Transition Form Factor in Higgs production through Two-photon Processes

Tsuneo Uematsu (Kyoto Univ.)

in collaboration with
Norihisa Watanabe, Ken Sasaki, Yoshimasa Kurihara

Talk at RADCOR2013
Durham, September 26, 2013
Plan of the talk

1. Introduction and motivation
2. Higgs Production in 2γ processes
3. Transition Form Factor
4. Numerical Analysis
5. Summary and outlook
1. Introduction and Motivation

How Higgs couples to 2 photons?

- Di-photon decay mode observed for a Higgs of mass 125-126 GeV at LHC (i.e. $H \rightarrow 2\gamma$)
- Here we investigate Higgs production in 2-photon processes of e^+e^- collisions (i.e. $2\gamma \rightarrow H$)
- We evaluate transition form factor of Higgs and its Q^2 dependence just like a transition form factor of pion π^0
2γ decay of Higgs

![Diagram of 2γ decay of Higgs]

Decay rate

\[
\Gamma(H \to 2\gamma) = \frac{\alpha_{\text{em}} g_H^2}{1024 \pi^3} m_H^3 \left| \sum_i N_{ci} e_i^2 F_i \right|^2 \\
F_{\text{quark}} = -2\tau \left[1 + (1 - \tau)f(\tau) \right] \\
F_{W} = 2 + 3\tau + 3\tau(2 - \tau)f(\tau)
\]

\[
f(\tau) = \begin{cases}
\sin^{-1} \sqrt{\frac{1}{\tau}} \quad & \tau \geq 1 \\
-\frac{1}{4} \ln \left(\frac{1 + \sqrt{1 - \tau}}{1 - \sqrt{1 - \tau}} - i\pi \right) \quad & \tau < 1
\end{cases}
\]

RADCOR2013/9/26/
Tsuneo Uematsu
Transition From Factor in Higgs Production thru 2-photon processes
The Z-fusion is the tree-level contribution for the $e^+e^- \rightarrow e^+e^-H$ production process.

We consider $e\gamma$ collision to avoid Z-fusion contribution.
2. Higgs Production in 2γ processes

One photon is virtual while the other photon is real

Scattering of electron off real photon

$$e(l) + \gamma(k_2) \rightarrow e'(l') + H(q)$$

$$\langle e'H|T|e\gamma \rangle = \bar{u}_{r'}(l')(-ie\gamma_\mu)u_r(l)\frac{-i}{k_1^2 + i\epsilon}A^{\mu\nu}\epsilon_\nu(k_2, \lambda_2)$$

scattering amplitude for $\gamma^* + \gamma \rightarrow H$

$$k_1^2 = -Q^2 < 0$$

$$M = A^{\mu\nu}\epsilon_\mu(k_1)\epsilon_\nu(k_2)$$

$$k_2^\nu\epsilon_\nu(k_2) = 0, \quad k_2^2 = 0$$

where from gauge inv.

$$A^{\mu\nu} = \left[g^{\mu\nu}(k_1 \cdot k_2) - k_2^\mu k_1^\nu \right] S_1(m^2, Q^2, m_H^2) + \left[k_1^\mu k_2^\nu - \frac{k_1^2}{k_1 \cdot k_2} k_2^\mu k_2^\nu \right] S_2(m^2, Q^2, m_H^2)$$

$$M = \left[g^{\mu\nu}(k_1 \cdot k_2) - k_2^\mu k_1^\nu \right] S_1(m^2, Q^2, m_H^2)\epsilon_\mu(k_1)\epsilon_\nu(k_2)$$
Transition From Factor in Higgs Production thru 2-photon processes

\[S_1(m_t^2, Q^2, m_H^2) = \frac{ige^2}{(4\pi)^2} \frac{1}{m_W} \frac{4m_t^2}{m_H^2 + Q^2} \left\{ 2 + \frac{1}{2} \left(1 - \frac{4m_t^2}{m_H^2 + Q^2} \right) \left(4f(\tau) + g(\rho) \right) \right. \\
\left. + \frac{2Q^2}{m_H^2 + Q^2} \left[2\sqrt{\tau - 1}\sqrt{f(\tau)} - \sqrt{\frac{1 + \rho}{\rho}}\sqrt{g(\rho)} \right] \right\} \]

\[f(\tau) \equiv \left(\sin^{-1} \sqrt{\frac{1}{\tau}} \right)^2, \quad \tau = \frac{4m_t^2}{m_H^2} \quad \text{for} \quad \tau \geq 1 \]

\[g(\rho) \equiv \left(\log \frac{\sqrt{\rho + 1} + \sqrt{\rho}}{\sqrt{\rho + 1} - \sqrt{\rho}} \right)^2 \quad \rho \equiv \frac{Q^2}{4m_t^2} > 0 \]

