Status of OpenLoops and simulation of $H \rightarrow WW$ backgrounds with Sherpa+OpenLoops

Philipp Maierhöfer

Institute for Theoretical Physics
University of Zürich

RADCOR 2013
11th International Symposium on Radiative Corrections
Lumley Castle, 24 September 2013

Based on
F. Cascioli, S. Höche, F. Krauss, P. M., S. Pozzorini, and F. Siegert
arXiv:1309.0500
Outline

1. **The OpenLoops Algorithm**
 - Loop Amplitudes and Tensor Integrals
 - Open Loops Recursion
 - Performance and Numerical Stability

2. **Sherpa+OpenLoops**
 - Interfacing Sherpa with OpenLoops
 - Process libraries for ATLAS and CMS

3. **Irreducible background to** $H \rightarrow WW^* + 0,1\text{ jet}$
 - p_T Distribution and Jet Veto Effects
 - Squared Loop Contributions
 - ATLAS and CMS Analyses
Tensor integral representation of loop amplitudes

Decompose Feynman diagrams into **colour factors**, tensor coefficients, and tensor integrals.

\[
p_1 \rightarrow p_2 p_3 p_4 \rightarrow q \rightarrow \ldots \rightarrow p_N \rightarrow p_5
\]

\[
\begin{align*}
&= C \cdot \sum_{r=0}^{R} \mathcal{N}_{r}^{\mu_{1}...\mu_{r}} \cdot \int d^{d}q \frac{q_{\mu_{1}} \cdots q_{\mu_{r}}}{D_{0} D_{1} \cdots D_{N-1}} \\
&D_{i}=(q+\sum_{\ell=0}^{i} p_{\ell})^{2} - m_{i}^{2}
\end{align*}
\]

- **Algebraic colour reduction** and summation once per process.
- **Recursive numerical construction of the coefficients**

 [van Hameren ‘09: Dyson-Schwinger recursion for multi-gluon amplitudes]

 → avoid huge expressions & expensive algebraic simplifications.

- **Tensor integral reduction** [Melrose; Passarino, Veltman; Denner, Dittmaier; Binoth et al.; Fleischer, Riemann; ...]

 with **Collier** [Denner, Dittmaier, Hofer]: Denner-Dittmaier reduction cures numerical instabilities, e.g. by applying expansions in small Gram determinants.

- Alternatively **OPP reduction** [Ossola, Papadopoulos, Pittau]

 with **CutTools** or **Samurai** [Mastrolia, Ossola, Reiter, Tramontano].
Wave functions w^α of “sub-trees” are 4-tuples (for the spinor/Lorentz index) which are built by recursively connecting lower sub-trees with vertices $X_{\gamma\delta}^\beta$ and propagators, starting from external legs.

$$w^\beta(i) = \frac{X_{\gamma\delta}^\beta}{p_i^2 - m_i^2} w^\gamma(j) w^\delta(k)$$

A one-loop diagram is an ordered set of sub-trees $I_n = \{i_1, \ldots, i_n\}$

$$\mathcal{N}(I_n; q) = \frac{X_{\gamma\delta}^\beta}{p_0^2 - m_0^2} \mathcal{N}_\alpha^\beta(I_{n-1}; q) w^\delta(i_n)$$
Open Loops Recursion

Start from $\mathcal{N}_\alpha^\beta(\mathcal{I}_n; q) = X_\gamma^\beta(q) \mathcal{N}_\alpha^\gamma(\mathcal{I}_{n-1}; q) w_\delta^\beta(i_n)$

and disentangle the loop momentum q from the coefficients

$$\mathcal{N}_\alpha^\beta(\mathcal{I}_n; q) = \sum_{r=0}^{n} \mathcal{N}_{\mu_1...\mu_r;\alpha}(\mathcal{I}_n) q^{\mu_1} ... q^{\mu_r}, \quad X_\gamma^\beta = Y_\gamma^\beta + q^\nu Z_\nu^\beta;_\gamma^\delta$$

Leads to the recursion formula for “open loops” polynomials $\mathcal{N}_{\mu_1...\mu_r;\alpha}$:

$$\mathcal{N}_{\mu_1...\mu_r;\alpha}(\mathcal{I}_n) = \left[Y_\gamma^\beta \mathcal{N}_{\mu_1...\mu_r;\alpha}(\mathcal{I}_{n-1}) + Z_{\mu_1;\gamma}^\beta \mathcal{N}_{\mu_2...\mu_r;\alpha}(\mathcal{I}_{n-1}) \right] w_\delta^\beta(i_n)$$

- $\mathcal{N}_{\mu_1...\mu_r;\alpha}$ are the coefficients of the tensor integrals.
- Open loops encode the functional dependence of the numerator of the amplitude on the loop momentum.
- Numerical implementation requires only universal building blocks, derived from the Feynman rules of the theory.
Implementation and performance

Input: process definition file

- **FeynArts** [Hahn] generates Feynman diagrams.
- Mathematica organises recursion, reduces colour factors, and generates Fortran 90 code.
- QCD corrections to Standard Model processes implemented.
- Rational terms R_2 are restored using tree-level Feynman rules.

