EW and QCD One-Loop Amplitudes with RECOLA

Sandro Uccirati

Torino University and INFN

In collaboration with S. Actis, A. Denner, R. Feger, L. Hofer, A. Scharf

RADCOR 2013, 22-27 September 2013

After the discovery of the Higgs boson:

- Precise investigation of the Standard Model and beyond
- Need to have under control potential large corrections for several processes

After the discovery of the Higgs boson:

- Precise investigation of the Standard Model and beyond
- Need to have under control potential large corrections for several processes
- QCD corrections are known to be large
- EW corrections can be enhanced:
- in high energy regions (Sudakov log's)
- in Higgs physics
- by photon emission (mass-singular log's)

Let's concentrate on one loop corrections

Les Houches wishlist 2013 at one loop

- QCD:

$$
p p \rightarrow t \bar{t} H, \quad p p \rightarrow t \bar{t}+j \quad \text { (top decays) }
$$

- EW:

$$
\begin{aligned}
& p p \rightarrow 3 j, \\
& p p \rightarrow t \bar{t}, \quad p p \rightarrow t \bar{t} H, \quad p p \rightarrow t \bar{t}+j \quad \text { (top decays) } \\
& p p \rightarrow V+2 j, \quad p p \rightarrow V V^{\prime}, \quad p p \rightarrow V V+j, \\
& p p \rightarrow V V+2 j \quad p p \rightarrow V V^{\prime} \gamma, \quad p p \rightarrow V V^{\prime} V^{\prime \prime}, \\
& \left(V, V^{\prime}, V^{\prime \prime}=W, Z\right. \text { decay leptonically) }
\end{aligned}
$$

- Many issues at hadronic level:

Multi-channel MCs, Real emission, PDFs, Parton Shower, ...

- At least the partonic processes should be automatized

Many codes have been produced:

MCFM	Campbell, Ellis
BlackHat	Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maître
VBFNLO	Arnold, Bähr, Bozzi, Campanario, Englert, Figy, Greiner, Hackstein, Hankele, Jäger, Klämke, Kubocz, Oleari, Plätzer, Prestel, Worek, Zeppenfeld
HELAC-NLO	Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos, Pittau, Worek
GoSam	Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
NJet	Badger, Biedermann, Uwer, Yundin
AMC@NLO	Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau
OpenLoops	Cascioli, Maierh"ofer, Pozzorini

Most of them are efficient codes for QCD

Many codes have been produced:

MCFM	Campbell, Ellis
BlackHat	Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maître VBFNLO Arnold, Bähr, Bozzi, Campanario, Englert, Figy, Greiner, Hackstein, Hankele, Jäger, Klämke, Kubocz, Oleari, Plätzer, Prestel, Worek, Zeppenfeld
HELAC-NLO	Bevilacqua, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos, Pittau, Worek
GoSam	Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
NJet	Badger, Biedermann, Uwer, Yundin AMC@NLO Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau OpenLoops

Most of them are efficient codes for QCD

REcursive Computation of One Loop Amplitudes

- In the full Standard Model
- Based on recursive relations for off-shell currents

Off-shell tree currents

Given a process with L external legs:

$$
\underbrace{\mathcal{P}_{1}+\ldots+\mathcal{P}_{L-1}}_{\text {primary }}+\underbrace{\mathcal{P}_{L}}_{\text {last }} \rightarrow 0
$$

Off-shell current of a particle \mathcal{P} with n primary legs:
Def: Amplitude made of n primary on-sheel particles and the off-sheel particle \mathcal{P}

List of primary legs

- w is a scalar, spinor or vector
- The off-shell currents for external legs are the wave functions:

$$
\longrightarrow \bullet=u_{\lambda}(p) \quad \longrightarrow=\bar{u}_{\lambda}(p) \quad \rightsquigarrow_{\bullet}=\epsilon_{\lambda}(p) \quad--\bullet=1
$$

- Binary notation for $\left\{l_{1}, \ldots, l_{n}\right\}$ (HELAC):

Binary numbers $1,2,4,8, \ldots, 2^{L-1}$ for the primary legs
$\left\{l_{1}, \ldots, l_{n}\right\}$ can be expressed by $\mathcal{B}_{n}=$ sum of the n binaries
Example: $\quad\{1,2,8\} \quad \rightarrow \quad \mathcal{B}_{3}=1+2+8=11$

Note: The off-shell currents just keep trace of the primary legs used to build them, not the way it has been done.

