Towards two-loop corrections to ZZ and WW production at LHC

Lorenzo Tancredi
Institute for Theoretical Physics - Zurich University

RADCOR 2013
Durham, 23-27 September 2013
talk based on a work together with Thomas Gehrmann and Erich Weihs:
JHEP 1202 (2012) 004, JHEP 1304 (2013) 101, JHEP 1308 (2013) 070

Why study vector boson pair production (up to NNLO)?

- Background estimate for Higgs production at LHC. For $m_{H}=125 \mathrm{GeV}$:

1. $H \rightarrow \gamma \gamma \quad$ Branching ratio very small - signal very clear
2. $H \rightarrow W^{+} W^{-} \quad$ Larger branching ratio - large missing energy
3. $H \rightarrow Z Z \quad$ Golden channel

- Study of electroweak symmetry breaking mechanism, unitarization of $W W$ scattering amplitude.
- Anomalous triple gauge bosons couplings $W W \gamma, W W Z, \ldots$ Indirect probe for new physics !

Why study vector boson pair production up to NNLO?

- LHC has been running for $\mathbf{3}$ years! $\gamma \gamma$ production at ATLAS

How do we get up to NNLO? (in massless QCD!!)

- Two-loop (double-virtual) : $q \bar{q} \rightarrow V_{1} V_{2}$
- One-loop (real-virtual): $\quad q \bar{q} \rightarrow V_{1} V_{2} g$
- Tree-level (real-real) : $\quad q \bar{q} \rightarrow V_{1} V_{2} g g$

Plus:

- a regularisation scheme for UV and IR divergences
\rightarrow dimensional regularisation
- a subtraction scheme for phase-space integration
$\rightarrow q_{T}$-subtraction, Antenna subtraction, Sector decomposition...

And a lot of work to put everything together!

Two-loop amplitudes are the bottleneck to get to NNLO

- How do we proceed? \rightarrow Diagrammatic approach

```
1. Write down Feynman diagrams
2. Classify integrals into topologies
    Same set of denominators raised to any powers
```



```
3. Into every topology high redundancy \(\rightarrow\) Integration-by-parts identities (d-dimensions!!)
```



```
(+ Symmetry relations, Lorentz identities...)
4. Solve for Master Integrals (MIs) \(\rightarrow\) Reduze, AIR, FIRE,
```

Two-loop amplitudes are the bottleneck to get to NNLO

- How do we proceed? \rightarrow Diagrammatic approach

1. Write down Feynman diagrams
2. Classify integrals into topologies
\rightarrow Same set of denominators raised to any powers

3. Into every topology high redundancy \rightarrow Integration-by-parts identities (d-dimensions!!)

(+ Symmetry relations, Lorentz identities...)
4. Solve for Master Integrals (MIs) \rightarrow Reduze, AIR, FIRE,

Two-loop amplitudes are the bottleneck to get to NNLO

- How do we proceed? \rightarrow Diagrammatic approach

1. Write down Feynman diagrams
2. Classify integrals into topologies
\rightarrow Same set of denominators raised to any powers

$$
I=\int \Pi_{i} d^{d} k_{i} \frac{S_{1}^{j_{1}} \cdots S_{m}^{j_{m}}}{D_{1}^{r_{1}} \cdots D_{n}^{r_{n}}}
$$

3. Into every topology high redundancy \rightarrow Integration-by-parts identities (d-dimensions!!)

(+ Symmetry relations, Lorentz identities...)
4. Solve for Master Integrals (MIs) \rightarrow Reduze, AIR, FIRE,

Two-loop amplitudes are the bottleneck to get to NNLO

- How do we proceed? \rightarrow Diagrammatic approach

1. Write down Feynman diagrams
2. Classify integrals into topologies
\rightarrow Same set of denominators raised to any powers

$$
I=\int \Pi_{i} d^{d} k_{i} \frac{S_{1}^{j_{1}} \cdots S_{m}^{j_{m}}}{D_{1}^{r_{1}} \cdots D_{n}^{r_{n}}}
$$

