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Outline

I The program SecDec 2.1

I Applications:
• Non-planar two-loop boxes entering the tt̄ production @NNLO
• Towards momentum dependent two-loop corrections to the

MSSM neutral CP-even Higgs-boson masses
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Theoretical Predictions in the LHC Era

I A lot of progress has been achieved towards the goal of
describing hadron collider processes consistently at NLO

I Calculations beyond NLO are also progressing well, but
automation is difficult, and analytic methods to calculate e.g.
two-loop integrals involving massive particles reach their limit

I Numerical methods are in general easier to automate,
problems mainly are

I Extraction of IR and UV singularities
I Numerical convergence in the presence of integrable

singularities (e.g. thresholds)
I Speed/accuracy
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Theoretical Predictions in the LHC Era

I A lot of progress has been achieved towards the goal of
describing hadron collider processes consistently at NLO

I Calculations beyond NLO are also progressing well, but
automation is difficult, and analytic methods to calculate e.g.
two-loop integrals involving massive particles reach their limit

I Numerical methods are in general easier to automate,
problems mainly are

I Extraction of IR and UV singularities (solved with SecDec 1.0)
I Numerical convergence in the presence of integrable

singularities (e.g. thresholds) (solved with SecDec 2.0)
I Speed/accuracy (improved with SecDec 2.1)
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Public codes using the sector decomposition method

Idea and method of sector decomposition pioneered by
Hepp ’66, Denner & Roth ’96, Binoth & Heinrich ’00

Public codes:

I sector decomposition (uses GiNaC) C. Bogner & S. Weinzierl ’07

supplemented with CSectors Gluza, Kajda, Riemann, Yundin ’10

for construction of integrand in terms of Feynman parameters

I FIESTA (uses Mathematica, C) A.V. Smirnov, V.A. Smirnov, M.

Tentyukov ’08 ’09

I SecDec (uses Mathematica, Fortran/C++) J. Carter &

G. Heinrich ’10; SB, J. Carter, G. Heinrich ’12; SB & G. Heinrich ’13

Many people are/have been working on purely numerical
methods, e.g. Anastasiou et al., Weinzierl et al., Binoth/Heinrich et al.,

Boughezal/Melnikov/Petriello et al., Czakon et al., Freitas et al., Kurihara et al.,

Nagy/Soper et al., Passarino et al., ...
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SecDec 2.1 can tackle ...

SecDec is a tool to numerically compute various sorts of integrals
contributing to higher-order computations.

It can tackle:

I General Feynman integrals and more general parametric
functions for arbitrary kinematics

orgraph
Feynman

function
parametric
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General Feynman Integral

I Generic Feynman integrals in D dimensions at L loops with
N propagators to power νj of rank R with Nν =

∑N
j=1 νj , e.g.

scalar multi-loop integral in Feynman parametrization

G =
(−1)Nν

∏N
j=1 Γ(νj)

Γ(Nν − LD/2)

∞∫

0

N∏

j=1

dxj x
νj−1
j δ(1−

N∑

l=1

xl)
UNν−(L+1)D/2(~x)

FNν−LD/2(~x)

I Extension to physical kinematics including mass thresholds
since SecDec 2.0: Limitation of multi-scale integrals to the
Euclidean region lifted! SB, Carter, Heinrich ’12

NEW in SecDec 2.1

I Computation of contracted tensor integrals at in principle
arbitrary rank possible SB & Heinrich ’13

TRank3
12345 =

∫∫
dDk1 d

Dk2
p1µk

µ
1 k1νk

ν
2

D1D2D3D4D5
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Parametric Functions

A general parametric function can be

I a phase space integral where IR divergences are regulated
dimensionally

I functions similar to hypergeometric functions, e.g.

