
Compactifying formulas with FORM

J.A.M. Vermaseren

Nikhef

in collaboration with

J. Kuipers (Nikhef, Google) and T. Ueda (Karlsruhe)

• Amuse

• First course

•Main dish

• Visit of the chef

• Desert

• Coffee

Amuse

Imagine the following program:

Symbols x,y,z;

Format nospaces;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Print +f;

.end

F=6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

For its numerical evaluation this formula needs 18 multiplications and 5 additions. Can we
do better?

ExtraSymbols,array,w;

Symbols x,y,z;

Off Statistics;

Format O1,stats=ON;

Format nospaces;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Print +f;

.end

w(1)=y*z;

w(2)=-z+2*y;

w(2)=x*w(2);

w(3)=z^2;

w(1)=w(2)-w(3)+2*w(1);

w(1)=x*w(1);

w(2)=y^2;

w(2)=2*w(3)+w(2);

w(2)=y*w(2);

w(1)=w(2)+w(1);

F=3*w(1);

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 10M 5A : 15

We see here several options of FORM, but the one to concentrate on is the statement

Format O1,stats=ON;

As can be seen, this gives an output that needs fewer operations for its evaluation. And just
like the compiler, FORM has several optimization levels, at increasing cost:

ExtraSymbols,array,w;

Symbols x,y,z;

Off Statistics;

Format O2,stats=ON;

Format nospaces;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Print +f;

.end

w(1)=z^2;

w(2)=2*y;

w(3)=z*w(2);

w(2)=-z+w(2);

w(2)=x*w(2);

w(2)=w(2)-w(1)+w(3);

w(2)=x*w(2);

w(3)=y^2;

w(1)=2*w(1)+w(3);

w(1)=y*w(1);

w(1)=w(1)+w(2);

F=3*w(1);

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 9M 5A : 14

ExtraSymbols,array,w;

Symbols x,y,z;

Off Statistics;

Format O3,stats=ON;

Format nospaces;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Print +f;

.end

w(1)=x+z;

w(2)=2*y;

w(3)=w(2)-x;

w(1)=z*w(3)*w(1);

w(3)=y^3;

w(2)=x^2*w(2);

w(1)=w(1)+w(3)+w(2);

F=3*w(1);

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 1P 6M 4A : 12

To most people at this conference it will be immediately clear that such a facility can be very
useful, provided it can handle very lengthy expressions as well.

First course

The examples we are going to look at come from two sources.

1. Resolvents or Sylvester determinants. This is rather mathematical, but we use these to
compare with a recent article that introduced a new technique in the field of formula
simplification (Leiserson at al.)1.

2. The GRACE system. Here we take formulas that are part of one loop calculations with all
masses and several gauge parameters included. In the worst case we have several million
terms.

1”Efficient Evaluation of Large Polynomials”, C.E. Leiserson, L. Li, M.M. Maza, Y. Xie, LNCS 6327 (2010) 342–353.

A Sylvester determinant can be used to determine whether two nonlinear equations in the
same variable have a simultaneous solution. When the equations are

E
(a)
1 = a0 + a1x + a2x

2 + a3x
3

E
(b)
2 = b0 + b1x + b2x

2

(1)

the matrix looks like

a0 a1 a2 a3 0
0 a0 a1 a2 a3
b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2

and the resolvent is its determinant. In terms of the ai and bj parameters it can be a rather
messy formula. In the examples here we try to write such a formula with as few operations as
we can manage. Of course, if one is merely interested in obtaining a numerical answer after
giving the parameters a value, one can do that much faster by just computing the determinant
numerically, but that is not the issue here. In other words: this is a scholastic exercise.

The FORM program looks like (leaving out declarations and some settings):

#define N "6"

#define M "5"

.global

*

G F0 = (a0+<a1*x^1>+...+<a‘N’*x^‘N’>)*(1+<z^1>+...+<z^{‘M’-1}>)

+y^‘M’*(b0+<b1*x^1>+...+<b‘M’*x^‘M’>)*(1+<z^1>+...+<z^{‘N’-1}>);

id z = x*y;

Multiply x*y;

B x,y;

.sort

FillExpression,T=F0(y,x); * Fills the matrix

Drop;

.sort

#call determ(F0,T,{‘N’+‘M’})

.store: Calculate the determinant;

Format O1,stats=on;

L F1 = F0;

.sort

#write "Optimization level O1. starttime = ‘time_’"

#Optimize F1;

.store

Format O2,stats=on;

L F2 = F0;

.sort

#write "Optimization level O2. starttime = ‘time_’"

#Optimize F2;

