Multiloop integrals in dimensional regularization made simple

Johannes M. Henn

Institute for Advanced Study

based on

- PRL I IO (20I3) [arXiv:I304.1806],
- JHEP I307 (20|3) I28 [arXiv:I306.2799] with A.V. andV.A. Smirnov
- arXiv: I 307.4083 with V.A. Smirnov
supported in part by the Department of Energy grant DE-SC0009988 and the IAS AMIAS fund

The Abc of loop integrals

- Part I:Method
- iterated integrals
- solving differential equations for loop integrals
- Part 2: Application and results
- massless 2->2 scattering
- Bhabha scattering
- vector boson production

Iterated integrals

- Functions we frequently encounter in loop computations

$$
\log z=\int_{1}^{z} \frac{d t}{t} \quad \operatorname{Li}_{2}(z)=\int_{0}^{z} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}}
$$

- More general integration kernels:
- harmonic polylogarithms (HPLs), 2d HPLs, ...
- Goncharov polylogarithms:
[Remiddi, Vermaseren, 1999]

$$
G_{a_{1}, \ldots a_{n}}(z)=\int_{0}^{z} \frac{d t}{t-a_{1}} G_{a_{2}, \ldots, a_{n}}(t)
$$

- Chen iterated integrals

$$
\int_{C} \omega_{1} \omega_{2} \ldots \omega_{n} \quad C:[0,1] \longrightarrow M \quad \text { (space of kinematical variables) }
$$

Alphabet: set of differential forms $\omega_{i}=d \log \alpha_{i}$
We will discuss Feynman integrals that evaluate to these functions
Using them will make the structure of the answer completely transparent

Uniform weight

- Number of iterations: weight e.g. $G_{a_{1}, \ldots a_{n}}(z)$ has weight n
- Useful concept: uniform weight

$$
f_{1}=\frac{1}{x} \log ^{2} x+\frac{1}{1+x} \operatorname{Li}_{2}(1-x)
$$

- Pure functions: \mathbb{Q}-linear combinations of uniform weight functions

$$
f_{2}(x, y)=\operatorname{Li}_{4}(x / y)+3 \log x \operatorname{Li}_{3}(1-y)
$$

Note: derivatives of pure functions have weight reduced by one!

- Generalization: assign weight -1 to ϵ in dimensional regularization - discuss pure functions in this more general sense
- extremely strong constraint!

Example: one-loop box $\quad x=t / s$

$$
\begin{aligned}
= & \frac{1}{(-s)^{1+\epsilon} t \epsilon^{2}}\left\{4+\epsilon[-2 \log x]+\epsilon^{2}\left[-\frac{4}{3} \pi^{2}\right]+\right. \\
& \left.+\epsilon^{3}\left[-2 H_{-1,0,0}(x)+2 H_{0,0,0}(x)-\pi^{2} H_{-1}(x)+\frac{7}{6} \pi^{2} H_{0}(x)-\frac{34}{3} \zeta_{3}\right]\right\}+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

Properties of Feynman integrals

- family of integrals: consider arbitrary integer powers of propagators

- integration-by-parts identities (IBP): linear relations [Chetyrkin,Tkachov, 198I]
- finite basis of integrals for a given family
[A.V. Smirnov, Petukhov, 20I0]

- integrals satisfy differential equations
[Kotikov, I99I] [Gehrmann, Remiddi, 1999]
f_{a} basis of integrals $a=1, \ldots N$
x_{i} kinematical variables, e.g. $s=\left(p_{1}+p_{2}\right)^{2}, m^{2}, \ldots$

$$
\partial_{i} f\left(x_{j}, \epsilon\right)=A_{i}\left(x_{j}, \epsilon\right) f\left(x_{j}, \epsilon\right)
$$

$\left(A_{i}\right)_{a b} \quad N \times N$ matrices

Differential equations

- First-order system of DE

$$
\partial_{i} f\left(x_{j}, \epsilon\right)=A_{i}\left(x_{j}, \epsilon\right) f\left(x_{j}, \epsilon\right)
$$

- Flat connection $\quad\left[\partial_{i}-A_{i}, \partial_{j}-A_{j}\right]=0$
from integrability conditions $\quad\left(\partial_{i} \partial_{j}-\partial_{j} \partial_{i}\right) f=0$
- Gauge transformation (change of basis)

$$
\begin{aligned}
& f \longrightarrow B f \\
& A_{i} \longrightarrow B^{-1} A_{i} B-B^{-1}\left(\partial_{i} B\right)
\end{aligned}
$$