3. Into every topology high redundancy
\rightarrow Integration-by-parts identities (d-dimensions!!)

$$
\int \Pi_{i} d^{d} k_{i}\left(\frac{\partial}{\partial k_{i}^{\mu}} v_{\mu} \frac{S_{1}^{j_{1}} \cdots S_{m}^{j_{m}}}{D_{1}^{r_{1}} \cdots D_{n}^{r_{n}}}\right)=0, \quad v^{\mu}=\left(k_{i}^{\mu}, p_{j}^{\mu}\right)
$$

(+ Symmetry relations, Lorentz identities...)
4. Solve for Master Integrals (MIs) \rightarrow Reduze, AIR, FIRE

Two-loop amplitudes are the bottleneck to get to NNLO

- How do we proceed? \rightarrow Diagrammatic approach

1. Write down Feynman diagrams
2. Classify integrals into topologies
\rightarrow Same set of denominators raised to any powers

$$
I=\int \Pi_{i} d^{d} k_{i} \frac{S_{1}^{j_{1}} \cdots S_{m}^{j_{m}}}{D_{1}^{r_{1}} \cdots D_{n}^{r_{n}}}
$$

3. Into every topology high redundancy
\rightarrow Integration-by-parts identities (d-dimensions!!)

$$
\int \Pi_{i} d^{d} k_{i}\left(\frac{\partial}{\partial k_{i}^{\mu}} v_{\mu} \frac{S_{1}^{j_{1}} \cdots S_{m}^{j_{m}}}{D_{1}^{r_{1}} \cdots D_{n}^{r_{n}}}\right)=0, \quad v^{\mu}=\left(k_{i}^{\mu}, p_{j}^{\mu}\right)
$$

(+ Symmetry relations, Lorentz identities...)
4. Solve for Master Integrals (MIs) \rightarrow Reduze, AIR, FIRE, \ldots

- Computation of the MIs \rightarrow differential equation method

1. PRO: Avoid direct loop-integration.
2. CON: Need to fix a boundary condition.

- What makes the MIs difficult to compute?
\rightarrow Analytic structure of the amplitude given by interplay between:

1. Number of independent scales
2. Kinematical constraints

- Directly into the functions needed to represent the result: Polylogarithms \rightarrow Multiple Polylogarithms \rightarrow Elliptic Functions \rightarrow ???
- Computation of the MIs \rightarrow differential equation method

1. PRO: Avoid direct loop-integration.
2. CON: Need to fix a boundary condition.

- What makes the MIs difficult to compute?
\rightarrow Analytic structure of the amplitude given by interplay between:

1. Number of independent scales
2. Kinematical constraints

- Directly into the functions needed to represent the result: Polylogarithms \rightarrow Multiple Polylogarithms \rightarrow Elliptic Functions \rightarrow ???

Vector boson pair production - Increasing in complexity:

- $q \bar{q} \rightarrow \gamma \gamma$

1. $\mathbf{2}$ independent scales: $s+t+u=0$
\rightarrow Nielsen Polylogarithms
\rightarrow (MIs computed in $\approx \mathbf{2 0 0 0})$, NNLO $\boldsymbol{V} \rightarrow$ [Catani et al., 2011]

- $q \bar{q} \rightarrow Z \gamma / W^{ \pm} \gamma$

1. $\mathbf{3}$ independent scales: $s+t+u=m^{2}$
\rightarrow Multiple Polylogarithms
\rightarrow (MIs computed in ≈ 2001), NNLO $\boldsymbol{\downarrow} \rightarrow$ [see D.Rathlev's Talk, ≈ 2013]

- $q \bar{q} \rightarrow Z Z / W^{ \pm} W^{ \pm}$

1. Still 3 independent scales: $s+t+u=2 m^{2}$
\rightarrow Multiple Polylogarithms \rightarrow BUT much more involved cut structure
\rightarrow (MIs ≈ 2013 still in progress $)$

What is special in ZZ/WW production?