.store

Format O3,stats=on;

L F3 = F0;

.sort

#write "Optimization level O3. starttime = ‘time_’"

#Optimize F3;

.store

Format O3,stats=on,mctsnumexpand=5*400,mctsconstant=0.25;

L F3 = F0;

.sort

#write "Optimization level O3(5*400). starttime = ‘time_’"

#Optimize F3;

.store

.end

The procedure determ calculates the determinant of a two dimensional ‘table’. It is given by

#procedure determ(F,T,NN)

G ’F’ = <e_(1)*‘T’(1,1)>+...+<e_(‘NN’)*‘T’(‘NN’,1)>;

#if ({‘NN’%4} == 3)

Multiply -1;

#endif

.sort: determ at step 0;

#do k = 1,{‘NN’-1}

#if ({‘k’%2} == 0)

#redefine kk "{‘k’/2+1}"

#else

#redefine kk "{‘NN’-‘k’/2}"

#endif

id e_(i1?,...,i‘k’?) =

#do i = 1,‘NN’

+e_(i1,...,i‘k’,‘i’)*’T’(‘i’,‘kk’)

#enddo

;

B e_;

.sort: determ at step ’k’;

Skip; NSkip ‘F’;

Keep Brackets;

#enddo

id e_(1,...,‘NN’) = 1;

#endprocedure

It is a variation of a routine that is better described in one of the FORM courses.

The output of the program is

#-

Optimization level O1. starttime = 0.12

*** STATS: original 3920P 40959M 4604A : 53494

*** STATS: optimized 34P 5387M 3509A : 8979

Optimization level O2. starttime = 0.27

*** STATS: original 3920P 40959M 4604A : 53494

*** STATS: optimized 35P 4081M 3222A : 7388

Optimization level O3. starttime = 1.87

*** STATS: original 3920P 40959M 4604A : 53494

*** STATS: optimized 19P 3368M 2834A : 6245

Optimization level O3(5*400). starttime = 73.72

*** STATS: original 3920P 40959M 4604A : 53494

*** STATS: optimized 22P 2714M 2404A : 5167

207.36 sec out of 207.51 sec

The O3 level is statisctical in nature as we will see later in the talk. It can be influenced (ad-
justed to the problem) by a number of parameters. It is clear that higher levels of optimization
cost more time, but give better results.

For various values of the parameters m and n we give here the results.

7-4 resultant 7-5 resultant 7-6 resultant
Original 29163 142711 587880
FORM O1 4968 20210 71262
FORM O2 3969 16398 55685
FORM O3 3015 11171 36146
Maple 8607 36464 -
Maple tryhard 6451 O(27000) -
Mathematica 19093 94287 -
Leiserson 4905 19148 65770
Haggies 7540 29125 -

Number of operations after optimization by various programs. The number for the 7-5 re-
sultant with ‘Maple tryhard’ is taken from Leiserson at al. For the 7-4 resultant they obtain
6707 operations, which must be due to a different way of counting. The same holds for the 7-6
resultant as Leiserson et al. start with 601633 operations. The Form O3 run used Cp = 0.07
and 10× 400 tree expansions.

Remark: Probably somebody with much Mathematica experience can do better than the
table (without ad hoc programming of course).

As one can see: higher levels of optimization give better results, but also cost more time.
And one can also see that the FORM results are better than the syntactic factorization by
Leiserson et al. Or any program we could lay our hands on.

Of course, one might argue that also the compiler does optimizations. And that this has been
a science for many years. So why bother? Let us have a look at how that works out:

In this table we compare the FORM optimization time with the compilation time and the
execution time of the resulting program. Basically this is the only thing that really counts.
We study here the 7-6 resolvent.

Format O0 Format O1 Format O2 Format O3
Operations 587880 71262 55685 36146
Form time 0.12 1.66 65.43 2398

gcc -O0 time 29.02 6.33 5.64 3.36
run 119.66 13.61 12.24 7.52

gcc -O1 time 3018.6 295.96 199.47 80.82
run 24.30 6.88 6.12 3.58

gcc -O2 time 3104.4 247.60 163.79 65.21
run 21.09 7.00 6.22 3.93

gcc -O3 time 3125.4 276.77 179.24 71.02
run 21.02 6.95 6.19 3.93

FORM run time, compilation times and the time to evaluate the compiled formula 105 times
(run). All times are in seconds. The O3 option in Form used Cp = 0.07 and 10 × 400 tree
expansions.

As one can see in the table, what is optimal depends very much on how often one would like to
evaluate the function. But it should be very clear that FORM outperforms the compiler. And
this is after we had to help the compiler a bit, because in the C language there is no decent
power function. We defined a simple one that could be inlined for the best result (otherwise
the compiler is much slower and the code is also a bit slower).