Example: \quad Process $\begin{aligned} & e^{-}+e^{+}+\tau^{+}+\tau^{-} \rightarrow 0 \\ & 1\end{aligned}$

Recursion relation for tree amplitudes

(incoming currents) $\times($ coupling $) \times($ propagator $)$

Recursion relation for tree amplitudes

(incoming currents) \times (coupling) $\times($ propagator $)$

- Recursive procedure:

2-leg currents:

Recursion relation for tree amplitudes

(incoming currents) $\times($ coupling $) \times($ propagator $)$

- Recursive procedure:

3-leg currents:

Recursion relation for tree amplitudes

(incoming currents) \times (coupling) $\times($ propagator $)$

- Recursive procedure:

4-leg currents:

Recursion relation for tree amplitudes

- Recursive procedure:

etc. . . .

Recursion relation for tree amplitudes

(incoming currents) \times (coupling) $\times($ propagator $)$

- Recursive procedure:

etc. . . .
- Amplitude: $\mathcal{A}=w\left(\mathcal{P}_{L}, 2^{L-1}-1\right) \times(\text { propagator })^{-1} \times w\left(\mathcal{P}_{L}, 2^{L-1}\right)$

Recursion relation for loop amplitudes

General form of the amplitude: Tensor Coefficients (TCs)

$$
\begin{gathered}
\mathcal{A}=\sum_{t} c_{\mu_{1} \ldots \mu_{r_{t}}}^{(t)} T_{(t)}^{\mu_{1} \ldots \mu_{r_{t}}} \rightarrow \text { Tensor Integrals (TIs) } \\
T_{(t)}^{\mu_{1} \cdots \mu_{r_{t}}}=\int \frac{d^{n} q q^{\mu_{1}} \cdots q^{\mu_{r_{t}}}}{D_{0}^{(t)} \cdots D_{k_{t}}^{(t)}} \quad D_{k_{t}}^{(t)}=\left(q+p_{k_{t}}^{(t)}\right)^{2}-\left(m_{k_{t}}^{(t)}\right)^{2}
\end{gathered}
$$

Remark: Indices $\mu_{1}, \ldots, \mu_{r_{t}}$ are computed numerically in $\mathrm{D}=4$ dimensions.
\rightsquigarrow The rational part R2 is computed separatly: Inclusion of effective tree-level Feynman rules (as for the counterterms)
[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09-'10]

Recursion relation for loop amplitudes

General form of the amplitude:

$$
\begin{gathered}
\mathcal{A}=\sum_{t} c_{\mu_{1} \ldots \mu_{r_{t}}}^{(t)} T_{(t)}^{\mu_{1} \ldots \mu_{r_{t}}} \rightarrow \text { Tensor Integrals (Tls) } \\
T_{(t)}^{\mu_{1} \cdots \mu_{r_{t}}}=\int \frac{d^{n} q q^{\mu_{1}} \cdots q^{\mu_{r_{t}}}}{D_{0}^{(t)} \cdots D_{k_{t}}^{(t)}} \quad D_{k_{t}}^{(t)}=\left(q+p_{k_{t}}^{(t)}\right)^{2}-\left(m_{k_{t}}^{(t)}\right)^{2}
\end{gathered}
$$

