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1 The ubiquitous MPL

An MPL is defined, recursively, by a word and a complex variable at the upper
limit of an integration that prepends a letter to a shorter word:

G(aw, z) =
∫ z
0

dt

t− a
G(w, t) ; G({0}n, t) =

logn(t)

n!
.

This definition subsumes harmonic polylogarithms (HPLs), nested sums of the form

Ls1,...,sk(z1, . . . , zk) =
∑

n1>n2>...>nk>0

k∏
j=1

z
nj
j

n
sj
j

and hence subsumes the MZV datamine, where z2j = 1 was studied with Johannes
Blümlein and Jos Vermaseren (BBV), and also my favourite MPLs, with z6j = 1, in
arXiv:hep-th/9803091.

Good maths: a ring with a shuffle algebra, solved by Lyndon words, and a co-product
leading to a Hopf algebra. For MZVs: a double-shuffle algebra.

Utility: several talks at this conference exploit this mathematical structure, to good
effect, in the service of successful standard-model phenomenology.
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2 The first MPL in QFT: an unsolved puzzle

Following the Durham LMS conference on polylogs, in June 2013, Jianqiang Zhao,
Freeman Dyson (né 15 December 1923), Johannes Blümlein and I sought the oldest
MPL in QFT. Our best candidate comes from
Julian Schwinger, Phys. Rev. 79 (1949) 790–817
with Eq. (2.97) on page 812 giving

f(θ) =
1

sin(θ/2)

∫ 1

cos(θ/2)

F (x)− F (−x)√
x2 − cos2(θ/2)

dx ; F (x) =
log(1 + x)− log(2)

1− x

with f(π) = 1
2ζ(2) evaluated by Julian. PSLQ gives the unproven evaluation

f(π/2) ?=
1

2
ζ(2) +

1

2
log2(2).

Moreover, I conjecture a general evaluation in terms of an MPL:

f(θ) ?=
ζ(2) +G(01, cos2(θ/2))

1− cos(θ)
.

Lumley Castle ghost-free MPL challenge: A liquid prize for a proof of this
formula, while Nigel Glover’s malt whisky stocks persist.
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3 Three-loop 6-point MPLs in a superfluous model

Imagine the (infrared pathological) on–shell limit of a Yang–Mills theory with N = 4
superfluous symmetries (SUSYs) combined with Gerard ’tHooft’s trick of letting the
coupling tend to zero and the number of colours tend to infinity, in such a manner
that only the very sparse set of planar diagrams survives.Then we need no ultra-
violet renormalization, no dimensional transmutation and probably obtain no mass
gap and hence no physics. But the maths is beautiful. Computing no Feynman
diagrams, Lance Dixon, James Drummond, Matt von Hippel and Jeffrey Pennington
announced in http://arxiv.org/abs/1308.2276, last month, an evaluation of an
infra-red regularized 3-loop 6-point amplitude, with conformal cross–ratios {u, v, w},
in terms of MPLs with words of up to 6 letters in the 11-letter alphabet

{0, 1, u, v, w, 1− u, 1− v, 1− w, yu, yv, yw}

yu =
u− z+
u− z−

; yv =
v − z+
v − z−

; yw =
w − z+
w − z−

;

2z± = −1 + u+ v + w ±
√

(−1 + u+ v + w)2 − 4uvw .

They identified a basis of 69 irreducible MPLs with less than 6 letters. There are
105 irreducible MPLs with precisely 6 letters. They were able to provide a complete
reduction to MPLs of a 3-loop 6-point remainder function, in this planar N = 4
super–Yang–Mills model, without needing to identify a complete 6-letter basis.
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4 Beyond MPL: a small toolkit of modular forms

For |q| < 1, let

η(q) ≡ q1/24
∏
n>0

(1− qn) =
∞∑

n=−∞
(−1)nq(6n+1)2/24

then for =z > 0,
η(exp(2πiz)) = (i/z)1/2η(exp(−2πi/z)).

If f(z) = (
√
−N/z)wf(−N/z), we say that f is a modular form of weight w and

level N . Example with weight 12 and level 1:

η(q)24 =
∑
n>0

A(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + . . .

Its Fourier coefficients are multiplicative: A(mn) = A(m)A(n) for gcd(m,n) = 1,
and are determined by A(p) at the primes p:

L(s) ≡
∑
n>0

A(n)

ns
=
∏
p

1

1− A(p)p−s + p11−2s
.

