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K+ → π+ ῡ υ Z-Penguin & Box MFV 100 TeV
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Previous and current measurements constrain the
parameter space of new physics.

These constraint are obviously model dependent.

What new information can Kaon decays provide?

→ New physics sensitivity of Kaon observables

→ The suppression in the standard model

and the accuracy of the theory predictions
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The resulting is known at NNLO [MG, Haisch `07]
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Estimate from
KL→π0γγ

[Isidori et. al. `04]

KL → KS &
KS→π0l+l-

[Mescia et. al. `06]

NLO QCD
[Buchalla et. al. `95]
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Vij = O

�

�
1 � �3

� 1 �2

�3 �2 1

�

�



Top quark 

� = O(0.2)

s d

t t

W+

Z

b� s :
|V�

tbVts| ⇥ �2
b� d :

|V�
tbVtd| ⇥ �3

s� d :
|V�

tsVtd| ⇥ �5

FCNCs which are dominated by top-quark loops:

are extremely suppressed (λ5) for Kaon decays

Kaons test new physics up to O(100) TeV

9

mc2/MW2 suppression 
→ top-quark dominates

K → π ῡ υ
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Figure 5: �Xt as a function of MH , in two di�erent renormalisation schemes. The dashed lines
show the LO results, the dashed-dotted lines the LO results including the electroweak corrections
in the large-mt limit. The full two-loop results are represented by the dotted lines. The left panel
shows the results where all parameters are defined in the MS scheme. By contrast, in the right
panel, all parameters apart from � are defined in the on-shell scheme. For comparison, we also
plot in both panels the NLO result, where all masses are defined on-shell and all couplings in the
MS scheme. It is represented by the solid lines.

long distance contributions were calculated in Reference [30] to be

⇥Pc,u = 0.04± 0.02 . (4.7)

The hadronic matrix element of the low-energy e⇥ective Hamiltonian can be extracted
from the well-measured Kl3 decays, including isospin breaking and long-distance QED
radiative corrections [27, 32, 33]. The long-distance contributions are contained in the pa-
rameters ⇧+, including NLO and partially NNLO corrections in chiral perturbation theory.
�EM denotes the long distance QED corrections [27].

Including the two-loop electroweak corrections to Xt, we find for the branching ratio of
the charged mode

Br(K+ ⇤ �+⌥⌥̄) = (8.22+0.74
�0.65 ± 0.29)� 10�11 , (4.8)

The first error is related to the uncertainties in the input parameters. The main contri-
butions are (Vcb : 49%,  ̄ : 22%, �s : 9%, mc : 8%, mt : 7%, ⇤̄ : 4%, sin2 ⌅W : 1%). The
second error quantifies the remaining theoretical uncertainty. In detail, the contributions
are (⇥Pc,u : 49%, Pc : 21%, Xt(QCD) : 17%, ⇧+

� : 8%, Xt(EW) : 7%), respectively. Here
and below, we determine the QCD error on Xt by varying the scale µc between 80 GeV
and 320 GeV. Correspondingly, our central value of Xt is the average of Xt(µ = 80GeV)
and Xt(µ = 320GeV).
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Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<
∼ mc, takes the form

of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc

∑

l=e,µ,τ

[

X l
c(xc)Q

(6)
l +

1

M2
W

∑

i

C l
i(µIR)Q(8)

il

]

. (9)

Neglecting neutrino masses, the only Q(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q(8)
1l = s̄γµ(1 − γ5)d ∂2 [ν̄lγµ(1 − γ5)νl] ,
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2l = (s̄
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Dα)γµ(1 − γ5)(

−→
Dαd) ν̄lγµ(1 − γ5)νl ,

Q(8)
3l = (s̄

←−
Dα)γµ(1 − γ5)d

[

ν̄l(
←−
∂α −

−→
∂α)γµ(1 − γ5)νl

]

. (10)

The operator Q(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q(8)
2l and Q(8)

3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find

C l
1(µIR) =

1

12

(

1 −
4

3
sin2 θW
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log
(

m2
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2
IR
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[3C1(µc) + C2(µc)]

Ce,µ
2 (µIR) =
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2
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2 (µIR) = −
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4
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m2
c/m

2
τ
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3(µIR) = −C l

2(µIR)
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No GIM below the charm quark mass scale
higher dimensional operators UV scale dependent
One loop ChiPT calculation approximately cancels 
this scale dependence �Pc,u = 0.04± 0.02

[Isidori, Mescia, Smith `05]
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No GIM below the charm quark mass scale
higher dimensional operators UV scale dependent
One loop ChiPT calculation approximately cancels 
this scale dependence �Pc,u = 0.04± 0.02

[Isidori, Mescia, Smith `05]