There is another advantage that should not be underestimated. The optimized compiled code
is much shorter. For automatically generated code that can make a big difference in the size
of the executable. 2 Gbytes is a pretty bad limit.

The main dish

Now we are going to have a look at how this works out for some typical GRACE formulas.
In the GRACE-Loop system we construct the one loop diagrams and multiply them by the tree
graphs. If there are NL one loop graphs and NT tree praphs, this gives NL×NT expressions.
Each will result in a FORTRAN routine. We will look at just a few individual ones.
Each expression is written in terms of Feynman parameters and the loop momentum is shifted
so that the denominator contains just a square of the new loop momentum. Then we bracket
in terms of the Feynman parameters and the contents of these brackets we want to compute.
These numbers are passed to the loop library which then can produce a number for the
diagram as a function of the input parameters.
This means that we need to optimize a large number of expressions (one for each combination
of Feynman parameters) and the results are best if this is done simultaneously. FORM can
handle that if we bracket in terms of the Feynman parameters.

Hence we have an expression like

F = x1x4(· · ·)
+ x1x

2
4(· · ·)

+ · · ·
+ x3Q

2(· · ·)
+ · · ·

in which we have lengthy formulas inside the brackets. Those formulas must be computed in
a Fortran program. A simple example of simultaneous optimization is given in the following
program:

Symbol x,y,z,h;

ExtraSymbols,array,w;

Off Statistics;

Format O3,Stats=ON;

Local F1 = 2*x^3+3*x^2*y+4*x^2*z+4*x*y*z+6*x*z^2+2*y^2*z+z^3;

Local F2 = 2*x^3+3*x^2*y+3*x^2*z+4*x*y*z+6*x*z^2+2*y^2*z+z^3;

.sort

Local F = h*F1+h^2*F2;

.sort

#optimize F1

*** STATS: original 2P 16M 6A : 26

*** STATS: optimized 0P 10M 6A : 16

#clearoptimize

#optimize F2

*** STATS: original 2P 16M 6A : 26

*** STATS: optimized 1P 10M 6A : 18

#clearoptimize

Bracket h;

Print +f;

.end

w(1)=4*x + 2*y;

w(1)=z*w(1);

w(2)=x^2;

w(3)=3*w(2);

w(1)=w(3) + w(1);

w(1)=w(1)*y;

w(4)=x^3;

w(1)=w(1) + 2*w(4);

w(4)=z + 6*x;

w(4)=w(4)*z;

w(2)=4*w(2) + w(4);

w(2)=z*w(2);

w(2)=w(2) + w(1);

w(3)=w(3) + w(4);

w(3)=z*w(3);

w(1)=w(3) + w(1);

F=h*w(2) + h^2*w(1);

*** STATS: original 4P 32M 12A : 52

*** STATS: optimized 1P 12M 8A : 22

We see that when the expressions are simplified individually we need 16+18 operations, while
when they are done together, we need only 22 operations. The brackets in h can be written
to the output individually.

For the rest the expressions contain:

• masses

• dotproducts

• Levi-Civita tensors

• coupling constants

• gauge parameters

Of course the FORM optimizer has no idea what the significance of all the variables is. To it
formulas are a sophisticated version of chaos.

The examples we use are

1. σ: A typical five-point function diagram from the reaction e+e− → e+e−γ.

2. F13: A not very complicated six-point function diagram from the reaction e+e− →
µ+µ−uu.

3. F24: A more complicated diagram from the same reaction.

4. 4320× 22: The most complicated diagram from the reaction e+e− → µ−νµud.

The table shows a number of expressions in increasing size. The number of variables is the
sum of the number of Feynman parameters and the number of remaining variables.

σ F13 F24 4320× 22
Variables 4+11 5+24 5+31 5+118

Expressions 35 56 56 62
Terms 5 717 105 114 836 010 2 427 744

Format O0 33 798 812 645 5 753 030 23 045 841
Format O1 5 615 71 989 391 663 818 973
Format O2 4 599 46 483 233 445 552 582
Format O3 3 380 41 666 195 691 521 305

Results for the physics formulas.

We notice that the bigger the expression, the bigger the improvement factor. Unfortunately
the O2 (and O3) algorithms are nonlinear. This means that they take much time. We will
see a way to improve on this.

The large number of variables in the 4320 × 22 expression is caused by the fact that we
take each combination of coupling constants as a single variable. The are 90 of those in that
expression.