Moreover, we can analytically continue to values inside the critical strip:

Λ(s) ≡ Γ(s)

(2π)s
L(s) =

∑
n>0

A(n)
∫ ∞
1

dx
(
xs−1 + x11−s

)
exp(−2πx) = Λ(12− s).
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4.1 Multiplicative modular forms from eta-products

For brevity, let ηn ≡ η(qn). Here are some multiplicative modular forms identified
in quantum field theory

form weight level QFT
η31η

3
7 3 7 BS

η21η2η4η
2
8 3 8 BS

η32η
3
6 3 12 BS + BFT + BBBG + BV

η41η
4
5 4 5 BS

η21η
2
2η

2
3η

2
6 4 6 BS + BB

η41η
2
2η

4
4 5 4 BS

η61η
6
3 6 3 BS

η122 6 4 BS
η81η

8
2 8 2 BS

η241 12 1 BK

by Bailey, Borwein, Broadhurst, Glasser (BBBG), Bloch, Vanhove (BV), Broad-
hurst, Brown (BB), Broadhurst, Fleischer, Tarasov (BFT), Broadhurst, Kreimer
(BK), and Brown, Schnetz (BS).
Comment: QFT seems blind to Birch and Swinnerton–Dyer: nothing at weight 2.
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5 BMPL: an elliptic dilogarithm

Consider the two-loop massive sunrise diagram in D = 2 spacetime dimensions:

I(p2,m1,m2,m3) ≡
1

π2

 3∏
k=1

∫ d2qk
q2k −m2

k + iε

 δ(2)(p− q1 − q2 − q3).
Following BBBG, we obtain an efficient result from the imaginary part on the cut:

I(w2,m1,m2,m3) = 8π
∫ ∞
m1+m2+m3

A(x)xdx

x2 − w2

with an elliptic integral

A(w) =
1

agm
(√
F (w),

√
F (w)− F (−w)

)
that is the reciprocal of an arithmetic–geometric mean with

F (w) = (w+m1+m2+m3)(w+m1−m2−m3)(w−m1+m2−m3)(w−m1−m2+m3).

From the complementary elliptic integral

B(w) =
1

agm
(√
F (w),

√
F (−w)

)
we obtain the elliptic nome

q(w) ≡ exp(−πB(w)/A(w)).
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5.1 Differential equation in the equal–mass case

Now set m1 = m2 = m3 = 1. Then F (w) = (w + 3)(w − 1)3 and the differential
equation, found with Jochem Fleischer (sadly deceased in April 2013) and Oleg
Tarasov (BFT) in 1993, is

−
 q(w)

q′(w)

d

dw

2 I(w2, 1, 1, 1)

24
√

3A(w)

 =
w2(w2 − 1)(w2 − 9)A(w)3

9
√

3
.

Regarding w and A(w) as functions of q, we have a parametric solution

w

3
=

(
η3
η1

)4 (η2
η6

)2
, 4
√

3A =
η61η6
η32η

2
3

.

Moreover, the two algebraic relations between {η1, η2, η3, η6} give

w2 − 1

8
=

(
η2
η1

)9 (η3
η6

)3
,

w2 − 9

72
=

(
η6
η1

)5 η2
η3
.

Hence the BFT differential equation reduces to

−
(
q

d

dq

)2 ( I

24
√

3A

)
=
w

3
f3,12 =

η33
η1

3

+

η36
η2

3

where, remarkably, f3,12 ≡ (η2η6)
3 is a weight-3 level-12 modular form found in

massless φ4 theory by Brown and Schnetz.
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5.2 Bloch–Vanhove elliptic dilogarithm

Define a character with χ(n) = ±1 for n = ±1 mod 6 and χ(n) = 0 otherwise. Then

−
(
q

d

dq

)2 ( I

24
√

3A

)
=

∑
n>0

n2(qn − q5n)
1− q6n

=
∑
n>0

∑
k>0

n2χ(k)qnk.

Integrate twice and use the known imaginary part on the cut, to obtain

I(w2, 1, 1, 1)

4A(w)
= L(−1)− L

(
e−πB(w)/A(w)

)
, L(q) = π log(−q) +

∑
k>0

6
√

3χ(k)qk

k2(1− qk)
,

where the Clausen value L(−1) = −5 Cl2(π/3) makes I(1, 1, 1, 1) finite.

For the deeper meaning, please consult http://arxiv.org/abs/1309.5865
by Spencer Bloch and Pierre Vanhove. Here, I have sought merely to find a short
route from the differential equation of BFT to the final BV formula. By doing so, I
omit their intuition and perspective, which are more important than the result.
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6 B2MPL: modular forms in massless QFT

In 1995, Dirk Kreimer and I evaluted all periods for φ4 primitive divergences up to
6 loops. At 7 loops we lacked three evaluations. Of these, I have evaluated two:

P7,8 =
22383

20
ζ(11)− 4572

5
[ζ(3)ζ(5, 3)− ζ(3, 5, 3)]− 700ζ(3)2ζ(5)

+ 1792ζ(3)

[
27

80
ζ(5, 3) +

45

64
ζ(5)ζ(3)− 261

320
ζ(8)

]
,

P7,9 =
92943

160
ζ(11)− 3381

20
[ζ(3)ζ(5, 3)− ζ(3, 5, 3)]− 1155

4
ζ(3)2ζ(5)

+ 896ζ(3)

[
27

80
ζ(5, 3) +

45

64
ζ(5)ζ(3)− 261

320
ζ(8)

]
.