- For $V \gamma$ production $\boldsymbol{\rightarrow} \mathbf{3}$ scales but linear kinematics:

$$
s>m^{2}, \quad \text { with } \quad-\left(s-m^{2}\right)<t<0
$$

- For $V V$ production $\rightarrow \mathbf{3}$ scales but non-linear kinematics:

$$
p_{1}+p_{2} \longrightarrow q_{1}+q_{2}, \quad p_{1}^{2}=p_{2}^{2}=0, \quad q_{1}^{2}=q_{2}^{2}=m^{2} .
$$

$s>4 m^{2}, \quad u_{-}<u<u_{+}$with:
$u_{-}=\left[m^{2}-\frac{s}{2}\left(1+\sqrt{1-\frac{4 m^{2}}{s}}\right)\right]$
$u_{+}=\left[m^{2}-\frac{s}{2}\left(1-\sqrt{1-\frac{4 m^{2}}{s}}\right)\right]$

So long as we get only GHPLs we are lucky !

- GHPLs (or MPLs) - Definition:
[E.Remiddi, J.Vermaseren; T.Gehrmann, E.Remiddi; A.B.Goncharov; ...]

$$
\begin{aligned}
& G(0 ; y)=\ln y, \quad G(a ; y)=\ln (1-y / a), \\
& G\left(\overrightarrow{0}_{n} ; y\right)=\frac{1}{n!} \ln ^{n} y \\
& G\left(a_{z}, \vec{b}_{z} ; y\right)=\int_{0}^{y} \frac{d t}{t-a_{z}} G\left(\vec{b}_{z} ; t\right)
\end{aligned}
$$

a_{z} and $b_{z}^{(j)}$ are any functions of z.
The cut structure of the GHPLs is contained in the indices!!! \rightarrow vector of singularities!

- Many techniques have been developed to handle them:
\rightarrow Symbol formalism, Co-product, fast numerical routines
\rightarrow [see A.Manteuffel's Talk]

A closer look at the two-loop amplitude for $\mathbf{Z Z}$ production

- 143 Feynman Diagrams
- ≈ 3100 PLANAR Integrals
- ≈ 1500 NON-PLANAR Integrals

The integrals can be organised into 3 topologies:

- Topo A: Planar Integrals with two adjacent massive legs

- Topo B: Planar Integrals with two non-adjacent massive legs

- Topo C: Non-Planar Integrals \rightarrow more involved cut structure

A closer look at the two-loop amplitude for $\mathbf{Z Z}$ production

- 143 Feynman Diagrams
- ≈ 3100 PLANAR Integrals
- ≈ 1500 NON-PLANAR Integrals

The integrals can be organised into $\mathbf{3}$ topologies:

- Topo A: Planar Integrals with two adjacent massive legs

- Topo B: Planar Integrals with two non-adjacent massive legs

- Topo C: Non-Planar Integrals \rightarrow more involved cut structure
- We performed reduction to MIs for the three topologies with Reduze2 [C.Studerus, A.Manteuffel]
- Topo A: 26 2-loop MIs, 13 new double-boxes
- Topo B: 13 2-loop MIs, 9 new double-boxes
- Topo C: 16 2-loop MIs, 13 new double-boxes
- From ≈ 5000 Integrals $\rightarrow \approx 50$ Master Integrals !
- All triangles already known
[T.Gehrmann, E.Remiddi; T.G.Birthwright, E.W.N.Glover, P.Marquard; F.Chavez, C.Duhr]
- We computed the double-boxes in Topo A and Topo B.

Why start with planar integrals ?

- Cut structure easier \rightarrow function are expected to be easier (if expressed in the right variables...)
- Defining mandelstam variables

$$
s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-q_{1}\right)^{2}, \quad u=\left(p_{2}-q_{1}\right)^{2}
$$

1. Topo A has cuts in s and u
2. Topo B has cuts in t and u
3. Topo \mathbf{C} has cuts in s, t and u !!

- Two variables are independent: $s+t+u=2 m^{2}$ Making a choice breaks symmetry for Topo C

Topo A - Master Integrals

we found compact expressions in non-physical region

$$
s=-m^{2} \frac{(1+x)^{2}}{x}<0, \quad u=-m^{2} z<0, \quad q_{1}^{2}=q_{2}^{2}=-m^{2}<0
$$

All MIs are represented as combinations of GHPLs up to weight 4

$$
\begin{aligned}
& G(\vec{f}(x) ; z) \quad \text { with } f_{j}(x)=\left\{1,0,-1,-x,-\frac{1}{x},-\frac{1+x+x^{2}}{x},-\frac{x}{1+x+x^{2}}\right\} \\
& G(\vec{a} ; x) \text { with } a_{j}=\left\{1,0,-1,-\frac{1+i \sqrt{3}}{2},-\frac{1-i \sqrt{3}}{2}\right\}
\end{aligned}
$$

