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IR structure

Useful facts about IR singularities

1. They cancel between real and virtual contributions

2. In unresolved limits, QCD amplitudes factorize

3. Real singularities described by-universal functions
> process dependent information in reduced matrix element

4. Virtual singularities described by universal functions
> obey general colour space factorization formula [catani 98]

5. Universality + factorization (of ME and PS) allows a finite cross section to
be obtained using subtraction techniques
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TesmEme

subtraction

Pros and cons of traditional approach

Pros:

» complete analytic control of the singularities
» all integrated antennae are known

> final-final [Gehrmann-De Ridder, Gehrmann, Glover, '05]
> initial-final [Daleo, Gehrmann, Maitre, '07],[Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, '10]
> initial-initial [Boughezal, Gehrmann-De Ridder, Ritzmann, '11. Gehrmann, Ritzmann '12],[Gehrmann, Monni, '11]

» IR limits of squared partial amplitudes well understood

> antennae constructed from squared partial amplitudes

Cons:
> antennae constructed from squared partial amplitudes
> loses structural information in the sum over colour

» process-independent method can be difficult to follow



TesmEme

subtraction

New approach: colourful antenna subtraction synthesis

» Take the best bits from traditional method. . .the antennae

» Match onto the predictable colour space singularity structure
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functions

colour explicit
antenna
subtraction

» Resulting method needs no new integrals and applies to arbitrary processes



2-loop singularities

Notation and 1-loop recap

Move into colour space with set of abstract basis vectors |c)

Mn == <C|Mn> & |-/\/ln|2 = <Mn|Mn>

One-loop amplitude pole structure governed by colour dipole insertion operator,

90 = IEP () (T T)

pairs(i.j)

One-loop cross section pole structure given by,

2Re[(M?,|M ] Z2Re[ ] (MOY(T; - T)MO) + OD)

(M)



2-loop singularities

IR structure at 2 loops

Similar amplitude factorization formula at 2-loops
(ME) = 1D (IMz) +12()MR) + O(")

where,

1P(e) = —%I(l)(e)l(l)(e) 4 %lm(e) AL 7‘*_:(2(1_;)26) <% L K) 1D (2¢) + HO(¢)

Leads to the two-loop cross section pole structure,

IMAF = (M[2Re[1)(0)] IMD) + (Mil2Re 1 (6)| IM3)
_ b

€

S MO2Re[I0(] M) — 2 ptdj2Re 1 ()] |A3)

e 28
r1—e

+ (M?,|2Re[H(2)(e)] M%) + O()

e (% o K) (M(,),|2Re[l(1)(26)] |MO)



2-loop singularities

A dipole form for the Hard Function

Has the general form,

HP(e) = > aHP (o) + AP (e) + O(e)

> ’H@(e) diagonal in colour space
> I:I(2)(e) a non-dipole tensor in colour space } = lecloniidipeles

However. . .
(MR () MD) =0
then using colour conservation,

H®(e) = - Z'H,(j?)(d (T; - Tj) + irrelevant terms
()



antenna dipoles

2-loop antenna dipoles

Strategy: construct new functions from integrated antennae which reproduce
poles of Catani operators

T (= ZJ&”U) (Ti-T))

TP = ZJ (Ti-T))
(i.j)
I = IR, >+ £ 38, i),
T2 ) = NIQ j)——J D 1) +lNeID, (i) +
2 ) N 2 »J FI2 Ne )J

WG ~ A(s)
Sij

0.0 ~ )+ )+ 2| () =1+ [# 0 48]



antenna dipoles

Double virtual subtraction term

Strategy: Match poles of integrated dipoles onto the known IR structure,

AU
donno ~

2Re[(MOIT (M) + %(M?,U(l)(e)z\/\/l?) + (M TP ()| M)

» completely predictable for arbitrary NNLO processes
> generates both leading and sub-leading colour

> clear link with unintegrated subtraction terms



RR and RV subtraction terms

Cascading down the calculation: VV—RV—RR

> integrated antennae in ng) and Jf) determine unintegrated antennae

» colour charge sandwiches determine structure of the subtraction term
e.g.
IOENTT)) ~ X)) (T ) + A3 (s)(Ti- T)) + -+

X‘?("’ k, lvj)(T(iZI) ’ T(E)) X31(i7 kv.j)(T(ﬁ() i T(Ej))

C RR C RV

» antennae fixed without considering unresolved limits of the RR or RV

> directly inherited terms indirectly fix remaining subtraction terms

RR, RV and VV subtraction terms fixed by colour algebra at LC and SLC



Advantage #1: economy

Many subtraction terms have a common origin.
e.g. e"e” — 3j one-loop antenna contribution:

Traditional approach:
1. decompose all four-parton one-loop ME into colour stripped functions

2. examine unresolved limits of the functions independently

3. subtract unresolved limits of each function using 1-loop antennae

Colourful antenna approach:

1. all one-loop antennae come from J ) (¢) (predictable)

2. generates a single, completely fixed, insertion operator

x0) 27/ EP U TN
i#j#k

3. many terms originate in one predictable object



the fully colour summed result. ..
2 ~ ~ E

{5 [ BB @) 2078 (pks)
+ (2,4, 9)BY (L, (3)g: (20)0) 157 ({p}a)

- A(1,,2)BY({0)erdor 30)a) 75" ({r}a)]
. [ 43015.2) BTy (B)g) 74" {2}o)
(Ms[X37(e)| M3) = + (15280 1o, BT (210
5 | A5B[4 3017 ()a)] }

NN [0S (A6 B e ()0 20 75V ({ph)
(4)eP(3.4)

