Progress towards vector boson pair production in NNLO QCD

Dirk Rathlev
with M. Grazzini, S. Kallweit, A. Torre

Universität Zürich

23.9.2013

Outline

- Introduction
- 2 The method
- **3** $pp \rightarrow Z\gamma \rightarrow \ell^+\ell^-\gamma$: first results
- 4 Conclusion

Motivation

- fully exclusive NNLO QCD calculations are desirable for several reasons
 - increased accuracy
 - reduced scale dependence
 - more realistic jet treatment
 - in some regions, NLO is effectively LO
 - · all partonic channels consistently included
 - realistic studies with experimental cuts
- available NNLO computations:
 - pp o H [Anastasiou, Melnikov, Petriello (2005); Catani, Grazzini (2007)]
 - ullet pp
 ightarrow V [Melnikov, Petriello (2006); Catani, Cieri, Ferrera, de Florian, Grazzini (2009)]
 - ullet $e^+e^-
 ightarrow {
 m three\ jets\ [Gehrmann-De\ Ridder,\ Gehrmann,\ Glover,\ Heinrich\ (2007)]}$
 - ullet pp o WH [Ferrera, Grazzini, Tramontano (2011)]
 - ullet $pp o \gamma \gamma$ production [Catani, Cieri, de Florian, Ferrera, Grazzini (2011)]
 - $pp o ext{dijet} (gg ext{ channel})$ [Gehrmann-De Ridder, Gehrmann, Glover, Pires (2013)]
 - ullet $pp
 ightarrow tar{t}$ (total cross section) [Czakon, Mitov (2012); Czakon, Fiedler, Mitov (2013)]
 - ullet $pp
 ightarrow H + {
 m jet} \left(gg \ {
 m channel}
 ight)$ [Boughezal, Caola, Melnikov, Petriello, Schulze (2013)]

Vector boson pair production

- ullet vector boson pair production pp o VV' logical next step in the NNLO program
 - important standard model test
 - background for Higgs analyses and BSM searches
 - experimental accuracy is approaching uncertainty of NLO prediction
 - some moderate excesses in the experimental data

	$\sigma \left(pp ightarrow W^+W^- + X ight) \left[ext{pb} ight]$	SM NLO [pb]
ATLAS 7 TeV	$51.9 \pm 2.0 \pm 3.9 \pm 2.0$	$44.7^{+2.1}_{-1.9}$
CMS 7 TeV	$52.4 \pm 2.0 \pm 4.5 \pm 1.2$	$44.7^{+2.1}_{-1.9}$
CMS 8 TeV	$69.9 \pm 2.8 \pm 5.6 \pm 3.1$	$44.7^{+2.1}_{-1.9}$ $44.7^{+2.1}_{-1.9}$ $57.3^{+2.4}_{-1.6}$

Status of $pp \rightarrow VV'$

- ullet NNLO QCD calculation of $\gamma\gamma$ done [Catani, Cieri, de Florian, Ferrera, Grazzini (2011)]
- next step: $Z\gamma$ and $W\gamma$
 - QCD NLO corrections available [Ohnemus (1993); Baur, Han, Ohnemus (1998);

de Florian, Signer (2000); Campbell, Ellis, Williams (2011)]

loop-induced gg contribution [Amettler, Gava, Paver, Treleani (1985); van der Bij, Glover (1988);

Adamson, de Florian, Signer (2003)]

- electroweak corrections available [Hollik, Meier (2004); Accomando, Denner, Meier (2006)]
- necessary ingredients:
 - $pp o V\gamma + 2$ partons at tree level, available
 - ullet $pp
 ightarrow V \gamma + 1$ parton at one loop, available [Campbell, Hartanto, Williams (2012)]
 - $pp o V\gamma$ at two loops, available [Matsuura, van der Marck, van Neerven (1989); Gehrmann, Tancredi (2012)]
 - $gg \rightarrow V\gamma$ loop-induced, available
- we obtain tree- and one-loop amplitudes from OpenLoops + Collier library [Cascioli, Maierhofer, Pozzorini (2012); Denner, Dittmaier, Hofer; Denner, Dittmaier (2005)]
- MC generator: inhouse solution [Kallweit]
- use q_T subtraction [Catani, Grazzini (2007)] for handling of IR divergences

q_T subtraction method I

- consider a process $c\overline{c} \to F$, c = q or c = g; final state F is colorless
- then

$$d\sigma_{(N)NLO}^F\Big|_{q_T \neq 0} = d\sigma_{(N)LO}^{F+jets}$$

- singular for $q_T \to 0$, but limiting behaviour is known from transverse momentum resummation program [Bozzi, Catani, de Florian, Grazzini (2006)]
- define counterterm $\mathrm{d}\sigma^{CT} = \Sigma(q_T/Q) \otimes \mathrm{d}\sigma_{LO}, \quad Q \equiv m_F$
- add $q_T = 0$ piece to obtain the full result:

$$d\sigma_{(N)NLO}^{F} = \mathcal{H}_{(N)NLO}^{F} \otimes d\sigma_{LO} + \left[d\sigma_{(N)LO}^{F+jets} - d\sigma^{CT} \right]$$

q_T subtraction method II

$$d\sigma_{(N)NLO}^{F} = \mathcal{H}_{(N)NLO}^{F} \otimes d\sigma_{LO} + \left[d\sigma_{(N)LO}^{F+jets} - \underbrace{\sum \otimes d\sigma_{LO}}_{=d\sigma^{CT}} \right]$$