[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau ‘09, ‘10; Shao, Zhang, Chao ‘11]

Time to generate code: seconds to minutes

Compiled library size: 100 kB to a few MB

Runtime per phase space point: <1 s for a $2 \rightarrow 4$ process (i7-750 single core, ifort 10.1)
Numerical Stability

\[\sqrt{s} = 1 \text{ TeV}, \ p_T > 50 \text{ GeV}, \ \Delta R_{ij} > 0.5, \ 10^6 \text{ points/process} \]

- Numerical precision, measured by a scale test using tensor integrals, in double precision;
- 11-15 digits on average, 1 permille with <5 digits in the worst 2 → 4 case for well separated particles.

- “Suspicious” points are detected on-the-fly and rescued if possible.
- In practice, e.g. decaying particles can be aligned with the beam: in \(\text{pp} \rightarrow \ell\ell\nu\nu j \) a fraction of \(O(10^{-4}-10^{-5}) \) of the points is unstable.
- In NNLO real emission, MC integration in soft regions is stable down to \(10^{-4}Q \) (double precision). See talk by Dirk Rathlev.
- Quad precision support is available and can be used on-the-fly for even more challenging applications and reliable stability studies.
Sherpa+OpenLoops

Loop matrix elements are one building block of NLO simulations.

The Sherpa [Gleisberg et al. ‘09] Monte Carlo event generator provides

- IR subtraction, real emission, phase space integration
- parton shower and MC@NLO matching [Höche, Krauss, Schönherr, Siegert ‘12]
- MEPS@NLO multi-jet merging [Höche, Krauss, Schönherr, Siegert ‘13]
- ...

Sherpa+OpenLoops

- Seamless integration via dynamic library loader.
- Steered by standard Sherpa runcards, matrix element generation is completely transparent to the user.

Fully automated NLO calculations
Process libraries for ATLAS and CMS

Libraries for a wide range of processes are available to the ATLAS and CMS Monte Carlo groups.

<table>
<thead>
<tr>
<th>W/Z</th>
<th>jets</th>
<th>HQ pairs</th>
<th>single-top</th>
<th>Higgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>V + 3j</td>
<td>γ+3j</td>
<td>t\bar{t} + 1j</td>
<td>t + 1(2)j</td>
<td>(H + 2j)</td>
</tr>
<tr>
<td>VV + 2j</td>
<td>γγ+1(2)j</td>
<td>t\bar{t}V + 0(1)j</td>
<td>tW + 0(1)j</td>
<td>VH + 1j</td>
</tr>
<tr>
<td>gg → VV + 1j</td>
<td>Vγ+2j</td>
<td>\bar{b}bV + 0(1)j</td>
<td></td>
<td>t\bar{t}H</td>
</tr>
<tr>
<td>VVV + 0(1)j</td>
<td></td>
<td></td>
<td></td>
<td>qq → Hqq + 0(1)j</td>
</tr>
</tbody>
</table>

(including lower jet multiplicities)

- Validated process-by-process (> 100 partonic channels).
- Automatic regression tests (Python bindings).
- All contributing 1-loop diagrams, full colour.
- Off-shell leptonic W/Z decays (complex masses).
- First step towards a public OpenLoops release.
Irreducible background to $H \rightarrow WW^* + 0,1$ jet

Signal: two opposite sign leptons + E_T^{miss}, binned in jet multiplicities.

Data driven analysis: normalise background (from MC simulation) to data in control region (left) and extrapolate to signal region (right). Percent level theory extrapolation uncertainty required.
The OpenLoops Algorithm

Irreducible background to $H \rightarrow WW^* + 0,1$ jet

$H \rightarrow WW^* \rightarrow e^- \nu_e \mu^+ \nu_\mu$ in exclusive 0-/1-jet bins

Previously available predictions for $pp \rightarrow e^- \nu_e \mu^+ \nu_\mu + 0/1$ jets

<table>
<thead>
<tr>
<th>jets</th>
<th>NLO</th>
<th>gg induced</th>
<th>NLO+PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[Campbell, Ellis, Williams ‘11]</td>
<td>[Binoth et al. ‘05] [Campbell, Ellis, Williams ‘11]</td>
<td>[Melia et al. ‘11] [Frederix et al. ‘11]</td>
</tr>
<tr>
<td>1</td>
<td>[Dittmaier, Kallweit, Uwer ‘07] [Campbell, Ellis, Zanderighi ‘07]</td>
<td>[Melia et al. ‘12] [Agrawal, Shivaji ‘12]</td>
<td></td>
</tr>
</tbody>
</table>

Requirements go beyond fixed order NLO

- Exclusive jet bins → disentangle production modes (ggH, VBF), and background sources (WW, $t\bar{t}$).
- Jet vetoes to suppress $t\bar{t}$ background ($\ln p_T^{\text{veto}} +$ uncertainties).
- Exclusive observables → parton shower / Sudakov resummation.
- Squared quark loop contributions.
- NLO accuracy in jet bins → MEPS@NLO jet merging.
Setup of NLO simulations

We compare simulations with different accuracy levels to study the impact of parton shower, loop\(^2\), and jet merging effects.

