(\cdots,c,i,d,\cdots,e,j,f,\cdots) \xrightarrow{i,j\to 0} J_{\mu_1\mu_2}(p_a,p_i,p_j,p_b)\epsilon^{\mu_1}(p_i)\epsilon^{\mu_2}(p_j)J_{\nu_1}(p_c,p_i,p_d)J_{\nu_2}(p_e,p_j,p_f)\epsilon^{\nu_1}(p_i)\epsilon^{\nu_2}(p_j) \times \mathcal{M}_n^{0,\dagger}(\cdots,a,b,\cdots)\mathcal{M}_n^{0}(\cdots,c,d,\cdots,e,f,\cdots)$$

- □ when summing the subleading colour contribution explicitly over all colour permutations the tree level double soft current drops out from the limit using its symmetric properties
- □ the double soft limit at subleading colour can be written completely in terms of contractions of tree level single soft currents

$$\begin{split} \mathbf{A}_{6}^{0}(p)|_{slc} & \stackrel{5,6 \to 0}{\propto} & (S_{153} + S_{254} - S_{154} - S_{254}) \left(S_{163} + S_{264} - S_{162} - S_{364}\right) |A_{4}^{0}(1,2,3,4)|^{2} \\ & + & (S_{153} + S_{254} - S_{154} - S_{254}) \left(S_{162} + S_{364} - S_{164} - S_{263}\right) |A_{4}^{0}(1,2,4,3)|^{2} \\ & + & (S_{152} + S_{354} - S_{154} - S_{253}) \left(S_{162} + S_{364} - S_{163} - S_{264}\right) |A_{4}^{0}(1,3,2,4)|^{2} \end{split}$$

- $\square at subleading colour no contribution from the colour connected double soft function in the limit <math>\Rightarrow$ no four parton tree level antennae needed
- □ contribution produces $1/\epsilon^2$ poles only

Real-virtual contribution

 $\hfill\square$ gluons only real-virtual colour summed cross section

$$d\hat{\sigma}_{NNLO}^{RV} = \left(\frac{\alpha_s}{2\pi}\right)^2 N^4 (N^2 - 1) d\Phi_3(p_3, \dots, p_5; p_1; p_2) J_2^{(3)}(p_3, \dots, p_5) \frac{1}{3!}$$
$$\sum_{\sigma \in S_5/Z_5} 2\Re \Big[A_5^{\dagger 0}(\sigma) A_5^{1}(\sigma) + \frac{12}{N^2} A_5^{\dagger 0}(\sigma) A_{5,1}^{1}(\sigma \cdot \rho) \Big]$$

□ real-virtual subleading colour contribution written as a single interference summed over permutations

For
$$\sigma = (1, 2, 3, 4, 5)$$
 $(\sigma \cdot \rho) = (1, 4, 2, 5, 3)$

 \square ($\sigma \cdot \rho$) is the only independent ordering that exist for five gluon scattering which have no common neighbouring partons with σ

 \Rightarrow no single collinear singularities in the subleading colour real-virtual contribution \checkmark

 \square subtract divergences associated with single soft gluons only \checkmark

Single unresolved subtraction term

□ in the single soft limit the one-loop amplitude factorizes in the following way

$$\begin{array}{rcl} A^1_{5,1}(\cdots,a,i,b,\cdots) & \xrightarrow{i\to 0} & \mathcal{S}^0(a,i,b)A^1_{4,1}(\cdots,a,b,\cdots) \\ & + & \mathcal{S}^1(a,i,b)A^0_4(\cdots,a,b,\cdots) \end{array}$$

- □ using symmetry properties the one-loop soft functions cancel in the total real-virtual cross section at subleading colour for five gluon scattering
- □ obtain the following single unresolved subtraction term for a generic one-loop interference at subleading colour

$$\begin{split} &\mathcal{A}_{5}^{0\dagger}(\cdots,a,i,b,\cdots)\mathcal{A}_{5}^{1}(\cdots,c,i,d,\cdots) \stackrel{i\approx 0}{\approx} \\ &+ X_{3}^{0}(a,i,d) \ \mathcal{M}_{4}^{0\dagger}(\cdots,\widetilde{(ai)},b,\cdots)\mathcal{M}_{4,1}^{1}(\cdots,c,\widetilde{(id)},\cdots) \\ &+ X_{3}^{0}(b,i,c) \ \mathcal{M}_{4}^{0\dagger}(\cdots,a,\widetilde{(bi)},\cdots)\mathcal{M}_{4,1}^{1}(\cdots,\widetilde{(ic)},d,\cdots), \\ &- X_{3}^{0}(a,i,c) \ \mathcal{M}_{4}^{0\dagger}(\cdots,\widetilde{(ai)},b,\cdots)\mathcal{M}_{4,1}^{1}(\cdots,\widetilde{(ic)},d,\cdots) \\ &- X_{3}^{0}(b,i,d) \ \mathcal{M}_{4}^{0\dagger}(\cdots,a,\widetilde{(bi)},\cdots)\mathcal{M}_{4,1}^{1}(\cdots,c,\widetilde{(id)},\cdots) \end{aligned}$$

□ no three parton one-loop antennae needed at subleading colour

NNLO antenna subtraction

Implementation checks (gluons only channel full colour in $pp \rightarrow 2j$):