+ d3(2,5,) B3 Ly, (), (1)a) 157 ({pbs)
+ B}(1,3, DB(I3)q, (31);, 25" ({p})
+ E3(2,3,9)B)(L,, (52);, ()9 75" ({r}a)]

e | B8, 9B((19),, (31),,2)8 Ip)s)

+ E4(2,3.9)B3(14, (39), (39) 18" ({p}a)
+ Y A2, 5, @9 1Y (ph)]

(i.5)EP(3.4)
+NE | EL(1,3,4)BE((13), (32),, 20) 15 ({p}a)
F EACER] 3 q: g: 23)/3 "\\Pr3

+ (2,3, 9)BY(L,, (32);, (2)9) 57 ({rha) | }



Advantage #2: basis independence

Traditional approach requires explicit knowledge of ME IR behaviour:
» decomposition into colour ordered sub-amplitudes

» factorization of colour ordered functions dictated by colour connection

Colourful antenna approach formulated in terms of sandwiches of abstract
vectors in colour space, e.g.,

(MO TP ()| M)
» IR colour structure independent of basis used

> related to traditional approach by choosing colour ordered basis

> free to pick the most convenient basis for explicit calculation



Advantage #3: Less thinking required

Traditional approach requires a good understanding of ME divergences

> squared partial amplitudes v/
> general interferences of partial amplitudes X

> additional relations sometimes required
> single ordering can have intermediate (pseudo) divergences

» more work needed to understand IR behaviour of the full amplitude

Colourful antenna approach driven by IR pole structure of the full amplitude
» only knows about the divergent piece of the ME
» avoids pseudo divergences

» deals with LC and SLC on an equal footing



Example: NNLO correction to gg — gg at SLC

Example: NNLO correction to gg — gg at SLC

Interesting test because:
» RR and RV MEs not written in terms of squared partial amplitudes
> non-trivial single and double unresolved factorization pattern

> strategy not immediately obvious

Start with VV subtraction term:

dé o ~
{ S 407, ) 2Re( AT T4
(i)

-+ ZZ (i,4) @ 38 (k, )] (AT - T))(Te - T)] A2

isj) (ksl)

+ YO T,.|,43>} 19 (03, ).
()



Example: NNLO correction to gg — gg at SLC
VV subtraction

Colour charge sandwiches (1)

In all-gluon approx, I\/Ig”éf ~ (N?—-1) [(’)(N4) + (’)(Nz)},

IP(ij) (AT -THlAY ~ (N2 —1)O(N*)
N N\ —— e

O(N) (N2-1)O(N3)

J(i, j) term does not contribute to SLC subtraction

v

> no F? antennae in RR

» no Fi antennae in RV

v

only F? antennae needed to describe all singularities at SLC



Example: NNLO correction to gg — gg at SLC
VV subtraction

Colour charge sandwiches (I1)

>3 (870610 @ 480 DHACT, - T(Ti - TOlD 3

(i) (k1) (i)
{ (5-7:?(51,') TP %]‘—3(5@') = %]:E(v)(sij) B %-7:3?(521'))

®(37em) + 373(55) — Flom) - 3730 (L. 3,7.))

+ 3 (Bl + 376 - 3R ) - 37 s)

F3
b S Fs)) AL 1.5.) )

512

(s12)
®(F(om) + 3F3s) ~ 573(sw) -

> colour algebra dictates (+ + ——) pattern of antennae

> no collinear divergences at unintegrated level



Example: NNLO correction to gg — gg at SLC
VV subtraction

Colour charge sandwiches (I11)

> 90(,J) 2Re(AYT; - Tj|43) ~ 2Re Y

(i.J)

[ GRG)+ 57 -

2

+ (57 + 3 Fsy) ~ o) =

+ (}—0(512)4' SFS(si) —

When combined with (II):

(%)

2 75en) — 373(s)) AT (3,30, AR 3,50 )
f*’(su>)A° SN VIR N)

2 Fsy)) A (3,0, 3,4, 7))

=

]:3 (sll) -

» all initial-state collinear poles cancel without use of MF kernels

> leading singularity ~ 1/€* with coefficient ~

log(si)

> exactly cancels the VV poles of the 2-loop matrix elements



Example: NNLO correction to gg — gg at SLC
Cascade down to RR and RV

RR and RV subtraction

IQAT; - THAD =0 | | IS AT Tild) | | IO (AT - T) (T - )1 AD)




Example: NNLO correction to gg — gg at SLC
Cascade down to RR and RV

RR and RV subtraction

( A A 0

IQAT; - THAD =0 | | IS AT Tild) | | IO (AT - T) (T - )1 AD)

. J \_ _

IDAYT; - T AD) XA Ty - Tl ALY | | XIS (AQ(T) - TU) (T - TL)|AD




Example: NNLO correction to gg — gg at SLC
Cascade down to RR and RV

RR and RV subtraction

( A A 0

IQAT; - THAD =0 | | IS AT Tild) | | IO (AT - T) (T - )1 AD)

. J \_ _

IDAYT; - T AD) XA Ty - Tl ALY | | XIS (AQ(T) - TU) (T - TL)|AD

74

X3(AQ T, - T,|A42) XIXS(AG|(T) - TJ)(Tk - To)[A2)




Example: NNLO correction to gg — gg at SLC

analytic and numerical results

Results. . . it worked!

» all VV and RV poles cancel. . . analytically
> all IR divergence in RR and RV subtracted
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conclusions

To take away. ..

Colourful antennae: a reformulation of antenna subtraction

> take the best bits from traditional method. .. no new integrals
» combine with known NNLO IR structure in colour space

» synthesise into colour explicit antenna subtraction

> IR pole structure fixes RR, RV and VV subtraction terms

> applicable to arbitrary processes inc. SLC

> we tried it alongside traditional method. . . it worked

> first steps towards a genuinely automatable NNLO method