<table>
<thead>
<tr>
<th>simulation</th>
<th>0-jet</th>
<th>1-jet</th>
<th>2-jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLO 4(\ell)</td>
<td>NLO</td>
<td>LO</td>
<td>-</td>
</tr>
<tr>
<td>NLO 4(\ell)+1(j)</td>
<td>-</td>
<td>NLO</td>
<td>LO</td>
</tr>
<tr>
<td>MC@NLO 4(\ell)</td>
<td>NLO+PS</td>
<td>LO+PS</td>
<td>PS</td>
</tr>
<tr>
<td>MC@NLO 4(\ell)+1(j)</td>
<td>-</td>
<td>NLO+PS</td>
<td>LO+PS</td>
</tr>
<tr>
<td>MEPS@NLO 4(\ell)+0,1(j)</td>
<td>NLO+PS</td>
<td>NLO+PS</td>
<td>LO+PS</td>
</tr>
<tr>
<td>LOOP(^2) 4(\ell)</td>
<td>LO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOOP(^2) 4(\ell)+1(j)</td>
<td>-</td>
<td>LO</td>
<td>-</td>
</tr>
<tr>
<td>LOOP(^2)+PS 4(\ell)</td>
<td>LO+PS</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>LOOP(^2)+PS 4(\ell)+1(j)</td>
<td>-</td>
<td>LO+PS</td>
<td>PS</td>
</tr>
<tr>
<td>MEPS@LOOP(^2) 4(\ell)+0,1(j)</td>
<td>LO+PS</td>
<td>LO+PS</td>
<td>PS</td>
</tr>
</tbody>
</table>

- \(\sqrt{s} = 8\) TeV, CT10NLO PDFs.
- All off-shell, interference, and spin correlation effects.
- Central scale \(\mu_0 = (E_T^{W^+} + E_T^{W^-})/2\), factor 2 variations of QCD scales, factor \(\sqrt{2}\) variation of resummation scale.
- In MEPS@NLO, \(\mu_0\) is used in the core process, and a CKKW scale for jet emission \(\alpha_s(bk_T)\).
Jet p_T distribution

- Inclusive NLO and MC@NLO predictions underestimate hard jet emission (LO accuracy).
- IR singularity of NLO 4ℓ: enhancement in low p_T region (20%@5 GeV) → Sudakov logs are important, but no dramatic effects.
- In NLO $4\ell + j$ the α_s scale is not adapted to the jet p_T → growing deviations wrt. MEPS@NLO for large p_T.
Jet veto effects

exclusive 0-jet bin

- Moderate Sudakov effects beyond NLO: 5% deviation of NLO 4ℓ at $p_T = 30$ GeV.
- Percent level uncertainties (subleading logs and higher order effects).

inclusive 1-jet bin

- Sizable discrepancies between the different simulations:
 20-30% deficit of MC@NLO, up to 20% excess of NLO $4\ell + j$ in the tail.
Squared loop diagram contributions

At loop\(^2\)-level the gluon fusion channel \(gg \rightarrow 4\ell(\pm j)\) opens, a finite and gauge invariant subset of NNLO contributions.

Can give sizable contributions due to the large gluon flux.

- First result of loop\(^2\) \(gg \rightarrow 4\ell + 0,1\) jets ME+PS merging.
- Finite matrix elements → apply LO merging techniques

 [Höche, Krauss, Schumann, Siegert '09]
- Parton shower introduces \(qg, \bar{q}g, q\bar{q}\) channels via \(g \rightarrow q\bar{q}\) splittings. Corresponding matrix elements must be included for consistency.
Squared loop jet-\(p_T\) distribution

gg-only vs. all channels

- Quark channels enhance hard jet emission, Sudakov suppression at low \(p_T\).
- Shape distortion of \(\pm 50\%\).

Merging effects \((Q_{\text{cut}} = 20 \text{ GeV})\)

- Parton shower describes low \(p_T\) jet emission up to \(Q_{\text{cut}}\), but shows a sizable deficit at large \(p_T\).
- 1-jet matrix elements dominate in large \(p_T\) region.
Lepton Distance Distributions

Rivet implementation of ATLAS & CMS analyses: exclusive 0-/1-jet bins, preselection, signal, control region cuts, distributions in p_T, $m_{\ell\ell}$, $\Delta \phi_{\ell\ell}$, m_T.

