$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in the Standard Model and
 $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in Two Higgs Doublet Models to NNLO in QCD

Thomas Hermann ${ }^{1}$, Mikołaj Misiak ${ }^{2}$ and Matthias Steinhauser ${ }^{1}$
${ }^{1}$ Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology
${ }^{2}$ Institute of Theoretical Physics, Warsaw University
RADCOR 2013

Outline

(1) $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in the SM

- Introduction
- W-boson boxes
- Z-boson penguins
- $\mathcal{B}^{[t=0]}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$
(2) $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in 2 HDMs
(3) Conclusion

Introduction $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$

exp. results:

- until 2012 only upper limits
- first evidence 2012
- latest combined results

[CDF, D0, Atlas, CMS, LHCb] [LHCb]
[LHCb and CMS at EPS 2013]

$$
\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(2.9 \pm 0.7) \times 10^{-9}
$$

strong reduction of error expected in the next years
$B_{s} \rightarrow \mu^{+} \mu^{-}$very sensitive to physics beyond the SM, e.g. $2 \mathrm{HDM}, \mathrm{MSSM}, \ldots$ recent progress in determination of $f_{B_{s}}$ from lattice calculations

Effective theory approach

- B-meson decays occur at low energies $\mu \ll M_{W}$
- integrating out heavy particles: $W^{ \pm}, Z$, top quark

$$
\begin{gathered}
\mathcal{L}_{\text {full }} \\
\Downarrow \\
\mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(\text { leptons and five light quarks })+N \sum_{n} C_{n} Q_{n} \\
Q_{A}=\left(\bar{b} \gamma_{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\alpha} \gamma_{5} \mu\right) \\
Q_{S}=\left(\bar{b} \gamma_{5} s\right)(\bar{\mu} \mu) \\
Q_{P}=\left(\bar{b} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{gathered}
$$

- matching

Branching ratio

- instantaneous branching ratio

$$
\begin{gathered}
\mathcal{B}^{[t=0]}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\frac{|N|^{2} M_{B_{s}}^{3} f_{B_{s}}^{2}}{8 \pi} \sqrt{1-r^{2}} \tau_{B_{s}}\left[\left|r C_{A}-u C_{P}\right|^{2}+\left|u C_{S}\right|^{2}\left(1-r^{2}\right)\right] \\
N=\frac{V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2}}{\pi^{2}}, \quad r=\frac{2 m_{\mu}}{M_{B_{s}}}, \quad u=\frac{M_{B_{s}}}{m_{b}+m_{s}}
\end{gathered}
$$

- time-integrated branching ratio
[De Bruyn et al. 2012]

$$
\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\frac{\mathcal{B}^{[t=0]}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}{1-\tau_{B_{s}} \Delta \Gamma_{s} / 2}
$$

- Standard Model:
$C_{S, P}$ are suppressed by $\frac{M_{B s}^{2}}{M_{W}^{2}} \quad \Rightarrow \quad \mathcal{B}^{[t=0]}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \propto\left|C_{A}\right|^{2}$

$$
C_{A}=C_{A}^{(0)}+\frac{\alpha_{s}}{4 \pi} C_{A}^{(1)}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{A}^{(2)}+\ldots
$$

LO:

$$
C_{A}^{(0)}=\frac{1}{2} Y_{0}(x)
$$

NLO: $C_{A}^{(1)} \quad$ [Buchalla and Buras 1993, 1999; Misiak and Urban 1999]

$$
C_{A}^{(n)}=C_{A}^{W,(n)}+C_{A}^{Z,(n)}
$$

W-boson boxes

(a)

(b)

(c)

$$
C_{A}^{W,(n)}=C_{A}^{W, t,(n)}-C_{A}^{W, c,(n)}
$$

due to the unitartity of the CKM matrix

- off-shell 1LPI amplitudes in full and effective theory
- external momenta to zero \rightarrow tadpole diagrams
- spurious IR-divergences on both sides
a) matching in $d \neq 4$ dimensions \rightarrow evanescent operators
b) matching in $d=4$ dimensions \rightarrow light quark masses as IR regulators