Remark: Indices $\mu_{1}, \ldots, \mu_{r_{t}}$ are computed numerically in $\mathrm{D}=4$ dimensions.
\rightsquigarrow The rational part R2 is computed separatly: Inclusion of effective tree-level Feynman rules (as for the counterterms)
[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau '09-'10]
Basic idea: Cut the loop line and consider tree diagrams with two more legs.
[A. van Hameren, JHEP 0907 (2009) 088]

Given the loop process

$$
\mathcal{P}_{1}+\ldots+\mathcal{P}_{L} \rightarrow 0
$$

we consider the tree processes

$$
\underbrace{\mathcal{P}_{1}+\ldots+\mathcal{P}_{L}+\mathcal{P}}_{\text {primary }}+\underbrace{\overline{\mathcal{P}}}_{\text {last }} \rightarrow 0 \quad \forall \mathcal{P} \in\{\text { Particle of the SM }\}
$$

Given the loop process

$$
\mathcal{P}_{1}+\ldots+\mathcal{P}_{L} \rightarrow 0
$$

we consider the tree processes

$$
\underbrace{\mathcal{P}_{1}+\ldots+\mathcal{P}_{L}+\mathcal{P}}_{\text {primary }}+\underbrace{\overline{\mathcal{P}}}_{\text {last }} \rightarrow 0 \quad \forall \mathcal{P} \in\{\text { Particle of the } \mathrm{SM}\}
$$

Problem:

Associated tree diagrams are more than the original loop diagrams:

Rules to avoid double counting of the associated trees:

Rule 1: \rightarrow Fix starting point of loop flow
The current containing the first external line enters the loop flow first

Rules to avoid double counting of the associated trees:

Rule 1: \rightarrow Fix starting point of loop flow
The current containing the first external line enters the loop flow first

Rules to avoid double counting of the associated trees:

Rule 1: \rightarrow Fix starting point of loop flow
The current containing the first external line enters the loop flow first

OK

NO

NO

NO

NO

Rule 2: \rightarrow Fix direction of loop flow
The 3 currents with the 3 smallest binaries enter the loop flow in fixed order

Rules to avoid double counting of the associated trees:

Rule 1: \rightarrow Fix starting point of loop flow
The current containing the first external line enters the loop flow first

OK

NO

NO

NO

NO

Rule 2: \rightarrow Fix direction of loop flow
The 3 currents with the 3 smallest binaries enter the loop flow in fixed order

- Recursion relation for loop currents

- Recursion relation for loop currents

Remark: Indices μ_{1}, \ldots, μ_{r} are symmetrized at each step

- The coefficients $a_{k, r}^{\mu_{1} \cdots \mu_{r}}$ of the last current give the TCs $c_{\mu_{1} \ldots \mu_{r_{t}}}^{(t)}$

Loop off-shell currents

Sequence of masses in loop propagators

- i_{k} is the tensorial index:

$$
\begin{array}{lll}
i_{k}=0 & \rightarrow & w_{i_{k}}=a_{k, 0} \\
i_{k}=1, \ldots, 4 & \rightarrow & w_{i_{k}}=a_{k, 1}^{\mu_{1}} \\
i_{k}=5, \ldots, 14 & \rightarrow & w_{i_{k}}=a_{k, 2}^{\mu_{2}} \mu_{2}
\end{array}
$$

- Special wave functions for the cutted line:

where the components are $\left(\psi_{i}\right)_{j}=\left(\bar{\psi}_{i}\right)_{j}=\delta_{i j}, \epsilon_{i}^{\mu}=\delta_{i \mu}$.