- Few % agreement in 0-jet bin, 10-15% deficit of MC@NLO in 1-jet bin.
- Loop2 effects: up to 8%, largest in the signal region + different kinematical dependence.
- Few % scale uncertainties (QCD + resummation) in MEPS@NLO.
Cross sections in 0-jet and 1-jet bins

Cross sections in the signal and control regions for ATLAS @ 8 TeV

<table>
<thead>
<tr>
<th>(\sigma) [fb]</th>
<th>NLO</th>
<th>MC@NLO</th>
<th>MEPS@NLO</th>
<th>MEPS@LOOP(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_S) (0j)</td>
<td>34.28(9) +2.1% -1.6%</td>
<td>32.52(8) +2.1% +1.2% -0.8% -0.7%</td>
<td>33.81(12) +1.4% +2.0% -2.2% -0.4%</td>
<td>1.98(2) +23% -16.5% -20%</td>
</tr>
<tr>
<td>(\sigma_C) (0j)</td>
<td>55.76(9) +2.0% -1.7%</td>
<td>52.28(9) +1.4% +1.4% -0.7% -1.1%</td>
<td>54.18(15) +1.4% +2.5% -1.9% -0.4%</td>
<td>2.41(2) +22% +27% -17% -18%</td>
</tr>
<tr>
<td>(\sigma_S) (1j)</td>
<td>8.99(4) +4.9% -9.5%</td>
<td>8.02(4) +8.5% +0% -6.4% -3.1%</td>
<td>9.37(9) +2.6% +2.5% -2.7% -0.0%</td>
<td>0.46(1) +40% +2.2% -18% -6.3%</td>
</tr>
<tr>
<td>(\sigma_C) (1j)</td>
<td>26.50(8) +6.4% -12.5%</td>
<td>24.58(8) +6.1% +1.2% -6.5% -3.0%</td>
<td>28.32(13) +3.1% +4.1% -4.7% -0.0%</td>
<td>0.79(1) +33% +15% -20% -7%</td>
</tr>
</tbody>
</table>

- Error estimation from QCD scales and resummation scale.
- Squared-loop effects up to 6\% in the signal region.

<table>
<thead>
<tr>
<th>(\sigma_S / \sigma_C)</th>
<th>NLO</th>
<th>MC@NLO</th>
<th>MEPS@NLO</th>
<th>MEPS@NLO+LOOP(^2)</th>
<th>(\delta_S / C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-jets</td>
<td>0.615 -0.1% -0.1%</td>
<td>0.622 -0.7% +0.2% +0.1% -0.4%</td>
<td>0.624 +0% +0.5% -0.3% -0%</td>
<td>0.632 -0.3% +0.2% +0.5% +0.3%</td>
<td>1.3%</td>
</tr>
<tr>
<td>1-jet</td>
<td>0.339 +1.4% -3.4%</td>
<td>0.326 -2.3% +1.2% -0.1% +0.1%</td>
<td>0.331 +0.5% +1.5% -2.1% -0%</td>
<td>0.338 -0.4% +1.8% -1.8% +0.1%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

- Correlated scale variations yield unrealistically small errors.
- loop\(^2\) gives insight into kinematic effects beyond NLO \(\rightarrow O(2\%) \) errors (experimental analysis assumes 1\%).
Summary

OpenLoops
- Diagrammatic, tree-like recursion for loop momentum polynomials to calculate one-loop amplitudes.
- Automatic, fast code generation, compact libraries.
- Fast and numerically stable evaluation of matrix elements.

Sherpa+OpenLoops
- Fully automated interface, NLO matching with parton shower and jet merging.
- Process libraries available to ATLAS and CMS.

Predictions for $H \rightarrow WW^*$ **background in 0/1-jet bins**
- NLO, MC@NLO, and MEPS@NLO simulations.
 - NLO accuracy and LL Sudakov resummation in individual jet bins.
- Detailed studies of various observables for ATLAS & CMS analyses.
- Small and more reliably estimated theoretical uncertainties.
M_T in Signal Region

Status of OpenLoops and simulation of $H \rightarrow WW$ backgrounds • Philipp Maierhöfer

RADCOR 2013
Status of OpenLoops and simulation of $H \rightarrow WW$ backgrounds • Philipp Maierhöfer

M_{ll} in Signal Region

M_{ll} in ATLAS signal region ($N_{jets} = 0$)

M_{ll} in CMS signal region ($N_{jets} = 0$)

M_{ll} in ATLAS signal region ($N_{jets} = 1$)

M_{ll} in CMS signal region ($N_{jets} = 1$)