N.B. : The "ugly" indices appear only in 3 topologies and only at weight 4

Topo B - Master Integrals

we found compact expressions in non-physical region (except one!)

$$
t=-m^{2} y<0, \quad u=-m^{2} z<0, \quad q_{1}^{2}=q_{2}^{2}=-m^{2}<0
$$

All masters except one have extremely compact representations as GHPLs up to weight $4 \rightarrow$ easy boxes!

$$
\begin{aligned}
& G(\vec{f}(z) ; y) \text { with } f_{j}(z)=\left\{1,0,2-z, \frac{1}{z}\right\} \\
& G(\vec{a} ; z) \text { with } a_{j}=\{1,0,2\}
\end{aligned}
$$

Most complicated topology has 4 Mls

Dots are squared propagators!

Quite surprisingly (?) the scalar master is the most involved! \rightarrow [See J.Henn's Talk]

System of 4 coupled differential equations:

- The homogeneous solution of the DE of M_{1} contains a square-root in y, z
- Nevertheless with this choice of MIs:

1. M_{1} is finite \rightarrow starts at $\mathcal{O}(1)$
2. it decouples up to $w=6 \rightarrow$ (also from $t=6, t=7 \mathrm{Mls}$)

- We can integrate all masters without knowing its value!

Quite surprisingly (?) the scalar master is the most involved! \rightarrow [See J.Henn's Talk]

System of 4 coupled differential equations:

- The homogeneous solution of the DE of M_{1} contains a square-root in y, z
- Nevertheless with this choice of Mls:

1. M_{1} is finite \rightarrow starts at $\mathcal{O}(1)$
2. it decouples up to $w=6 \rightarrow$ (also from $t=6, t=7 \mathrm{MIs}$)

- We can integrate all masters without knowing its value!
- M_{1} can still be integrated in terms of GHPLs only

Going back to $s, u \rightarrow$ Landau variable:

$$
s=m^{2} \frac{(1+\xi)^{2}}{\xi}, \quad \text { and } \quad u=-m^{2} \zeta
$$

We find:

$$
\begin{aligned}
& G(\vec{f}(\xi) ; \zeta) \text { with } f_{j}(\xi)=\left\{1,0,-1, \xi, \frac{1}{\xi}, \frac{1+\xi+\xi^{2}}{\xi}, \frac{1+\xi^{2}}{\xi}\right\} \\
& G(\vec{a} ; \xi) \text { with } a_{j}=\left\{1,0,-1,+i,-i, \frac{1+i \sqrt{3}}{2}, \frac{1-i \sqrt{3}}{2}\right\}
\end{aligned}
$$

- New indices are needed to reproduce the cut in t

Conclusions and Outlook

1. We computed all two-loop planar MIs for

$$
q \bar{q} \rightarrow V V \quad g g \rightarrow V V
$$

They can all be expressed in GHPLs.

- The results have all been checked numerically with:

FIESTA [A.V.Smirnov, V.A.Smirnov, M.Tentyukov]
SecDec [S.Borowka, J.Carter, G.Heinrich] .
2. Next steps (\approx in parallel):

- Conclude the study of NPL MIs
- Compute leading-colour two-loop amplitude for $q \bar{q} \rightarrow Z Z / W W$

Thank you!

Towards two-loop corrections to ZZ and WW production at LHC

Back-up slides

Quite surprisingly (?) the scalar master is the most involved!
\rightarrow [See Henn's Talk]
BUT with this basis the homogeneous system reads:

$$
\begin{aligned}
\frac{\partial}{\partial y} M_{1} & =a_{11} M_{1}+a_{12} M_{2}+a_{13} M_{3}+a_{14} M_{4} \\
\frac{\partial}{\partial y} M_{2} & =a_{22} M_{2}+(d-4)\left[a_{23} M_{3}+a_{24} M_{4}\right] \\
\frac{\partial}{\partial y} M_{3} & =(d-4)^{2}\left[a_{31} M_{1}\right]+(d-4)\left[a_{32} M_{2}+a_{33} M_{3}+a_{34} M_{4}\right] \\
\frac{\partial}{\partial y} M_{4} & =(d-4)^{2}\left[a_{41} M_{1}\right]+(d-4)\left[a_{42} M_{2}+a_{43} M_{3}\right]+a_{44} M_{4}
\end{aligned}
$$

M_{1} decouples and starts at order $\mathcal{O}(1)$. It can be computed alone after all other masters have been computed (up to $t=7!!!$)
M_{1} can influence M_{3} and M_{4} only starting at $w=6$.