Could be calculated on the lattice 
[Isidori, Martinelli, Turchetti `06]



K → π ῡ υ: Error Budget 
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BRth(K+→π+ῡυ) = 8.2(3)(7) ⋅ 10-11

BRexp(K+→π+ῡυ) = 17(11) ⋅ 
10-11[E787, E949 ´08]

NA62 aims at 10% accuracy
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BRexp(K+→π+ῡυ) = 17(11) ⋅ 
10-11[E787, E949 ´08]

NA62 aims at 10% accuracy

12

Xt
8 %

kappa
2 %CKM

84 %

Mt
6 %

BRth(KL →π0ῡυ) = 2.57(37)(4) ⋅ 10-11

BRexp(K+→π+ῡυ) < 6.7 ⋅ 10-8

[E391a ´08]
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Exploratory study for ∆MK and ideas for ϵK

Z
d4xd4y hK0|T{H(x)H(y)} |K̄0i

Integrate over tA < tx,y < tB
[Christ et. al. 13]

Use λu λt instead of λc λt 
λu λu  finite after GIM & charm – renormalise ∆S=1 Operator
λu λt  log divergent – renormalise ∆S=1 & ∆S=2 Operator, 

i.e. match Lattice to continuum perturbation theory.
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After Lattice QCD & NNLO progress: ηcc dominant uncertainty

εK is very important for phenomenology: 
Future improvements are expected from Lattice QCD and 

interplay with perturbative QCD  
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K → π ῡ υ and εK in the MSSM

16

M̂2
⇤u =

�
M̂2

⇤uL
vuÂ†

u � vdµ Ŷ†
u

vuÂu � vdµ�Ŷu M̂2
⇤uR

⇥

Z Penguin sensitive
to up-type A-terms [Collangelo, Isidori `98]

ds
�+

Z

+ +
vuÂ13vuÂ23

t̃

The supersymmetry breaking A mass terms 
contribute to the numerator of the amplitude 

The MSSM has many sources of flavour violation 
encoded in the squark mass matrix

In MFV no large effects are expected
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Figure 7: Comparison of the decoupling of non-standard contributions to εK (bor-
deaux/dark gray) and B(KL → π0νν̄) (light blue/light gray) in the limit of heavy su-
persymmetric particles. The scatter plots are obtained varying A13 and A23 according to
Eq. (29), MũR

in the interval 200–1000 GeV, and fixing all the other mass parameters as
in Table 2. The horizontal axis denotes the lightest up-type squark mass.

A23 and A13 are non vanishing, and regions corresponding to specific choices of
their CP-violating phases are outlined with different colors (gray scales). As can
be noted, to a good approximation the non-standard effect depends only on their
relative phase and –consistently with Eq. (31)– is maximal when A23A∗

13 is purely
imaginary.

• At first sight, it is quite surprising that the non-MFV left-right mixing terms in
Eq. (29) are not excluded by the precise data on B(B → Xsγ) and have a marginal
impact also on B(B → Xs%+%−) (see Figure 4). However, this fact can easily be
understood by noting that a non-vanishing b → sγ amplitude (generated by effective
operators of the type b̄RσµνsLF µν or b̄LσµνsRF µν) requires:

i. odd number of chirality flips in the down sector;

ii. odd total number of chirality flips summing up, down and flavour-independent

16

lightest stop mass
0.5

1

2

[Isidori et. al. `06]
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Correlations with εK

18

The chiral enhancement of the 
scalar (s̄R dL)(d̄L sR) operator

breaks the εK & KL → π0 ῡ υ, but 
there is a correlation with ε’/ε

εK  constraint can still lead to 
interesting restrictions of the model 

parameter space for K+ → π+ ῡ υ

The Higgs production channel puts 
severe constraints on these type of 

models

RS with common down-type bulk mass
[Plot by S. Casagrande]



Observables: K(π) → l ῡl , K → π l ῡl

Leptonic and Semileptonic

K(⇡)! l ⌫̄l & K! ⇡ l ⌫̄lObservables:

Here the Vji are the CKM elements determined from the various di → uj processes, having

fixed GF from the muon life time: Gµ = 1.166371(6) × 10−5GeV−2 [2]. εNP parametrizes

possible deviations from the SM induced by dimension-six operators, contributing either

to the muon decay or to the di → uj transitions. By dimensional arguments we expect

εNP ∼ M2
W /Λ2

NP, where ΛNP is the effective scale of new physics. The present accuracy on

|Vus|, which is the dominant source of error in (1.1), allows to set bounds on εNP around

0.1% or equivalently to set bounds on the new physics scale well above 1 TeV.