Top-quark-loop contribution
W-boson-loop contribution

\[S_1(m_W^2, Q^2, m_H^2) \]

\[= \frac{ige^2}{(4\pi)^2} \frac{1}{m_W} \frac{m_H^2}{m_H^2 + Q^2} \left\{ \frac{\tau}{1 + \rho \tau} \left[4\rho + 8\rho^2\tau + 6(1 + \rho \tau) - 3\tau \right] \left[f(\tau) + \frac{1}{4} g(\rho) \right] \right\} + \left[4\rho + 2(1 + \rho \tau) + 3\tau \right] \times \left[1 - \frac{m_H^2 \tau}{m_H^2 + Q^2} \sqrt{\rho(\rho + 1)} \sqrt{g(\rho)} + \frac{2Q^2}{m_H^2 + Q^2} \sqrt{\tau - 1} \sqrt{f(\tau)} \right] \}

\[f(\tau) \equiv \left[\sin^{-1} \sqrt{\frac{1}{\tau}} \right]^2, \quad \tau = \frac{4m_W^2}{m_H^2} \quad \text{for} \quad \tau \geq 1 \]

\[g(\rho) \equiv \left[\log \frac{\sqrt{\rho + 1} + \sqrt{\rho}}{\sqrt{\rho + 1} - \sqrt{\rho}} \right]^2, \quad \rho \equiv \frac{Q^2}{4m_W^2} > 0 \]
3. Transition Form Factor of Higgs

We define the transition form factor F_i as follows

$$S_1(m^2, Q^2, m_H^2) = \frac{ige^2}{(4\pi)^2} \frac{1}{m_W} F_i(m^2, Q^2, m_H^2)$$

where $i = 1/2, 1$ for fermion-loop $F_{1/2}$

and for W-boson loop F_1

m: the mass of the particle going around the loop m_t or m_W

The transition form factor shows a scaling behavior!

$$F_i(m^2, Q^2, m_H^2) \rightarrow F_i(\rho, \tau)$$

where

$$\tau = \frac{4m^2}{m_H^2}, \quad \rho = \frac{Q^2}{4m^2}$$
The transition form factor in the scaling form

For fermion (top-quark)-loop

\[
F_{1/2}(\rho, \tau) = -\frac{1}{\rho + 1/\tau} \left\{ 2 + \frac{1}{2} \left(1 - \frac{1}{\rho + 1/\tau} \right) (4f(\tau) + g(\rho)) + \frac{2}{1 + 1/\rho\tau} \left(2\sqrt{\tau - 1}\sqrt{f(\tau)} - \sqrt{1 + 1/\rho}\sqrt{g(\rho)} \right) \right\}
\]

For W-boson-loop

\[
F_1(\rho, \tau) = \frac{1}{1 + \rho\tau} \left\{ \frac{\tau}{1 + \rho\tau} (4\rho + 8\rho^2\tau + 6(1 + \rho\tau) - 3\tau) \left(f(\tau) + \frac{1}{4}g(\rho) \right) + (4\rho + 2(1 + \rho\tau) + 3\tau) \left(1 - \frac{\tau}{1 + \rho\tau} \sqrt{\rho(\rho + 1)}\sqrt{g(\rho)} + \frac{2\rho\tau}{1 + \rho\tau} \sqrt{\tau - 1}\sqrt{f(\tau)} \right) \right\}
\]

In the \(Q^2 \to 0\) limit or \(\rho \to 0\) limit they reduce to the functions appearing in the \(H \to 2\gamma\) decay-rate expression:

\[
F_{1/2}(\rho \to 0, \tau) = F_{1/2}(\tau) = -2\tau[1 + (1 - \tau)f(\tau)]
\]

\[
F_1(\rho \to 0, \tau) = F_1(\tau) = 2 + 3\tau + 3\tau(2 - \tau)f(\tau)
\]

Real Photon limit!
Charged scalar contribution

e.g. charged Higgs in MSSM

\[A^{\mu\nu} = [g^{\mu\nu} (k_1 \cdot k_2) - k_2^\mu k_1^\nu] \frac{g e^2}{(4\pi)^2} \frac{1}{m_W} \frac{4m_{\pm}^2}{m_H^2} \frac{m_H^2}{Q^2 + m_H^2} \]

\[\times \left[1 - \frac{\tau}{2(1 + \rho \tau)} \left(\frac{1}{2} g(\rho) + 2 f(\tau) \right) + \frac{\rho \tau}{1 + \rho \tau} \left(2\sqrt{\tau - 1} \sqrt{f(\tau)} - \sqrt{1 + \frac{1}{\rho} \sqrt{g(\rho)}} \right) \right] \]