Homogeneous equation for M_{1} reads:

$$
\frac{\partial}{\partial y} H_{1}=\frac{1}{2}\left[\frac{1}{2-y-z}-\frac{1}{2+y+z}\right] H_{1}
$$

Whose solution is:

$$
H_{1}=\frac{1}{\sqrt{(2-y-z)(2+y+z)}}
$$

Going to Landau variable we find

$$
s=m^{2} \frac{(1+\xi)^{2}}{\xi} \quad \rightarrow \quad H_{1}=\frac{\xi}{(1-\xi)(1+\xi)} .
$$

Example of result : double-box $t=7$ (up to $w=3$ fits on 1 slide)

$$
\begin{aligned}
p_{1} \rightarrow{ }^{(2)} \xrightarrow{ } q_{2} \rightarrow & =\frac{x^{2}}{(1-x)(1+x)^{3}}\{ \\
& +\frac{1}{\epsilon^{2}}\left[4 G(0,-1, x)-2 G(0,0, x)-\frac{\pi^{2}}{3}\right] \\
& +\frac{1}{\epsilon}\left[\pi^{2}(G(-x, z)+G(0, x)-2 G(1, x)-1 / 3 G(-1 / x, z))\right. \\
& -2 G(-1 / x, 0,0, z)+4 G(-1 / x, 1,0, z)+2 G(-x, 0,0, z) \\
& -4 G(-x, 1,0, z)-4 G(-1, x) G(-1 / x, 0, z) \\
& +4 G(-1, x) G(-x, 0, z)+2 G(0, x) G(-1 / x, 0, z) \\
& -2 G(0, x) G(-x, 0, z)-4 G(0,-1, x) G(-1 / x, z) \\
& -4 G(0,-1, x) G(-x, z)-24 G(0,-1,-1, x)+12 G(0,-1,0, x) \\
& +2 G(0,0, x) G(-1 / x, z)+2 G(0,0, x) G(-x, z) \\
& \left.\left.+24 G(1,0,-1, x)-12 G(1,0,0, x)-6 \zeta_{3}\right]+\mathcal{O}\left(\epsilon^{0}\right)\right\}
\end{aligned}
$$

Example of result : double-box $t=7$ (up to $w=3$ fits on 1 slide)

$$
\begin{aligned}
p_{1} \rightarrow & =\frac{1}{(1-y z) y}\{ \\
& +\frac{1}{\epsilon^{2}}\left[\frac{\pi^{2}}{3}-2 G(1 / z, 0, y)-2 G(0, z) G(1 / z, y)\right] \\
& +\frac{1}{\epsilon}\left[7 G(1 / z, 1 / z, 0, y)+3 / 2 G(1 / z, y) \pi^{2}+4 G(1 / z, 0,0, y)\right. \\
& -8 G(1 / z, 1,0, y)+2 G(0,1 / z, 0, y)+7 G(0, z) G(1 / z, 1 / z, y) \\
& +2 G(0, z) G(0,1 / z, y)-6 G(0, z) G(1,1 / z, y)-2 / 3 G(0, y) \pi^{2} \\
& +4 G(0,0, z) G(1 / z, y)+2 G(0,1,0, y)-6 G(1,1 / z, 0, y) \\
& -2 / 3 G(1, y) \pi^{2}-8 G(1,0, z) G(1 / z, y)+6 G(1,0, z) G(1, y) \\
& \left.\left.-6 G(1,0,0, y)+4 G(1,1,0, y)-7 \zeta_{3}\right]+\mathcal{O}\left(\epsilon^{0}\right)\right\}
\end{aligned}
$$