•
$$\mathcal{H}^F = \underbrace{1}_{\text{tree level}} + \underbrace{\left(\frac{\alpha_S}{\pi}\right)\mathcal{H}^{F(1)}}_{\text{(finite) one-loop amplitude}} + \underbrace{\left(\frac{\alpha_S}{\pi}\right)^2\mathcal{H}^{F(2)}}_{\text{(finite) two-loop amplitude}} + \dots$$

- ${\rm d}\sigma_{NLO}^{F+jets}$ can be treated by known techniques (Catani-Seymour dipoles, ...)
- $\Sigma(q_T/Q) = \left(\frac{\alpha_S}{\pi}\right) \Sigma^{(1)}(q_T/Q) + \left(\frac{\alpha_S}{\pi}\right)^2 \Sigma^{(2)}(q_T/Q) + \dots$
- counterterm is universal (only depends on whether c=g or c=q) and $\Sigma^{(1)}$ and $\Sigma^{(2)}$ are known in both cases

Photon isolation

- two contributions to photon production:
 - direct production in the hard process, e.g. genuine $\ell^+\ell^-\gamma$ production
 - · non-perturbative fragmentation of a hard parton
- in experiments, impose hard cone isolation: $\sum_{\delta<\delta_0} E_T^{had} \leq \varepsilon_\gamma E_T^\gamma$
- only infrared safe when combined with fragmentation contribution due to quark-photon collinear singularity
- smooth cone isolation [Frixione (1998)]: define $\chi(\delta) = \left(\frac{1-\cos(\delta)}{1-\cos(\delta_0)}\right)^n$,

$$\sum_{\delta' < \delta} E_T^{had} \le \varepsilon_\gamma E_T^\gamma \chi(\delta) \quad \text{for all} \quad \delta \le \delta_0$$

smooth cone isolation eliminates fragmentation contribution completely

Setup and cross sections

- we present results for $pp \to \ell^+\ell^-\gamma + X$
- setup close to the ATLAS analysis [ATLAS collaboration (2013)]

•
$$p_T^\gamma > 15\,\mathrm{GeV}$$
 or $p_T^\gamma > 40\,\mathrm{GeV}$, $|\eta^\gamma| < 2.37$, $p_T^\ell > 25\,\mathrm{GeV}$, $|\eta^\ell| < 2.47$

- $m_{\ell\ell} > 40 \,\mathrm{GeV}$
- $\Delta R(\ell, \gamma) > 0.7$
- $\Delta R(\ell/\gamma, jet) > 0.3$, where $E_T^{jet} > 30 \, {\rm GeV}$ and $|\eta^{jet}| < 4.4$, jets clustered using the anti- k_T algorithm with radius D=0.4
- smooth cone isolation with $\delta_0=0.4$ and $\varepsilon=0.5$

•
$$\mu_R = \mu_F = \sqrt{m_Z^2 + (p_T^{\gamma})^2}$$

cross sections:

		LO	NLO	NNLO	exp.
$p_T^\gamma > 15 ext{GeV}$	σ [pb]	0.851(1)	1.226(1)	1.325(3)	1.31(12)
	rel. correction		44%	8%	
$p_T^{\gamma} > 40\mathrm{GeV}$	σ [fb]	77.45(3)	132.90(8)	153.3(5)	
	rel. correction		72%	16%	
CMS setup	σ [pb]	1.334(1)	1.891(1)	2.021(5)	
	rel. correction		42%	7%	

Stability

• check independence of phase space regulator (small cut on q_T/Q)

Scale uncertainty

- check scale variation; tiny at NLO due to an accidental cancellation
- follow proposition by [Campbell, Ellis, Williams (2011)] and vary $\mu_R = a\mu_0, \ \mu_F = \mu_0/a, \ a \in [0.5,2]$

Invariant mass distribution, $p_T^\gamma > 15\,\mathrm{GeV}$

Invariant mass distribution, $p_T^{\gamma} > 40 \,\text{GeV}$

Conclusion

- first fully differential NNLO QCD computation of $Z\gamma$ production
- good apparent convergence of perturbative series (e.g. ATLAS cuts: $K_{NNLO/NLO} = 1.08$, $K_{NLO/LO} = 1.44$)
- K factor not uniform and strongly cut dependent. Corrections can vary between 7% and 16% for typical LHC cuts
- loop-induced gg contribution very small, does not capture most of the NNLO correction
- next goal: $W\gamma$ production. No additional complications expected
- more phenomenology will follow

Contributions by channel

	$q\overline{q}$	gq	$g\overline{q}$	gg	qq	$\overline{q}\overline{q}$	total [fb]
LO	851						851
NLO	1255	-6	-23				1226
NNLO	1364	-16	-38	6	6	1	1323

- $q\overline{q}$ the dominant channel at each order and also has the largest corrections
- ullet gq and $g\overline{q}$ have negative weight
- gg is tiny