 \square subtraction terms correctly approximate the matrix elements in all unresolved configurations of partons j,k

$$\mathrm{d}\hat{\sigma}_{NNLO}^{RR,RV} \xrightarrow{\forall \{j,k\},\{j\} \to 0} \mathrm{d}\hat{\sigma}_{NNLO}^{S,T}$$

□ local (pointwise) analytic cancellation of all infrared explicit ϵ -poles when integrated subtraction terms are combined with one, two-loop matrix elements

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV}-\mathrm{d}\hat{\sigma}_{NNLO}^{T}\right)=0$$

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV}-\mathrm{d}\hat{\sigma}_{NNLO}^{U}\right)=0$$

- $\hfill\square$ process independent NNLO subtraction scheme
- allows the computation of multiple differential distributions in a single program run

Numerical setup $(gg \rightarrow gg + X)$

- \square jets identified with the anti- k_T jet algorithm with resolution parameter R = 0.7
- $\hfill\square$ jets accepted at rapidities |y|<4.4
- \square leading jet with transverse momentum $p_t > 80 \text{ GeV}$
- \square subsequent jets required to have at least $p_t > 60 \text{ GeV}$
- □ MSTW2008nnlo PDF
- □ dynamical factorization and renormalization scales equal to the leading jet p_T $(\mu_R = \mu_F = \mu = p_{T1})$

Numerical setup $(gg \rightarrow gg + X)$

- \square jets identified with the anti- k_T jet algorithm with resolution parameter R = 0.7
- $\hfill\square$ jets accepted at rapidities |y|<4.4
- \square leading jet with transverse momentum $p_t > 80 \text{ GeV}$
- \square subsequent jets required to have at least $p_t > 60 \text{ GeV}$
- □ MSTW2008nnlo PDF
- □ dynamical factorization and renormalization scales equal to the leading jet p_T $(\mu_R = \mu_F = \mu = p_{T1})$

Integrated cross section results

$\sigma^{8TeV-LO}_{incl.jet}$	=	$(9.6495 \pm 0.001) imes 10^5 { m pb}$	
$\sigma^{8TeV-NLO}_{incl.jet}$	=	$(12.152\pm 0.001)\times 10^5 \rm{pb}$	
$\sigma^{8TeV-NNLO}_{incl.jet}$	=	$(15.20\pm 0.02)\times 10^5 \rm{pb}$	$\leftarrow \text{leading colour}$
$\sigma_{incl.jet}^{8TeV-NNLO}$	=	$(12.40\pm 0.01)\times 10^{5} \rm{pb}$	$\leftarrow \text{subleading colour}$

NNLO result increased by about 26% with respect to the NLO cross section
 subleading colour contribution ~ 8% to the full colour NNLO coefficient

inclusive jet p_T distribution at NNLO $(gg \rightarrow gg + X)$

gg → gg subprocess in full colour with same PDF for all fixed order predictions
 all jets in an event are binned

 \square NNLO correction stabilizes the NLO k-factor growth with p_T

inclusive jet p_T distribution at NNLO $(gg \rightarrow gg + X)$

gg → gg subprocess in full colour with same PDF for all fixed order predictions
 all jets in an event are binned

 \square subleading colour contribution to the NNLO cross section is at the 2% level

double differential inclusive jet p_T distribution at NNLO

double differential k-factors

- $\label{eq:gg} \Box \ gg \to gg \ \text{subprocess in full} \\ \text{colour}$
- NNLO result varies between 26% to 12% with respect to the NLO cross section
- similar behaviour between the rapidity slices

double differential inclusive jet p_T distribution at NNLO

- subleading colour contribution to the NNLO cross section is at the 2% level
- similar behaviour between the rapidity slices

double differential exclusive dijet mass distribution at NNLO

double differential k-factors

- $\label{eq:gg} \Box \ gg \to gg \ \text{subprocess in full} \\ \text{colour}$
- NNLO corrections up to 20% with respect to the NLO cross section
- □ similar behaviour between the $y^* = 1/2|y_1 - y_2|$ slices

double differential exclusive dijet mass distribution at NNLO

- subleading colour contribution to the NNLO cross section is at the 2% level
- similar behaviour between the rapidity slices

inclusive jet p_T scale dependence $(gg \rightarrow gg + X)$

- scale dependence study at leading colour
- \square dynamical scale choice: leading jet p_T
- \blacksquare same PDF and α_s for all fixed order predictions
- flat scale dependence at NNLO

Conclusions

- antenna subtraction method generalised for the calculation of NNLO QCD corrections for exclusive collider observables with partons in the initial-state
- \square explicit ϵ -poles in the matrix elements are analytically cancelled by the ϵ -poles in the subtraction terms
- non-trivial check of analytic cancellation of infrared singularities between double-real, real-virtual and double-virtual corrections
- successful treatment of colour-correlated matrix elements in the subleading colour calculation with the antenna subtraction method
- □ subleading colour NNLO corrections in the gluons only channel at 2% level
- □ proof-of principle implementation of the $gg \rightarrow gg$ full colour contribution to $pp \rightarrow 2j$ at NNLO in the new NNLOJET parton-level generator

Future work:

- □ develop colour space approach for NNLO calculations within the antennae method \rightarrow James Currie talk
- □ include remaining channels
 - □ 4g2q processes
 - 2g4q processes
 - 6q processes

Back-up slides

inclusive jet p_T distribution

- inclusive jet cross section versus R
- **\square** NNLO corrections smaller for small R but p_T dependent