A visit from the chef

So how does FORM do all of the above?
The first step is to implement a Horner scheme as in

F (x) = 2 + 3x + 5x2 + 7x3 + 11x4 + 13x5

→ 2 + x(3 + x(5 + x(7 + x(11 + 13x))))

This reduces the number of multiplications (from 13 to 5).
When there are more variables the Horner scheme is more complicated. We implement it
recursively as in

F (x, y, z) = f0(y, z) + f1(y, z)x + f2(y, z)x2 + f3(y, z)x3 + · · ·
→ f0(y, z) + x(f1(y, z) + x(f2(y, z) + x(f3(y, z) + · · ·)))

after which we can do the same with the fi(y, z) in terms of y, and so on. The question is
now which order we should choose for the variables.

F (x, y, z) = y − 3x + 5xz + 2x2yz − 3x2y2z + 5x2y2z2

Direct evaluation of this polynomial takes 18 multiplications and 5 additions (18,5).

Depending on the order of the Horner scheme we have:

Horner Order Formula Operations
x,y,z y + x(−3 + 5z + x(y(2z + y(z(−3 + 5z))))) 8,5
x,z,y y + x(−3 + 5z + x(z(y(2− 3y) + z(5y2)))) 9,5
y,x,z x(−3 + 5z) + y(1 + x2(2z) + y(x2(z(−3 + 5z)))) 11,5
y,z,x −3x + z(5x) + y(1 + z(2x2) + y(z(−3x2 + z(5x2)))) 14,5
z,x,y y − 3x + z(x(5 + x(y(2− 3y))) + z(x2(5y2))) 11,5
z,y,x −3x + y + z(5x + y(2x2 + y(−3x2)) + z(y2(5x2))) 14,5

So, how do we know which scheme to use?
If the number of variables is rather limited (when n! is not very large) we can try all orderings.
For, say, 30 variables this is obviously not practical. In that case it is most common to use
what is called occurrence ordering: the variables are ordered by the number of occurrences in
the formula.

When we were programming this we decided to try a number of random orderings, just to
see how much better this occurrence ordering was. As an example we used a relatively simple
GRACE formula. The result was that occurrence ordering was better than average, but by
no means optimal. And sometimes anti-occurrence was better. Hence the big question is:

How to obtain a (near) optimal ordering?

The various multivariate Horner schemes can be represented as a tree in which the first time
we have to select one out of n variables, the next time one out of n− 1 variables, etc. In the
end we have a complete ordering with a number that tells us the cost of the evaluation of the
formula.

This is very similar to games like for instance Go.

The main difference is of course that in games we have usually an opponent, but if we consider
the selection of one variable as two ply, one move followed by a move of the opponent, the
simularity should be obvious.

In 2006 there was a breakthrough in game theory w.r.t. how to search through such trees
(Kocsis and Szepesvári). It is called Monte Carlo tree search or shortly MCTS. It is based
on a weight formula that tells which branch in the tree to select. For equal weights a random
number determines which branch to select. The tree is evaluated to the end (also in Go
or Chess) and then an evaluation is made. For each branchpoint the average score and the
number of visits in the branches are remembered.

The formula for branch i is (UCT stands for Upper Confidence level for Trees):

UCTi = 〈xi〉 + 2Cp

√√√√√√√2 log n

ni

The first term in the equation favours trying previously successful branches in the tree. This is
called exploitation. The second term favours branches that have not been visited much before
(if never, the term is even infinite). This is called exploration. The value of Cp determines
the balance between the two.

This approach can be successful if positive outcomes are clustered in the tree.

In games this often works because a good move will usually leave many more favourable
endpositions than a bad move.

When the value of Cp is too small, we will only sample one seemingly good branch in the tree
and eventually end up in a local optimum.

When the value of Cp is too big, we will basically be sampling randomly and forget to pursue
branches that seem promising.

The proper value of Cp is problem dependent. It usually requires some experimentation.
It would be a separate branch of investigation to see how its best value can be determined
automatically.

0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

Scatter plots for 300, 1000, 3000, 10000 points per MCTS run. Each plot has 4000 runs. The
formula optimized is one obtained from the σ expression in the previous examples.

The above selection of the Horner scheme would not be very spectacular if we would not
apply some more techniques, like common subexpression elimination. Such subexpression
eliminations come in varieties of which some take more time than others. Take for instance:

F (x, y, z) = y + x(−3 + 5z + x(y(2z + y(z(−3 + 5z)))))

= y + x(Z1 + x(y(2z + y(zZ1))))

Z1 = −3 + 5z

This insertion saves us one multiplication and one addition.
In FORM we have two types of such insertions:

• Common subexpressions.