The period P7,11 in the Schnetz census has not been reduced to MZVs. Francis
Brown suggests that it might eventually be reduced to polylogs of weight 11 at sixth
roots of unity. Erik Panzer is working on this very demanding problem.
In April 2013, Francis Brown and Oliver Schnetz (BS) announced a study that
classifies obstructions to polylogarithmic evaluations of φ4 counterterms at 8, 9 and
10 loops. In 16 cases they were able to exhibit a modular form, inferred from study of
the Symanzik polynomial, modulo a selection of primes. Here I select f3,12 ≡ (η2η6)

3

and f4,6 ≡ (η1η2η3η6)
2. The first figured in the Bloch–Vanhove (BV) sunrise diagram.

Now I use the second. Comment: massless and massive diagrams communicate.
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7 B3MPL: modular forms in massive QFT

This week, Ettore Remiddi sent encouraging news about Stefano Laporta’s epic
efforts to achieve thousands of digits of accuracy for the very large number of master
integrals that contribute to the 4-loop magnetic moment of the electron.

Here I examine the number theory of the most demanding case: with 5 fermions
in the intermediate state. As in the Bloch–Vanhove case, I avoid UV problems by
working in D = 2 dimensions, where the number theory is expected to be the same
as for D = 4. Contracting the photons lines and replacing the fermion lines by
massive scalar propagators we arrive at the on-shell sunrise integral S6,4, where

SN,L ≡ 2L
∫ ∞
0
I0(y)N−L−1K0(y)L+1ydy.

Here N is the total number of Bessel functions and L is the number of loops. For
convergence, we require that L < N ≤ 2L + 2. With N = 2L + 2 we require that
L > 1. BBBG proved that:

S1,0 = S2,1 = 1, S3,1 =
2π

3
√

3
, S3,2 =

4 Cl2(π/3)√
3

, S4,2 =
π2

4
, S4,3 = 7ζ(3),

S5,2 =
π2

8

(√
15−

√
3
) ∞∑

n=−∞
e−
√
15πn2

4

=

√
3

120π
Γ(1/15)Γ(2/15)Γ(4/15)Γ(8/15)
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where the final product of Gamma values results from the Chowla–Selberg theorem.

Remark: York Schröder needed a counterterm in 3-dimensional lattice field theory
for which we used Chowla–Selberg to obtain the product Γ2(1/24)Γ2(11/24).

BBBG also conjectured (and checked to 1000 digits) that

S5,3 =
4π√
15
S5,2, S6,4 =

4π2

3
S6,2, S8,5 =

18π2

7
S8,3.

7.1 Sunrise at 3 loops from a modular form of weight 3

Let L3,15(s) be the Dirichlet L-function defined by the multiplicative modular form

f3,15 = (η3η5)
3 + (η1η15)

3

with weight 3 and level 15. Then I conjecture (and have checked to 1000 digits) that

S5,2 = 3L3,15(2), S5,3 =
8π2

15
L3,15(1),

where S5,3 is the 5-Bessel moment giving the on–shell 3–loop sunrise diagram.
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7.2 Sunrise at 4 loops from a modular form of weight 4

Let L4,6(s) be the Dirichlet L-function defined by the multiplicative modular form

f4,6 = (η1η2η3η6)
2

with weight 4 and level 6. Then I conjecture (and have checked to 1000 digits) that

S6,2 = 6L4,6(2), S6,3 = 12L4,6(3), S6,4 = 8π2L4,6(2),

where S6,4 is the 6-Bessel moment giving the on–shell 4–loop sunrise diagram.

7.3 Almost sunrise at 6 loops from a modular form of weight 6

Let L6,6(s) be the Dirichlet L-function defined by the multiplicative modular form

f6,6 =

η32η33
η1η6

3

+

η31η36
η2η3

3

with weight 6 and level 6. Then I conjecture (and have checked to 1000 digits) that

S8,3 = 8L6,6(3), S8,4 = 36L4,6(4), S8,5 = 216L4,6(5),

but no result for S8,6, the 8-Bessel moment for the on–shell 6–loop sunrise diagram.
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Epilogue

Thus far, with rough and all–unable pen,
Our bending author hath pursued the story,
In little room confining mighty men,
Mangling by starts the full course of their glory.
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