W-boson boxes: Matching in d dimensions

- spurious IR-divergences regulated with dimensional regularisation
- IR-divergences cancel in matching procedure BUT: additional poles in ϵ at intermediate steps
- evanescent operator

$$
Q_{A}^{E}=\left(\bar{b} \gamma_{\alpha_{1}} \gamma_{\alpha_{2}} \gamma_{\alpha_{3}} \gamma_{5} s\right)\left(\bar{\mu} \gamma^{\alpha_{3}} \gamma^{\alpha_{2}} \gamma^{\alpha_{1}} \gamma_{5} \mu\right)-4 Q_{A}
$$

$Q_{A}^{E}=0$ in $d=4$ dimensions

- limit $d \rightarrow 4$ after matching

W-boson boxes: Matching in d dimensions

calculation on full theory side

- project on Dirac structures of Q_{A} and Q_{A}^{E} in full theory diagrams

$$
\Rightarrow C_{A, \text { bare }}^{W,(n)} \text { and } C_{A, \text { bare }}^{E,(n)}
$$

- three-loop vacuum integrals with two different mass scales: m_{t} and M_{W}
- 1 L and 2 L exact mass dependence
- 3L results for different expansions
a) Taylor expansion in mass difference: $M_{W} \approx m_{t}$ $w=1-\frac{M_{W}^{2}}{m_{t}^{2}}$ up to order w^{16}
b) Asymptotic expansion: $M_{W} \ll m_{t}$

$$
y=\frac{M_{W}}{m_{t}} \text { up to order } y^{12}
$$

generate Feynman diagrams: QGRAF
asymptotic expansion: Q2E/ExP
[Harlander, Seidensticker, Steinhauser 1998 and Seidensticker 1999]
Form package
for 3L tadpoles with one mass scale: Matad

W-boson boxes: Matching in d dimensions

calculation on effective theory side

- in effective theory all loop diagrams vanish (massless tadpoles)
- but: UV counterterms are needed to get rid of IR-divergences on full theory side
- renormalization in effective theory

$$
C_{A} Q_{A}+C_{A}^{E} Q_{A}^{E} \rightarrow Z_{\psi}\left(C_{A} Z_{N N} Q_{A}+C_{A} Z_{N E} Q_{A}^{E}+C_{A}^{E} Z_{E N} Q_{A}+C_{A}^{E} Z_{E E} Q_{A}^{E}\right)
$$

(a)

(b)

- $Z_{N N}=1$ (quark current conservation)
- $Z_{E N}=\alpha_{s}(\ldots)+\alpha_{s}^{2}(\ldots)+\mathcal{O}\left(\alpha_{s}^{3}\right)$

W-boson boxes: Matching in d dimensions

matching formulae for Wilson coefficients: $(Q=c, t)$

$$
\begin{aligned}
C_{A}^{W, Q}= & \left(1+\Delta Z_{\psi}\right) \sum_{n=0}^{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n}\left[\left(Z_{g}^{\mathrm{SM}}\right)^{2 n} C_{A, \text { bare }}^{W, Q,(n)}+\delta^{t Q} \Delta T^{W, t,(n)}\right] \\
& -Z_{E N} C_{A}^{E, Q}+\mathcal{O}\left(\alpha_{s}^{3}\right)
\end{aligned}
$$

- ΔZ_{ψ} : difference of wave-function renormalization constants in full and effective theory
- $Z_{g}^{\text {SM }}: \alpha_{s}$ renormalization constant
- ΔT : contributions from top-quark mass renormalization
$\alpha_{s}=\alpha_{s}^{(5)}$ is gauge coupling in 5-flavour QCD

W-boson boxes: Matching in $d=4$ dimensions

alternative approach for matching

- matching in $d=4$ dimensions \rightarrow no evanescent operator
- b - and s-quark masses as IR-regulators
- 1 L and 2 L loop amplitudes in effective theory asymptotic expansion: $m_{s} \ll m_{b}$
- in full theory two different expansions:
$m_{s} \ll m_{b} \ll M_{W} \ll m_{t}$
$m_{s} \ll m_{b} \ll M_{W} \approx m_{t}$
- renormalization of full theory and effective theory amplitudes
- matching of UV finite results in $d=4$ dimensions
- after matching: $m_{s} \rightarrow 0$ and $m_{b} \rightarrow 0$
same results for matching in $d \neq 4$ and $d=4$ dimensions