3F2(a1,..., a3; b1, b2;β) ∝
∫∫ 1

0
dxdy xa1−1(1− x)b1−a1−1ya2−1(1− y)b2−a2−1(1− βxy)−a3

NEW in SecDec 2.1

I Computation of more general user-defined polynomial
integrals matching the Feynman loop integral structure
SB & Heinrich ’12 ’13
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Operational Sequence of the SecDec 2.1 Program

graph info Feynman integral
iterated sector
decomposition

contour
deformation

subtraction
of poles

expansion
in ǫ

numerical
integration

result
n∑

Cmǫ
m

1a 2
3

456

7 8

multiscale?
yesno

m=−2L

user−defined
function

1b

Numerical integration:
Cuba library Hahn et al. ’04 ’11 or Bases Kawabata ’95
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New features of the program SecDec Version 2.1

I Computation of contracted tensor integrals at in principle
arbitrary rank possible

I User-defined functions amenable to contour deformation can
be inserted and decomposed directly

I User-friendliness and efficiency improved (e.g. convergence
behavior written to result files)
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Application I:
Massive non-planar 2-loop diagrams for tt̄@NNLO

m1

m2

p2p1

p4

p3

(a) ggtt1

m1p2p1

p4

p3

(b) ggtt2

I Diagram ggtt1 entering heavy fermionic corrections:
finite, no analytical results available
→ easily computable with SecDec

I Diagram ggtt2 entering light fermionic corrections:
leading pole O(ε−4), spurious divergence, analytic result by
Manteuffel & Studerus ’12 ’13

→ many functions to integrate, cancellations
⇒ mixed approach: analytical preparation beforehand
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Analytical manipulations beforehand

Goals for better numerical convergence:

1) decrease number of numerical integration parameters

2) turn linear divergences x−2−ε into logarithmic ones

3) decrease number of functions

Achieving goal 1: Integrate out one loop first

m1p2p1

p4

p3

m1

p2

p1 p4

p3

→ analytical integration of one Feynman parameter is possible

Achieving goal 2 & 3: Using a new transformation, a more even
distribution of divergences among Feynman parameters is possible
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Results for the non-planar massive two loop diagram
ggtt1
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Scalar integral Rank 2

m2
1 = m2

2 = 1, p2
3 = p2

4 = m2
1, p

2
1 = p2

2 = 0, s23 = −1.25

timings: 11-60 secs (scalar) & 5-10 secs (rank 2) far from threshold (th.)
1600 secs (scalar) & max. 3600 secs (rank 2) very close to th.

rel. accuracy: 10−3, abs. accuracy: 10−5
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Result for the non-planar massive two loop diagram
ggtt2
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Finite part 1/ε pole

m2
1 = 1, p2

1 = p2
2 = 0, p2

3 = p2
4 = m2

1, s23 = −1.25

timings: 250-4000 secs, rel. accuracy 5·10−3, abs. accuracy: 10−5

analytic results: Manteuffel & Studerus ’13
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Application II: Momentum dependent two-loop
corrections to the neutral CP-even Higgs-boson
masses in the MSSM

I Minimal extension of the SM allowing for SUSY:
2 Higgs doublets

H1 =

(
v1 + 1√

2
(φ0

1 + iχ0
1)

−φ−1

)
H2 =

(
φ+

2

v2 + 1√
2

(φ0
2 + iχ0

2)

)

I MSSM Higgs potential (incl. soft SUSY breaking terms)

V =m1|H1|2 + m2|H2|2 −m12(εabH
a
1H

b
2 + h.c .)

+
1

8
(g2

1 + g2
2 )(|H1|2 − |H2|2)2 +

1

2
g2

2 |H†1H2|2

I MSSM Higgs potential fixed by g1, g2, the vevs in tanβ ≡ v2
v1

and soft SUSY breaking term in m2
A = m2

12(tanβ + cotβ)
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Public codes implementing the rMSSM corrections

FeynHiggs Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein ’00 ’03 ’07

SoftSusy Allanach ’02 SPheno Porod ’03

CPsuperH Carena, Choi, Drees, Ellis, Lee, Pilaftsis, Wagner ’04 ’09

Suspect Djouadi, Kneur, Moultaka ’07

H3m Kant, Harlander, Mihaila, Steinhauser ’10

Summary of the implemented rMSSM corrections:

1-loop complete
2-loop O(αsαt), O(α2

t ), O(αsαb), O(αtαb), O(α2
b), gaugeless limit

and p2 = 0
3-loop O(α2

sαt), gaugeless limit and p2 = 0

dominant correction @ 2-loop: O(αsαt) (p2 = 0)

next improvement: O(αsαt) for p2 6= 0
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Analytical side: Two-loop renormalization for
neutral CP-even Higgs-boson self-energies

h0,H0 h0,H0

Feynman diagrammatic calculation performed in the gaugeless
limit

I Renormalization corresponds to FeynHiggs renormalization

I Mass renormalization in the OS scheme:

