Kaon Physics

UK hep Forum 14.11.2013

Martin Gorbahn University of Liverpool

Decay	SM	NP

	Decay	SM	NP
05	$\mathrm{K}^{\scriptscriptstyle +}\! \rightarrow \pi^{\scriptscriptstyle +}\bar{\upsilon}\upsilon$	Z-Penguin & Box	MFV 100 TeV
Heroe	$K_L \rightarrow \pi^0 \bar{\upsilon} \upsilon$	@ 1-loop, $V_{ts} V_{td}^*$	CP MFV 100 TeV
	K ₁₂ & K ₁₃	W±@tree, V _{us}	EW precision 10 TeV

	Decay	SM	NP
09	$\mathrm{K}^{\scriptscriptstyle +}\! \rightarrow \pi^{\scriptscriptstyle +}\bar{\upsilon}\upsilon$	Z-Penguin & Box	MFV 100 TeV
Heroe	$K_L \rightarrow \pi^0 \bar{\upsilon} \upsilon$	@ 1-loop, $V_{ts} V_{td}^*$	CP MF¥ 100 TeV
	K ₁₂ & K ₁₃	W±@tree, V _{us}	EW precision 10 TeV
	٤ _K	$\Delta S=2 Box$	CP MFV 1000 TeV
Villains	£′/£	Penguins & Boxes	CP MFV ≈ 10 TeV
	ATLAS, CMS	tree, loop	NP coupling to g,u,

N.

	Decay	SM	NP
-6	$\mathrm{K}^{\scriptscriptstyle +}\! \rightarrow \pi^{\scriptscriptstyle +}\bar{\upsilon}\upsilon$	Z-Penguin & Box	MFV 100 TeV
Heroe	$K_L \rightarrow \pi^0 \overline{\upsilon} \upsilon$	@ 1-loop, V _{ts} V [*] _{td}	CP MF¥ 100 TeV
	K ₁₂ & K ₁₃	W±@tree, V _{us}	EW precision 10 TeV
	ε _K	$\Delta S=2 Box$	CP MFV 1000 TeV
	ε'/ε	Penguins & Boxes	CP MFV ≈ 10 TeV
	ATLAS, CMS	tree, loop	NP coupling to g,u,

 $K \rightarrow \pi \bar{\upsilon} \upsilon$ $S \qquad Z' \qquad \psi$ $d \qquad Z' \qquad \psi$ $K^{+} \propto |g_{sdZ'}|^{2} (M_{Z'})^{-4}$ $K_{L} \propto (Im g_{sdZ'})^{2} (M_{Z'})^{-4}$

Only left-handed

currents

 $K \rightarrow \pi \bar{\upsilon} \upsilon$ 1) S Z' $K^+ \propto |g_{sdZ'}|^2 (M_{Z'})^{-4}$ $K_L \propto (Im g_{sdZ'})^2 (M_{Z'})^{-4}$ $M_{Z'} =$ 15 10

Only left-handed currents $\mathcal{E}_{K} \propto \operatorname{Im} (g_{sdZ'})^2 (M_{Z'})^{-2}$

 $K \rightarrow \pi \overline{\upsilon} \upsilon$ $S \qquad Z' \qquad \psi$ $d \qquad Z' \qquad \psi$ $K^{+} \propto |g_{sdZ'}|^{2} (M_{Z'})^{-4}$ $K_{L} \propto (Im g_{sdZ'})^{2} (M_{Z'})^{-4}$

Only left-handed currents $d = \varepsilon_{K} \propto Im (g_{sdZ'})^{2} (M_{Z'})^{-2}$

These constraint are obviously model dependent.

These constraint are obviously model dependent.

What new information can Kaon decays provide?

These constraint are obviously model dependent.

What new information can Kaon decays provide?

→ New physics sensitivity of Kaon observables

These constraint are obviously model dependent.

What new information can Kaon decays provide?

→ New physics sensitivity of Kaon observables

 \rightarrow The suppression in the standard model

These constraint are obviously model dependent.

What new information can Kaon decays provide?

→ New physics sensitivity of Kaon observables

 \rightarrow The suppression in the standard model

and the accuracy of the theory predictions

Why are Kaon Decays so rare?

Before the charm quark: why are the two Branching ratios

 $\mathfrak{Br}(\mathsf{K}_{\mathsf{L}} \to \mu^{+}\mu^{-}) \simeq 6.84(11) \cdot 10^{-9} \qquad \mathfrak{Br}(\mathsf{K}_{\mathsf{L}} \to \gamma\gamma) \simeq 5.47(4) \cdot 10^{-4}$

so different in size?

Why are Kaon Decays so rare?

Before the charm quark: why are the two Branching ratios $Br(K_L \to \mu^+ \mu^-) \simeq 6.84(11) \cdot 10^{-9}$ $Br(K_L \to \gamma \gamma) \simeq 5.47(4) \cdot 10^{-4}$ so different in size?