• Greedy optimizations.

The second type is far more sophisticated than the first type, but also needs much more CPU
type (quadratic algorithm). When FORM works out a Horner scheme it always combines this
with the first type. The second type is optional.

Without MCTS the Horner ordering is by ‘occurrence’ which means that the variables are
ordered by the number of occurrences in the formula. Actually the program tries two orderings:
occurrence and anti-occurrence.

O1 Occurrence+anti-occurrence followed by common subexpression elimination.

O2 Occurrence+anti-occurrence followed by common subexpression elimination. After that
a ‘greedy’ optimization.

O3 MCTS with common subexpression elimination and greedy optimizations.

With simple expressions that have only a few variables the MCTS can use brute force and
try all possibilities. When there are more variables this is of course not possible and it tries
a default 1000 times, unless the user specifies a different number.

Desert

The FORM optimization cannot use knowledge that we may have about the formulas. In
terms of AI, it does not have domain specific knowledge. Of course, often the best optimiza-
tions are based on knowledge about the system, like knowing that in some combination of
variables the formula will be shorter.
On the other hand, just introducing lots of new variables makes the work of the MCTS much
harder, because the tree becomes bigger. As it turns out, the GRACE output can be greatly
improved by making ‘shifts’ in variables. An example would be that

w1 = 2*p1.p2

w2 = me^2

w1+w2 -> w1

or: instead of the original w1 we rewrite the formula in terms of the new w1, and very often
the number of terms in the expression becomes smaller.
We have written a set of FORM procedures for this and use them before we apply the output
optimizations. The results of this are the ‘shifted’ results in the table.

σ F13 F24 4320× 22
Variables 4+11 5+24 5+31 5+118

Expressions 35 56 56 62
Terms 5 717 105 114 836 010 2 427 744

Format O0 33 798 812 645 5 753 030 23 045 841
Format O1 5 615 71 989 391 663 818 973
Format O2 4 599 46 483 233 445 552 582
Format O3 3 380 41 666 195 691 521 305

Terms shifted 754 16 439 78 005 193 893
Format O0 4 402+731+15 123 415+605+48 536 127+476+57 1 318 539
Format O1 1 481+409+15 23 459+453+48 68 093+336+57 182 050+1107+582
Format O2 1 146+261+15 17 620+330+48 53 131+229+57 129 740+1107+582
Format O3 1 012+261+15 13 206+322+48 47 379+235+57 119 962+1107+582

Results for the physics formulas in the original and the shifted versions.

Hence, it is best to apply ‘domain specific’ knowledge first, and after that the FORM opti-
mizations. This is actually also much faster in CPU time, because the shorter formulas after
the shifts have an enormous impact on the speed of the O2 and O3 options.

The times for the optimizations are, as we saw before, better than what the compiler could
offer us. Yet, the nonlinear optimizations can be rather bad. As an example we take the
4320x22 diagram (rightmost in the table) which needs 230 sec for the O1 optimization, 77000
seconds for the O2 optimization (going twice through the greedy optimization) and O(5 105)
sec for O3 in which it does the greedy optimization 10 times at the end. The shift routines
take 82000 sec (because there are 90 combinations of coupling constants) after which the O1,
O2 and O3 take 18, 680 and 16700 sec respectively (the first two numbers were on a slightly
faster computer).

It is far from excluded that the speed of the shift routines can be significantly improved. They
are rather experimental.

Coffee

It should be clear that code simplification is not a closed book. Improvements are likely to be
found in the future, both in the field of domain specific knowledge and in the improvement
of chaotic code simplification. An example:

Local F = (a+b)^3+(a+c)^3;

Currently the program cannot find such substructures or more complicated varieties of this.

I also expect that now both Maple and Mathematica will improve their performance.

We see also that good optimization can cost significant computer resources. Hence the level
of optimization to use depends very much on the number of function evaluations, or the
limitations on the size of the executable program.

The application of MCTS in physics should not be restricted to code optimization. It
should be considered in any field where one has to search though trees that are far too large
for stepping through completely. One such field is the combination of recursion relations in
the calculation of all Mellin moments in DIS. Different orderings have completely different
properties. They may lead to unacceptably slow programs, or to spurious poles. The use of
MCTS for such systems is currently under study.

An interesting spinoff of the implementation of MCTS in the FORM optimization is that the
method of MCTS can be studied rather cleanly with it. Much better than in the games of
Go or chess. This may lead to improvements of the MCTS method as well, in particular in
its parallel applications.

The long paper ”Code Optimization in FORM” will appear soon and so will version 4.1 of
FORM.