Treatment of the colour

Color-flow representation [Maltoni, Paul, Stelzer, Willenbrock '02]:

"usual" gluon with color index $a=1, \ldots, 8$

$$
i, j=1,2,3
$$

$$
\sum_{i}\left(A_{\mu}\right)_{i}^{i}=0
$$

Feynman rules:

- Multiply gluon fields A_{μ}^{a} by $\left(\lambda^{a}\right)_{j}^{i} / \sqrt{2}$ and use properties of $\left(\lambda^{a}\right)_{j}^{i}$
- The color part of the Feynman rules is just product of deltas:

$$
{ }_{i_{1}}^{i_{1}} \infty_{i_{2}}^{j_{2}}={ }_{j_{1}}^{i_{1}} \leftrightarrows{ }_{i} i_{2} \times \frac{-i g_{\mu \nu}}{p^{2}}=\delta_{j_{2}}^{i_{1}} \delta_{j_{1}}^{i_{2}} \times \frac{-i g_{\mu \nu}}{p^{2}}
$$

$$
i \rightarrow \bullet \beta=u_{\lambda}(p) \delta_{\beta}^{i} \quad j \longrightarrow \alpha=\bar{u}_{\lambda}(p) \delta_{j}^{\alpha} \quad{ }_{j}^{i} \nsim \bullet{ }_{\beta}^{\alpha}=\epsilon_{\lambda}(p) \delta_{\beta}^{i} \delta_{j}^{\alpha}
$$

Structure of amplitude:

$$
\mathcal{A}_{\beta_{1} \cdots \beta_{n}}^{\alpha_{1} \cdots \alpha_{n}}=\sum_{P\left(\beta_{1}, \ldots, \beta_{n}\right)} \delta_{\beta_{1}}^{\alpha_{1}} \cdots \delta_{\beta_{n}}^{\alpha_{n}} \mathcal{A}_{P}
$$

- Colour-dressed amplitudes:
\rightarrow Compute $\mathcal{A}_{\beta_{1} \cdots \beta_{n}}^{\alpha_{1} \cdots \alpha_{n}}$ for all possible colours $\left(N_{c}^{2 n}\right)$
Squared amplitude: $\quad \overline{\mathcal{M}^{2}}=\sum_{\alpha_{1} \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{n}}\left(\mathcal{A}_{\beta_{1} \cdots \beta_{n}}^{\alpha_{1} \cdots \alpha_{n}}\right)^{*} \mathcal{A}_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{n}}$
It requires colour-dressed currents
- Structure-dressed (or colour-ordered) amplitudes:
\rightarrow Compute \mathcal{A}_{P} for all possible $P(n!)$
Squared amplitude: $\quad \overline{\mathcal{M}^{2}}=\sum_{P, P^{\prime}} \mathcal{A}_{P}^{*} C_{P P^{\prime}} \mathcal{A}_{P^{\prime}}$
It requires structure-dressed currents

Structure-dressed off-shell currents

Colour structure of off-shell current:

> with all possible permutations of

$$
\beta_{1}, \ldots \beta_{n}, j
$$

In the recursion procedure:

- Saturated parts of incoming currents multiply
- Open parts of incoming currents are contracted

Optimization: Compute once currents differing just by the colour structure
\rightsquigarrow Overcome lack of colour factorization
Example:

The code RECOLA is structured in two parts:

- Generation of the recursion procedure (to be run once)
- A current-index is given to all currents of the recursion procedure
- A branch-index is given to each step (branch) of the resursion procedure
- Identify currents differing just by the colour structure
- To each branch are associated the relevant indices
- The list of all needed Tls is generated

The code RECOLA is structured in two parts:

- Generation of the recursion procedure (to be run once)
- A current-index is given to all currents of the recursion procedure
- A branch-index is given to each step (branch) of the resursion procedure
- Identify currents differing just by the colour structure
- To each branch are associated the relevant indices
- The list of all needed TIs is generated
- Computation of the currents (to be run at each PS point)
- All needed TIs are computed
- The currents for all polarizations and colors are computed
- The last currents are contracted with the TIs to give the amplidute

Features of RECOLA (fortran 95)