In this note we report on progress in the verification of the relation (1.1) as well as

on many other tests of the SM which can be performed with leptonic and semileptonic

K decays. The note is organized as follows. The phenomenological framework needed to

describe K!3 and Kµ2 decays within and beyond the SM is briefly reviewed in Section 2.

Section3 is dedicated to the combination of the experimental data. The results and the

interpretation are presented in Section 4.

2. Theoretical framework

2.1 K!3 and K!2 rates within the SM

Within the SM the photon-inclusive K!3 and K!2 decay rates are conveniently decomposed

as [3]

Γ(K!3(γ)) =
G2

F m5
K

192π3
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K(λ+,0)
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π
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× (1 + δem) , (2.2)

where CK = 1 (1/2) for the neutral (charged) kaon decays, I!
K(λ+,0) is the phase space

integral that depends on the (experimentally accessible) slopes of the form factors (generi-

cally denoted by λ+, 0), and Sew = 1.0232(3) is the universal short-distance electromagnetic

correction computed in Ref. [4]. The channel-dependent long-distance electromagnetic cor-

rection factors are denoted by δem and δK!
em . In the K!2 case δem = −0.0070(35) [5, 6], while

the four δK!
em are given in Table 1, together with the isospin-breaking corrections due to

mu %= md, denoted by δK
SU(2).

The overall normalization of the K!3 rates depends upon f+(0), the K → π vector

form factor at zero momentum transfer [t = (pK − pπ)2 = 0]. By convention, f+(0) is

defined for the K0 → π− matrix element, in the limit mu = md and αem → 0 (keeping

kaon and pion masses to their physical value). Similarly, fK/fπ is the ratio of the kaon

and pion decay constants defined in the mu = md and αem → 0 limit. The values of these

hadronic parameters, which represent the dominant source of theoretical uncertainty, will

be discussed in Sect. 4.2.

The errors for the K!3 electromagnetic corrections, given in Table 1, have been obtained

within ChPT, estimating higher-order corrections by naive dimensional analysis [7, 8].

Higher-order chiral corrections have a minor impact in the breaking of lepton universality.
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gives fK/fπ  

Vus , Vud

HPQCD 13A 
MILC 13A 
MILC 11 
ETM 10E

fK/fπ from
Lattice 

NF =2+1+1
RBC/UKQCD 12 
Laiho 11
MILC 10 
JLQCD/TWQCD 10 
RBC/UKQCD 10A
.....

NF =2+1

find f+(0) 

Vus , Vud



CKM Unitarity Test
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f+(0) and fK+/fπ+ : 
∆CKM = -13(15) 10-3

�CKM = |V2
ud| + |V2

us| + |V2
ub| - 1Test unitarity: 

 Vud (n β decay) and f+(0): 
∆CKM = -8(6) 10-4

 Vud (n β decay) and fK+/fπ+: 
∆CKM = 0(6) 10-4

Lattice for NF = 2+1



CKM Unitarity (Model Independent)

Use SU(2)⨂U(1) invariant operators [Buchmüller-Wyler `06]

O
(3)
lq = (l�µ�al)(q�µ�aq) O

(3)
ll =

1
2
(l�µ�al)(l�µ�al)

Neglect corrections

[Cirigliano et. al. `09]

O

✓
MW

⇤NP

◆
⇤NP �MW

Constrained from EW precision data [Han, Skiba `05]

(plus           flavour symmetry)U(3)5

Redefine
GF(µ! e ⌫ ⌫̄)! GF(1 - 2↵̄

(3)
ll )

GF(d! u e ⌫̄)! GF(1 - 2↵̄
(3)
lq )

Gµ
F

GSL
F22



CKM Unitarity (Model Independent)

[Cirigliano et. al. `09]

CKM
Unitarity

VPDG
udi

=
GSL

F

Gµ
F

Vudi
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⇣
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ll - ↵̄

(3)
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⌘
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CKM Unitarity (Model Independent)

[Cirigliano et. al. `09]

CKM
Unitarity

VPDG
udi

=
GSL

F

Gµ
F

Vudi
�CKM = 4

⇣
↵̄

(3)
ll - ↵̄

(3)
lq + . . .

⌘
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GF = 2
p

2⇡↵
M2

Z sin2 2✓W(1-�r̂)

Before MH measurement
∆r dominates uncertainties

After MH: sinθW MSbar
important parametric 

uncertainty

Comparable to
unitarity constraints

illustration
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Conclusion
High intensity experiments and high precision theory 

prediction lead to competitive constraints on
physics beyond the standard model.

On the theory side progress is expected from Lattice QCD on 
the calculation of previously sub-leading non-perturbative 

effects. This will also include a matching of the Lattice results to 
the continuum. 

The upcoming searches for rare Kaon decays will test so far 
unconstrained parameter space of new physics.
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