- Idea: choose integrals that are pure functions as basis
[JMH, 2013]
- this defines a specific gauge transformation
- Pure functions of uniform weight found systematically:
- using (generalized) unitarity cuts
- using explicit integral parametrizations

Solving the differential equations

- We find the simplified equations

$$
\partial_{i} f\left(x_{j}, \epsilon\right)=\epsilon A_{i}\left(x_{j}\right) f\left(x_{j}, \epsilon\right)
$$

- Integrability conditions

$$
\partial_{i} A_{j}-\partial_{j} A_{i}=0 \quad\left[A_{i}, A_{j}\right]=0
$$

- pre-integration

$$
d f\left(\epsilon, x_{j}\right)=\epsilon d \tilde{A}\left(x_{j}\right) f\left(\epsilon, x_{j}\right)
$$

where $\quad \partial_{i} \tilde{A}=A_{i}$
observation: matrix \tilde{A} contains only logarithms!

- Solution in terms of Chen iterated integrals

$$
\begin{aligned}
& f=\sum_{k \geq 0} \epsilon^{k} f^{(k)} \\
& f^{(0)}=\mathrm{const} \quad f^{(1)}=\int d \tilde{A} f^{(0)} \quad f^{(2)}=\int d \tilde{A} f^{(1)}
\end{aligned}
$$

makes weight properties manifest!

- In general: $\quad f=P e^{\epsilon \int_{\mathcal{C}} d \tilde{A}} g(\epsilon)$
here \mathcal{C} is a contour in the kinematical space
boundary conditions at base point from physical information

Discussion

- simplified equations

$$
\begin{equation*}
d f\left(\epsilon, x_{j}\right)=\epsilon d \tilde{A}\left(x_{j}\right) f\left(\epsilon, x_{j}\right) \tag{JMH,20I3}
\end{equation*}
$$

- General solution

$$
f=P e^{\epsilon \int_{\mathcal{C}} d \tilde{A}} g(\epsilon)
$$

\tilde{A} contains (almost) all information about the solution in a compact way:

- expanding solution in ϵ is simple algebra
- contains all information about singularities, asymptotic behavior
- \tilde{A} and boundary info uniquely specify solution
- \tilde{A} specifies `alphabet' of differential forms,
i.e. specific class of iterated integrals;
symbol of solution follows as corollary [cf. Goncharov, Spradlin,Vergu,Volovich, 2010]
Chen iterated integrals are nice objects:
- monodromy invariance;
choice of contour related to integral identities
- underlying Hopf algebra (coproduct)

Part 2:

Applications and results

Example: massless 2 to 2 scattering

[Smirnov, I999][Gehrmann, Remiddi, 1999]

- good choice of master integrals

- Knizhnik-Zamolodchikov equations

$$
\begin{aligned}
& \partial_{x} f=\epsilon\left[\begin{array}{l}
\boldsymbol{f} \\
\boldsymbol{x} \\
\boldsymbol{1}+\boldsymbol{b}
\end{array}\right] \boldsymbol{f} \quad \mathrm{a}=\left(\begin{array}{cccccccc}
-2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{3}{2} & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & -2 & 0 & 0 \\
-3 & -3 & 0 & 0 & 4 & 12 & -2 & 0 \\
\frac{9}{2} & 3 & -3 & -1 & -4 & -18 & 1 & 1
\end{array}\right) \quad \mathrm{b}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{3}{2} & 0 & 3 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
3 & 6 & 6 & 2 & -4 & -12 & 2 & 2 \\
-\frac{9}{2} & -3 & 3 & -1 & 4 & 18 & -1 & -1
\end{array}\right) \\
& \boldsymbol{X}=\boldsymbol{S}
\end{aligned}
$$

- (regular) singular points

$$
s=0, \quad t=0, \quad u=-s-t=0
$$

- boundary conditions: finiteness as $u \rightarrow 0$

Generalization to 3 loops

- all planar 2 to 2 three-loop master integrals

[J.M.H.,A.V. Smirnov,V.A. Smirnov, 20I3]
(26 master integrals) (4I master integrals)

$$
\partial_{x} f=\epsilon\left[\frac{a}{x}+\frac{b}{1+x}\right] f \quad x=t / s
$$

- a, b constant $N \times N$ matrices, $N=26$ or $N=41$
- solution to arbitrary order ϵ^{k} in terms of HPLs of weight k by simple algebra
- boundary conditions from finiteness at $x=-1$
- single-scale form factor integrals determined algebraically!
- similar pattern for non-planar integrals