- Full Standard Model in the complex mass scheme with:
- Feynman rules for rational parts
- Feynman rules for on-shell Counterterms
- Selection of resonant contributions
- Need external libraries for TIs (link to the COLLIER library implemented)
- Numerical check of cancellation of UV divergences
- Mass and dimensional regularization for collinear and soft singularities
- Select/unselect powers of α_{s} in the amplitude
- Computation of Colour- and Spin-correlations
- Optimizations:
- Helicity sum avoids recalculation of currents
- Use conservation of helicity for massless fermions
- Use partial factorization of colour structure

Performances

- Memory needed for executables, object files and libraries: negligible
- RAM needed: less than 2 Gbyte also for complicated processes
- CPU time (processor Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz):

Process	$\begin{gathered} t_{\mathrm{TIs}} \\ (\mathrm{COLLIER}) \end{gathered}$	$\begin{aligned} & t_{\text {gen }} \quad t_{\mathrm{TCs}} \\ & \text { (single helicity) } \end{aligned}$	$t_{\text {gen }} \quad t_{\mathrm{TCs}}$ (partial hel. sum)	$t_{\text {gen }} \quad t_{\mathrm{TCs}}$ (helicity sum)
$u \bar{u} \rightarrow \underset{(\text { QCD) }}{\rightarrow W^{+}} W^{-} g$	2.8 ms	$\begin{aligned} & 0.3 \mathrm{~s} \quad 0.6 \mathrm{~ms} \\ & \text { (hel: }-+-+- \text {) } \end{aligned}$	$\begin{gathered} 0.4 \mathrm{~s} \\ \text { (hel: } \mathrm{S} \mathrm{~S}-+\mathrm{S} \text {) } \end{gathered}$	$\begin{aligned} & 1.6 \mathrm{~s} \quad 9.8 \mathrm{~ms} \\ & \text { (hel: S S S S S } \end{aligned}$
$u \bar{d} \underset{(\mathrm{QCD})}{W^{+}} g g g$	130 ms	$\begin{aligned} & 14 \mathrm{~s} \quad 14 \mathrm{~ms} \\ & \text { (hel: - + - - - } \end{aligned}$	$\begin{aligned} & 25 \mathrm{~s} \quad 76 \mathrm{~ms} \\ & \text { (hel: S S - S S S) } \end{aligned}$	$\begin{array}{lr} 52 \mathrm{~s} & 221 \mathrm{~ms} \\ \text { (hel: S S S S S S) } \end{array}$
$u g \underset{(\mathrm{EW})}{\rightarrow u g} Z$	8.2 ms	$\begin{gathered} 0.5 \mathrm{~s} \quad 1.4 \mathrm{~ms} \\ \text { (hel: - -- - - } \end{gathered}$	$\begin{gathered} 1.0 \mathrm{~s} \\ \text { (hel: S S S S -) } \end{gathered}$	$\begin{gathered} 2.2 \mathrm{~s} \\ \text { (hel: S S S S S) } \end{gathered}$
$u g \rightarrow \underset{(\mathrm{EW})}{u g} \tau^{-} \tau^{+}$	28 ms	$1.3 \mathrm{~s} \quad 2.5 \mathrm{~ms}$ (hel: - - - - +	2.0 s 14.2 ms (hel: S S S S - +)	$\begin{aligned} & 3.8 \mathrm{~s} \quad 29.0 \mathrm{~ms} \\ & \text { (hel: S S S S S S) } \end{aligned}$

S = sum over helicity

Summary

- Efficient automatization for elementary EW and QCD processes at NLO
- Recursion relations \rightarrow good tool also in the EW sector
- used for EW corrections to $p p \rightarrow Z+2 j \quad \rightarrow$ Talk by Ansgar Denner

Outlook

- Publication of the code
\rightarrow Robust checks
\rightarrow Implement dynamical running of α_{s}
\rightarrow Allow extensions to other Models
\rightarrow Prepare for MC over polarizations and colours
- Let's compute other LHC processes