\[F_0(\rho, \tau) \]
\[= \frac{1}{1 + \rho \tau} \left[1 - \frac{\tau}{2(1 + \rho \tau)} \left(\frac{1}{2} g(\rho) + 2 f(\tau) \right) + \frac{\rho \tau}{1 + \rho \tau} \left(2\sqrt{\tau - 1} \sqrt{f(\tau)} - \sqrt{1 + \frac{1}{\rho} \sqrt{g(\rho)}} \right) \right] \]

\[Q^2 \rightarrow 0 \text{ limit} \]

\[F_0(\rho \rightarrow 0, \tau) = \tau [1 - \tau f(\tau)] \]

also appearing in the H \rightarrow 2\gamma decay-rate expression:
We noticed that all the transition form factors:

\[F_{1/2}(\rho, \tau) \quad F_1(\rho, \tau) \quad F_0(\rho, \tau) \]

can be expressed as linear combinations of the two functions:

\[f(\tau) + \frac{1}{4} g(\rho) \quad \text{and} \quad 2\sqrt{\tau - 1} \sqrt{f(\tau)} - \sqrt{1 + \frac{1}{\rho} g(\rho)} \]

which are coming from 2-point and 3-point functions and will be discussed by Ken Sasaki, the next talk.

The large \(Q^2 \) behavior of the form factors:

\[F_{1/2}(\rho \to \infty, \tau : \text{fixed}) = -\frac{1}{2\rho} g(\rho) = -\frac{2m_t^2}{Q^2} \log^2 \frac{Q^2}{m_t^2} \quad \leftarrow \text{decreasing} \]

\[F_1(\rho \to \infty, \tau : \text{fixed}) = 2g(\rho) = 2 \log^2 \frac{Q^2}{m_W^2} \quad \leftarrow \text{increasing} \]

\[g(\rho) \to (4\rho)^2 \quad (\text{as} \quad \rho \to \infty) \]
Transition From Factor in Higgs Production thru 2-photon processes

Q^2 dependence of Transition Form Factor

- **Transition FF of W-boson**

 ![Graph of Transition FF of W-boson](image)

- **Transition FF of Top-quark**

 ![Graph of Transition FF of Top-quark](image)
In terms of the transition form factor (FF) the differential cross section reads

\[
\frac{d\sigma}{dQ^2} = \frac{\alpha_{em}}{16Q^2} \left[1 + \left(\frac{E'}{E} \right)^2 \cos^4 \frac{\theta}{2} \right] \times |S_1(m^2, Q^2, m_H^2)|^2
\]

\[
= \frac{\alpha_{em}}{16Q^2} \left[1 + \left(\frac{E'}{E} \right)^2 \cos^4 \frac{\theta}{2} \right] \cdot \frac{g^2}{(4\pi)^2} \alpha_{em}^2 \frac{1}{m_W^2} |F_{total}(Q^2)|^2
\]

where

\[
Q^2 = 4EE' \sin^2 \frac{\theta}{2}
\]

Summing up all the contributions to the transition form factor

\[
F_{total}(Q^2) = N_c \sum_i e_i^2 F_{1/2,i}(\tau_i, \rho_i) + F_1(\tau_W, \rho_W)
\]

\[
\tau_i = \frac{4m_i^2}{m_H^2}, \quad \rho_i = \frac{Q^2}{4m_i^2}, \quad \tau_W = \frac{4m_W^2}{m_H^2}, \quad \rho_W = \frac{Q^2}{4m_W^2}
\]
4. Numerical Analysis

We evaluate the transition form factor taking account of top-quark as well as W-boson loop.

We took $m_H^\pm = 200$ GeV.
Differential Cross Section

\[\frac{d\sigma}{dQ^2} \]

\[\text{pb}/\text{GeV}^2 \]

\[Q^2 \text{ [GeV}^2] \]

W-boson

Top-quark
Contributions from various processes

\[\gamma^* \gamma\text{-fusion} \quad S_\gamma \]

\[Z \gamma\text{-fusion} \quad S_Z \]

\[\gamma \quad W - \text{related} \]

\[Z \quad Z - \text{related} \]

Ken Sasaki’s talk
Total Cross Section

Contributions from various processes

\[\sigma \] [pb]

\[\sqrt{s} \] [GeV]

- Red: All
- Green: \(S_\gamma \)
- Blue: \(S_Z \)
- Yellow: Z-related
- Cyan: W-related

Transition From Factor in Higgs Production thru 2-photon processes
Differential Cross Section

Contributions from various processes

$\frac{d\sigma}{dQ^2}$ vs. Q^2 [GeV2]

- $\gamma^*\gamma$-fusion
- $Z\gamma$-fusion
- W - related
5. Summary and outlook