Bhabha scattering

- we will discuss the integral family

- kinematics

$$
\frac{-s}{m^{2}}=\frac{(1-x)^{2}}{x} \quad \frac{-t}{m^{2}}=\frac{(1-y)^{2}}{y}
$$

- previous work (using Mellin-Barnes or DE)
[Smirnov, 200I] [Heinrich, Smirnov, 2004]
[Czakon, Gluza, Kajda, Riemann, 2004-2006]
[Bonciani, Ferroglia, Mastrolia, Remiddi, van der Bij, 2003, 2004]
many individual integrals computed, to some order in ϵ problems with coupled differential equations

One-loop warm-up

- differential equations $d f=\epsilon d \tilde{A} f$

$$
\begin{aligned}
& \tilde{A}=\left[\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0
\end{array}\right) \log x+\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -8 & 0 & -2
\end{array}\right) \log (1+x)+\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0
\end{array}\right) \log y+\right. \\
& +\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \log (1+y)+\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right) \log (1-y)+ \\
& \left.+\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 1
\end{array}\right) \log (x+y)+\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & -2 & 1
\end{array}\right) \log (1+x y)\right]
\end{aligned}
$$

- alphabet: $\{x, 1 \pm x, y, 1 \pm y, x+y, 1+x y\}$
(natural generalization of) two-dimensional HPLs [Gehrmann, Remiddi, 200I]
- (regular) singular points of DE have physical meaning, e.g.:

$$
\begin{aligned}
& x=1 \quad \leftrightarrow \quad s=0 \quad x=0 \quad \leftrightarrow \quad s=\infty \\
& x=-1 \quad \leftrightarrow \quad s=4 m^{2} \quad x=-y \quad \leftrightarrow \quad u=0
\end{aligned}
$$

Two-loop case

- differential equations

$$
d f=\epsilon d \tilde{A} f
$$

$$
\begin{aligned}
\tilde{A}= & B_{1} \log (x)+B_{2} \log (1+x)+B_{3} \log (1-x)+B_{4} \log (y)+B_{5} \log (1+y) \\
& +B_{6} \log (1-y)+B_{7} \log (x+y)+B_{8} \log (1+x y) \\
& +B_{9} \log \left(x+y-4 x y+x^{2} y+x y^{2}\right)+B_{10} \log \left(\frac{1+Q}{1-Q}\right) \\
& +B_{11} \log \left(\frac{(1+x)+(1-x) Q}{(1+x)-(1-x) Q}\right)+B_{12} \log \left(\frac{(1+y)+(1-y) Q}{(1+y)-(1-y) Q}\right)
\end{aligned}
$$

Here $Q=\sqrt{\frac{(x+y)(1+x y)}{x+y-4 x y+x^{2} y+x y^{2}}}$
and B_{i} are constant 23×23 matrices

- larger, I2-letter alphabet compared to one loop
- solution to any order in terms of Chen iterated integrals
- observation: except for one integral, up to weight 4 , only the one-loop alphabet is needed!

vector boson production

- planar integral families

$$
d f=\epsilon d \tilde{A} f
$$

- example:
parametrization (removes square roots):

- diff. equations

$$
\frac{t}{s}=x, \quad \frac{P^{2}}{s}=\frac{(x+1) z}{y+1}, \quad \frac{Q^{2}}{s}=\frac{(x+1) y}{(y+1) z}
$$

- 14- letter alphabet: $\tilde{A}=\sum_{i=1}^{14} B_{i} \log \left(\alpha_{i}\right)$

$$
\begin{aligned}
& x, 1+x, y, 1-y, 1+y_{y}^{i=1} z, 1-z, y-z, y-x, 1-x y \\
& y-z+x y-y z, y+x y-x z-x y z \\
& 1+y-z-x z, x-z-x z+x y
\end{aligned}
$$

- boundary constants from physical conditions
- other cases solved similarly

Conclusions and outlook

- criteria for finding optimal loop integral basis
- important concept: pure functions of uniform weight
- related questions in generalized unitarity approach
- new form of differential equations
- make properties of functions manifest
(analytic structure, discontinuities, monodromy invariance)
- trivial to solve in terms of Chen iterated integrals
- solution specified by constant matrices! (to all orders in ϵ)
- monodromy invariance, coproduct structure
helpful for rewriting answer (e.g. for faster numerical evaluation)
- further applications:
- a library for NNLO integrals relevant for phenomenology
- top quark amplitudes
[von Manteuffel, Studerus 201I-20I3;
JMH, von Manteuffel, Smirnov, to appear]
- non-planar integrals
- phase space integrals