Results for $C_{A}^{W,(2)}$

$000000000 \bullet 000000$

black solid lines:
$w=1-\frac{M_{W}^{2}}{m_{t}^{2}} \ll 1$
up to $\mathcal{O}\left(w^{16}\right)$

blue dashed lines:
$y=\frac{M_{W}}{m_{t}} \ll 1$ up to $\mathcal{O}\left(y^{12}\right)$

Z-boson penguins

- background field version of the 't Hooft-Feynman gauge for the electroweak bosons
- no contributions to evanescent Wilson coefficient C_{A}^{E}
- same expansions in masses as for W-boson boxes
- electroweak counterterm already at LO

- quark triangle diagrams at three-loop level \rightarrow special attention on γ_{5}

Z-boson penguins: Electroweak counterterm

- electroweak counterterm Lagrangian

$$
\mathcal{L}_{\text {counter }}^{\mathrm{ew}}=i \frac{G_{F} M_{W}^{2}}{4 \sqrt{2} \pi^{2}}\left(V_{c b}^{*} V_{c s} Z_{2, s b}^{c}+V_{t b}^{*} V_{t s} Z_{2, s b}^{t}\right) \bar{b}_{L} \not D_{s_{L}}
$$

- determination of $Z_{2, s b}^{Q}$
(a)

(b)

(c)

- CT insertion $s b Z$ into tree-level
- CT insertion $s b Z, s b g$ and $s b$ into 2 L diagrams with top-quark loop

(b)

(c)

Z-boson penguins: Fermion triangle contributions

(b)

- γ_{5} in axial-vector coupling in triangle loop
- trace evanescent operators
- no evaluation of trace in the triangle loop
\Rightarrow following structures in the results

$$
\begin{array}{r}
\gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5} \otimes \gamma_{\mu} \gamma_{5} \operatorname{Tr}\left(\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \gamma_{5}\right) \\
\gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \otimes \gamma_{\mu} \gamma_{5} \operatorname{Tr}\left(\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \gamma_{5}\right)
\end{array}
$$

- trace evanescent operators: $Q_{1,2}^{E}=0$ for $d=4$

$$
\begin{aligned}
& Q_{1}^{E}=\left(\bar{b} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right) \operatorname{Tr}\left(\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \gamma_{5}\right)+24\left(\bar{b} \gamma^{\mu} s\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right) \\
& Q_{2}^{E}=\left(\bar{b} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} s\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right) \operatorname{Tr}\left(\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \gamma_{5}\right)+24\left(\bar{b} \gamma^{\mu} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right)
\end{aligned}
$$

\Rightarrow Wilson coefficients for Q_{1}^{E}, Q_{2}^{E} and Q_{A}

Results for $C_{A}^{Z,(2)}$

$C_{A}^{Z,(2)}$ grows as m_{t}^{2} for large values of m_{t} $\Rightarrow y^{2} C_{A}^{Z,(2)}$ is plotted

black solid lines:
$w=1-\frac{M_{W}^{2}}{m_{t}^{2}} \ll 1$
up to $\mathcal{O}\left(w^{16}\right)$
blue dashed lines:
$y=\frac{M_{W}}{m_{t}} \ll 1$
up to $\mathcal{O}\left(y^{12}\right)$

Matching scale dependence

$\left.\mathcal{B}\right|_{\text {NNLO }}\left(\mu_{0}=m_{t}\left(m_{t}\right)\right)=\left.1.002 \cdot \mathcal{B}\right|_{\text {NLO }}\left(\mu_{0}=m_{t}\left(m_{t}\right)\right)$
$\left.\mathcal{B}\right|_{\text {NNLO }}\left(\mu_{0}=80 \mathrm{GeV}\right)=\left.1.014 \cdot \mathcal{B}\right|_{\text {NLO }}\left(\mu_{0}=80 \mathrm{GeV}\right)$
$\left.\mathcal{B}\right|_{\text {NNLO }}\left(\mu_{0}=40 \mathrm{GeV}\right)=\left.1.10 \cdot \mathcal{B}\right|_{\text {NLO }}\left(\mu_{0}=40 \mathrm{GeV}\right)$