δM
2(2)
A , δt

(2)
1 , δt

(2)
2 , δm

(1)

t̃1
, δm

(1)

t̃2
, δm

(1)
t

I Field renormalization in the DR scheme:

δZ
(2)
H1

, δZ
(2)
H2

, δtanβ(2)

I Resulting input parameters: mt , µ,Xt ,MSUSY ,mg̃ , tanβ,mA

Xt = At − µ cotβ and At the soft SUSY breaking parameters
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Numerical side: Integrals provided by SecDec
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T1234, finite part T11234, finite part

relative accuracy: 10−4, max. 7.5 secs very close to threshold
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Towards the neutral MSSM Higgs-boson masses

I Join analytical and numerical results to compute the neutral
CP-even Higgs-boson self-energies

I The new self-energy corrections are included in the inverse
Higgs-boson propagator matrix

Γ ≡ ∆−1
Higgs =

(
p2 −m2

H,tree + Σ̂H(p2) Σ̂hH(p2)

Σ̂hH(p2) p2 −m2
h,tree + Σ̂h(p2)

)

with renormalized self-energies Σ̂ up to the two-loop level

I The propagator poles m2
H and m2

h are solutions to Det(Γ) = 0
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Summary & Outlook

Summary

I SecDec 2.1 is a useful tool to compute various sorts of
integrals: multi-loop integrals, contracted tensor integrals and
user-defined polynomial integrals

I We computed non-planar 2-loop 4-point master integrals
entering tt̄@NNLO computations

I Momentum dependent 2-loop corrections to the MSSM Higgs
masses are feasible using SecDec 2.1

Outlook

I Further applications to other massive two-loop amplitudes

I Combination with new unitarity inspired reduction of 2-loop
amplitudes
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Backup
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Install SecDec 2.1

I Download:
http://secdec.hepforge.org

I Install:
tar xzvf SecDec.tar.gz
cd SecDec-2.1
./install

I Prerequisites:
Mathematica (version 6 or above), Perl, Fortran and/or C++
compiler
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User Input I

I param.input: parameters for integrand specification and
numerical integration
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User Input II
I template.m: definition of the integrand

(Mathematica syntax)

p3

p1

p2

1

2

3

4

5
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Program Test Run

I ./launch -p param.input -t template.m
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Get the Result

I resultfile P126 full.res
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Deformation of the integration contour to integrate
mass thresholds

Re(z)

Im(z)

10

I Integrand is analytically continued into the complex plane

F(~t)→ F(~t + i~y(~t)) = F(~t) + i
∑

j

yj(~t)
∂F(~t)

∂tj
+O(y(~t)2)

I The integration contour is deformed by

~t → ~z = ~t + i~y ,

yj(~t)= −λtj(1− tj)
∂F(~t)

∂tj
Soper ’99

Soper, Nagy, Binoth; Kurihara et al., Anastasiou et al., Freitas et al., Becker et al.

S. Borowka (MPI for Physics) Two-loop applications of SecDec 2.1 29



Convert linear divergences into logarithmic ones
~xjk denotes all Feynman parameters excluding xj and xk

Assume α > 1 and functions P, Q, R such that a linear divergence
appears in xj in Eq. (1) after sector decomposition

N∏

i=1

{∫ 1

0
dxi

}
[xj(P(~xjk) + xkQ(~xjk)) + R(~xjk)]−α (1)

=
N∏

i=1

{∫ 1

0
dxi

}
1

xj
[xjP(~xjk) + xkQ(~xjk) + R(~xjk)]−α

−
N∏

i=1

{∫ 1

0
dxi

}
1

xj
[xk(xjP(~xjk) + Q(~xjk)) + R(~xjk)]−α

We rest with a logarithmic divergence in xj .
I Linear divergences can be turned into logarithmic ones
I In the case of ggtt2 this leads to a total reduction of number

of functions by 2/3
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Result for the non-planar massive two loop diagram
ggtt2
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analytic results: Manteuffel & Studerus ’12
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2-loop bubble with 2 mass scales - Results

thresholds at 4 ·m2
1 = 8 and 4 ·m2

2 = 16
m1 m2

m1 m2
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2-loop bubble with 2 mass scales - Timings
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I relative & absolute accuracy 0.1%

I Scalar integral is finite, rank 3 integral has O(ε−2) poles

I Intel Core i7 Processor
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