- We studied the transition form factor of Higgs particle coming from top-quark loop as well as from W-boson loop.
- W-boson loop dominates over top-quark loop for the transition form factor of Higgs
- Contribution from light quarks u,d,c,s,b and charged scalars are negligible
- As the future subject we should include the higher order effects of QCD & EW interactions
- We should also investigate the equivalent-photon method in $e^+ e^-$ collision
Back up slides
Electron-photon CM-system

\[\frac{d\sigma_{e\gamma\rightarrow eH}(\omega)}{dQ^2} = \frac{\alpha_{em}}{16Q^2} \left[1 + \left(\frac{E'}{E} \right)^2 \cos^4 \frac{\theta}{2} \right] \times |S_1(m^2, Q^2, m_H^2)|^2 \]

\[|S_1(m^2, Q^2, m_H^2)|^2 = \frac{g^2}{(4\pi)^2} \alpha_{em}^2 \frac{1}{m_W^2} |F_{total}(\tau, \rho)|^2 \]

Equivalent-photon method

Weizsäcker-Williams method

\[\frac{d\sigma_{ee\rightarrow eeH}}{dQ^2} = \int_0^E d\omega \left(\frac{N(\omega) d\sigma_{e\gamma\rightarrow eH}(\omega)}{\omega} \right) \]

\[N(\omega) = \frac{\alpha}{\pi} \left[\frac{E^2 + E'^2}{E^2} \left(\ln \frac{E}{m_e} - \frac{1}{2} \right) + \frac{(E - E')^2}{2E^2} \left(\ln \frac{2E'}{E - E'} + 1 \right) \right. \]

\[\left. + \frac{(E + E')^2}{2E^2} \ln \frac{2E'}{E + E'} \right] \]
Electron-photon CM-system

\[l = (E, 0, 0, E) \]
\[l' = (E', E' \sin \theta, 0, E' \cos \theta) \]
\[k_2 = (E, 0, 0, -E') \]

Electron-Positron Lab-system

\[l = (E_1, 0, 0, E_1), \quad E_1 = \frac{\sqrt{s}}{2} \]
\[l' = (E'_1, E'_1 \sin \Theta, 0, E'_1 \sin \Theta) \]
\[k_2 = (\omega, 0, 0, -\omega) \]

Relation of both systems

\[E = \sqrt{E_1 \omega}, \quad E' = E - \frac{m^2_H}{4E} \]
\[\sin^2 \frac{\theta}{2} = \frac{E_1 E'_1}{E E'} \sin^2 \frac{\Theta}{2} \]
\[
\frac{d\sigma_{ee\to eeH}}{dQ^2} = \int_{0}^{E} \frac{d\omega}{\omega} N(\omega) \frac{d\sigma_{e\gamma\to eH}(\omega)}{dQ^2} \quad \omega = E - E' \\
\frac{d\sigma_{e\gamma\to eH}(\omega)}{dQ^2} = \frac{\alpha_{em}}{16Q^2} \left[1 + \left(\frac{E'}{E} \right)^2 \cos^4 \frac{\theta}{2} \right] \times |S_1(m^2, Q^2, s)|^2 \\
|S_1(m^2, Q^2, s)|^2 = \frac{g^2}{(4\pi)^2} \alpha_{em}^2 \frac{1}{m_W^2} |F_{total}(\tau, \rho)|^2 \\
N(\omega) = \frac{\alpha}{\pi} \left[\frac{E^2 + E'^2}{E^2} \left(\ln \frac{E}{m_e} - \frac{1}{2} \right) + \frac{(E - E')^2}{2E^2} \left(\ln \frac{2E'}{E - E'} + 1 \right) + \frac{(E + E')^2}{2E^2} \ln \frac{2E'}{E + E'} \right] \\
E = \sqrt{\frac{s\omega}{2}}, \quad E' = E - \frac{m_H^2}{4E}
\]
\[\gamma^* \gamma \rightarrow \pi^0 \text{ amplitude} \]

\[\langle \pi^0(k) | T | \gamma(p) \gamma^*(q) \rangle = \epsilon_\mu(p) \epsilon_\nu(q) T^{\mu\nu}(p, q) \]

\[T^{\mu\nu}(p, q) = e^2 F(p, q) \epsilon^{\mu\nu\alpha\beta} p_\alpha q_\beta \]

\[T^{\mu\nu}(p, q) = (m_\pi^2 - k^2) \int d^4xd^4ye^{i p \cdot x + i q \cdot y} \langle 0 | T(J^\mu(x)J^\nu(y)\phi_\pi(0)) | 0 \rangle \]

three-current (VVA) amplitude

\[T^{\lambda\mu\nu}(p, q) \equiv \]

\[i \int d^4xd^4ye^{i p \cdot x + i q \cdot y} \langle 0 | T(J^\mu(x)J^\nu(y)A^\lambda(0)) | 0 \rangle \]
Pion Transition FF
Belle and BaBar data

Talk by A. Denig (BaBar) at QCD12
Difference BABAR – BELLE $\sim 2\sigma_{syst}$

See also talk by V. Savinov (Belle) at QCD12