> scale uncertainty for $\mu_{0} \in\left[\frac{1}{2} m_{t}, 2 m_{t}\right]$
> NLO QCD $\Rightarrow 1.8 \%$
> NNLO QCD $\Rightarrow 0.2 \%$

$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in the SM

+ known NLO EW corrections
[Buchalla and Buras 1998]
[Bobeth,Gambino,Gorbahn,Haisch 2004]
[Huber,Lunghi,Misiak,Wyler 2006]
missing full NLO EW corrections $\quad \rightarrow \quad 5 \%$
some input parameters and uncertainties
- $f_{B_{s}}=(227.7 \pm 4.5) \mathrm{MeV} \rightarrow 4 \%$
- $\left|V_{t b}^{*} V_{t s}\right|=0.0416 \pm 0.0009 \rightarrow 4 \%$
- $M_{t}=(173.1 \pm 0.9) \mathrm{GeV} \quad \rightarrow \quad 1.6 \%$
[FLAG]
[CKMfitter, Gambino and Schwanda 2013]
[PDG]
adding errors in quadrature $\rightarrow 8 \%$

$$
\begin{aligned}
& \mu_{0}=m_{t}\left(m_{t}\right)=163.5 \mathrm{GeV} \\
& \mathcal{B}^{[t=0]}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.62 \pm 0.29) \times 10^{-9}
\end{aligned}
$$

full NLO EW corrections
[C. Bobeth, M. Gorbahn, E. Stamou, to be published]
NNLO QCD corrections
[TH, M. Misiak, M. Steinhauser, to be published]

$$
\left.\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)\right|_{E_{\gamma}>E_{0}}=\left.\Gamma\left(b \rightarrow X_{s}^{p} \gamma\right)\right|_{E_{\gamma}>E_{0}}+\binom{\text { non-perturbative contributions }}{\sim \pm 5 \% \text { [Benzke et al. 2010] }}
$$

exp. world average: measured at CLEO, BELLE and BABAR

$$
\begin{equation*}
\left.\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)\right|_{E_{\gamma}>1.6 \mathrm{GeV}}=(3.43 \pm 0.22) \cdot 10^{-4} \tag{HFAG2012}
\end{equation*}
$$

SM NNLO prediction:

$$
\left.\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)\right|_{E_{\gamma}>1.6 \mathrm{GeV}}=(3.15 \pm 0.23) \cdot 10^{-4}
$$

[Misiak et al. 2006]
$Q_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu}$
$Q_{8}=\frac{g}{16 \pi^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}$

Two Higgs Doublet Models

- $\mathrm{SM}+$ additional Higgs doublet (two Higgs doublets)
- physical basis: h, H, A and $H^{ \pm}$
- interaction between charged Higgs $H^{ \pm}$and quarks:

$$
\mathcal{L}=\left(2 \sqrt{2} G_{F}\right)^{1 / 2} \sum_{i, j=1}^{3} \bar{u}_{i}\left(A_{u} m_{u_{i}} V_{i j} P_{L}-A_{d} m_{d_{j}} V_{i j} P_{R}\right) d_{j} H^{+}+\text {h.c. }
$$

2HDM Type II (e.g. MSSM):

$$
A_{u}=-\frac{1}{A_{d}}=\frac{1}{\tan \beta} \quad \text { with } \quad \tan \beta=\frac{\left\langle\phi_{2}^{0}\right\rangle}{\left\langle\phi_{1}^{0}\right\rangle}
$$

Wilson coefficients: $C_{i}=A_{d} A_{u}^{\star} \ldots+A_{u} A_{u}^{\star} \ldots$, terms with A_{d}^{\star} are suppressed with m_{s}
(1) matching: 2HDM
(2) running/mixing: same as in SM
[Misiak et al. 2006]
(3) on-shell matrix elements: same as in SM

Calculation of C_{7} and C_{8} to 3L

C_{7} : amputated 1LPI Green function $b \rightarrow s \gamma$
~ 350 diagrams for 3L
(a)

(b)

(c)

C_{8} : amputated 1LPI Green function $b \rightarrow s g$
(d)

(e)

(f)

Calculation of C_{7} and C_{8} to 3 L

2 loops:

Wilson coefficients to 2 loops
[Ciafaloni, Romanino and Strumia 1997]
[Ciuchini, Degrassi, Gambino and Giudice 1997]
[Borzumati and Greub 1998]

3 loops:

[TH, Misiak, Steinhauser 2012]
three-loop vacuum integrals with two different mass scales m_{t} and $M_{H^{ \pm}}$
(1) $M_{H^{ \pm}} \gg m_{t}$: asymptotic expansion $\left(m_{t} / M_{H^{ \pm}}\right)^{10}$
(2) $M_{H^{ \pm}} \approx m_{t}$: ordinary Taylor expansion $\left(M_{H^{ \pm}}^{2}-m_{t}^{2}\right)^{16}$
(0) $M_{H^{ \pm}} \ll m_{t}$: asymptotic expansion $\left(M_{H^{ \pm}} / m_{t}\right)^{10}$

matching:

same matching formulae as in the SM
[Misiak and Steinhauser 2004] and similar to the C_{A} formulae

Results for $C_{7}: A_{d} A_{u}^{\star}$

analog results for $C_{7, A_{u} A_{u}^{\star}}, C_{8, A_{d} A_{u}^{\star}}$ and $C_{8, A_{u} A_{u}^{\star}}$

Results for $C_{7}: A_{d} A_{u}^{\star}$

analog results for $C_{7, A_{u} A_{u}^{\star}}, C_{8, A_{d} A_{u}^{\star}}$ and $C_{8, A_{u} A_{u}^{\star}}$

Results for $C_{7}: A_{d} A_{u}^{\star}$

analog results for $C_{7, A_{u} A_{u}^{\star}}, C_{8, A_{d} A_{u}^{\star}}$ and $C_{8, A_{u} A_{u}^{\star}}$

Matching scale dependence in 2HDM Type II

partial NNLO in 2HDM Type II without $C_{7,8}^{(2) \text { eff, } 2 \mathrm{HDM}}\left(\mu_{0}\right)$
[Misiak et al. 2006] $\Delta \mathcal{B} \equiv \mathcal{B}_{2 \mathrm{HDM}}-\mathcal{B}_{\mathrm{SM}}$

Uncertainty band in 2HDM Type II

$\tan \beta>2: \mathcal{B}$ is almost independet of $\tan \beta$
$\tan \beta<2: \mathcal{B}$ increases for smaller $\tan \beta \Rightarrow$ strengthen lower limit on $M_{H^{+}}$

Uncertainty band in 2HDM Type II

$\tan \beta>2: \mathcal{B}$ is almost independet of $\tan \beta$
$\tan \beta<2: \mathcal{B}$ increases for smaller $\tan \beta \Rightarrow$ strengthen lower limit on $M_{H^{+}}$

Uncertainty band in 2HDM Type II

$\tan \beta>2: \mathcal{B}$ is almost independet of $\tan \beta$
$\tan \beta<2$: \mathcal{B} increases for smaller $\tan \beta \Rightarrow$ strengthen lower limit on $M_{H^{+}}$

Uncertainty band in 2HDM Type II

$\tan \beta>2: \mathcal{B}$ is almost independet of $\tan \beta$
$\tan \beta<2$: \mathcal{B} increases for smaller $\tan \beta \Rightarrow$ strengthen lower limit on $M_{H^{+}}$
Lower bound

$$
M_{H^{+}} \geq 360 \mathrm{GeV} \text { with } 95 \% \mathrm{CL}
$$

Conclusion

$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in the SM

- three-loop corrections to C_{A}
- $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$to NNLO accuracy in QCD \Rightarrow no remaining QCD scale uncertainty
- full NLO EW corrections [C. Bobeth, M. Gorbahn, E. Stamou, to be published] common update of branching ratio (work in progress)
\Rightarrow significant reduction of perturbative uncertainties
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ in 2HDMs
- C_{7} and C_{8} to three-loop order in Two Higgs Doublet Models \Rightarrow consistent NNLO estimation in 2HDMs
- reduction of matching scale dependence
- lower bound on charged Higgs mass in 2HDM Type II:

$$
M_{H^{+}} \geq 360 \mathrm{GeV} \text { with } 95 \% \mathrm{CL}
$$