 $K_L \rightarrow \mu^+ \mu^-$: The 2 µs are in J=0 state \rightarrow no 1 γ coupling

GIM: charm quark to suppress neutral currents

GIM: charm quark to suppress neutral currents

GIM: charm quark to suppress neutral currents

Quadratic GIM explains the smallness of $\mathcal{B}r(K_L \to \mu^+ \mu^-)$ $\frac{m_c^2}{M_W^2}$ suppression of light quark contributions

GIM: charm quark to suppress neutral currents

Quadratic GIM explains the smallness of $\mathcal{B}r(K_L \to \mu^+ \mu^-)$ $\frac{m_c^2}{M_W^2}$ suppression of light quark contributions

The resulting $m_c^2 G_F^2 \log \frac{m_c}{M_w}$ is known at NNLO [MG, Haisch `07]

Contributions to $K_L \rightarrow \mu^+ \mu^-$

No quadratic suppression for $K_L \rightarrow \gamma \gamma$

(same for photon penguin)

Contributions to $K_L \rightarrow \mu^+ \mu^-$

No quadratic suppression for $K_L \rightarrow \gamma \gamma$

(same for photon penguin)

Is $K_L \rightarrow \mu^+ \mu^$ dominated by short distances (SD)?

Contributions to $K_L \rightarrow \mu^+ \mu^-$

No quadratic suppression for $K_L \rightarrow \gamma \gamma$

(same for photon penguin)

	d W S	$d \rightarrow \gamma$ $s \rightarrow \gamma$	$d \xrightarrow{\gamma} c - u \xrightarrow{\gamma} s$
$K_L \rightarrow \mu^+ \mu^-$	SD		α_{e} LD

	d W S	$d \rightarrow \gamma$ $s \rightarrow \gamma$	$d \xrightarrow{\gamma} c - u \xrightarrow{\gamma} s$
$K_L \rightarrow \mu^+ \mu^-$	SD		α _e LD
$K \to \pi \nu \bar{\nu}$	SD		

	d W S	$d \rightarrow \gamma$ $s \rightarrow \gamma$	$d \xrightarrow{\gamma} c - u \xrightarrow{\gamma} \gamma$
$K_L \rightarrow \mu^+ \mu^-$	SD		α _e LD
$K \to \pi \nu \bar{\nu}$	SD		
$K_S \rightarrow \pi l^+ l^-$		LD	

	d W S	$d \rightarrow \gamma$ $s \rightarrow \gamma$	$d \xrightarrow{\gamma} c - u \xrightarrow{\gamma} s$
$K_L \rightarrow \mu^+ \mu^-$	SD		α _e LD
$K \to \pi \nu \bar{\nu}$	SD		
$K_S \rightarrow \pi l^+ l^-$			

Top quark

 m_c^2/M_W^2 suppression \rightarrow top-quark dominates V_{ij} $K \rightarrow \pi \, \overline{v} \, v$

$$j = \mathcal{O}\begin{pmatrix} 1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix} \xrightarrow{\mathsf{S}} \begin{pmatrix} W^{+} \\ \lambda & 1 & \lambda^{2} \\ \lambda & 1 & \lambda^{2} \end{pmatrix} \xrightarrow{\mathsf{t}} 1$$

Top quark

 $\begin{array}{ll} \mbox{FCNCs which are dominated by top-quark loops:} \\ b \rightarrow s: & b \rightarrow d: & \textbf{s} \rightarrow d: \\ |V_{tb}^* V_{ts}| \propto \lambda^2 & |V_{tb}^* V_{td}| \propto \lambda^3 & |V_{ts}^* V_{td}| \propto \lambda^5 \end{array}$

are extremely suppressed (λ^5) for Kaon decays

Top quark

 $\begin{array}{ll} \mbox{FCNCs which are dominated by top-quark loops:} \\ b \rightarrow s: & b \rightarrow d: & \textbf{s} \rightarrow d: \\ |V_{tb}^* V_{ts}| \propto \lambda^2 & |V_{tb}^* V_{td}| \propto \lambda^3 & |V_{ts}^* V_{td}| \propto \lambda^5 \end{array}$

are extremely suppressed (λ^5) for Kaon decays

Kaons test new physics up to O(100) TeV

$K^+ \rightarrow \pi^+ \bar{\upsilon} \upsilon at M_W$

 $\sum_{i} V_{is}^* V_{id} F(x_i) = V_{ts}^* V_{td} (F(x_t) - F(x_u)) + V_{cs}^* V_{cd} (F(x_c) - F(x_u))$

Matrix element from K_{13} decays (Isospin symmetry: $K^+ \rightarrow \pi^0 e^+ \upsilon$) [Mescia, Smith]

$K^+ \rightarrow \pi^+ \bar{\upsilon} \upsilon \text{ from } M_W \text{ to } m_c$

P_c: charm quark contribution to K⁺ $\rightarrow \pi^+ \bar{\upsilon} \upsilon$ (30% to BR) Series converges very well (NNLO:10% \rightarrow 2.5% uncertainty) NNLO+EW [Buras, MG, Haisch, Nierste; Brod MG]

$K^+ \rightarrow \pi^+ \bar{\upsilon} \upsilon \text{ from } M_W \text{ to } m_c$

P_c: charm quark contribution to K⁺ → π⁺ $\bar{\nu}$ ν (30% to BR) Series converges very well (NNLO:10%→2.5% uncertainty) NNLO+EW ^[Buras, MG, Haisch, Nierste; Brod MG]

No GIM below the charm quark mass scale higher dimensional operators UV scale dependent One loop ChiPT calculation approximately cancels this scale dependence $\delta P_{c,u} = 0.04 \pm 0.02$ [Isidori, Mescia, Smith `05]

$K^+ \rightarrow \pi^+ \bar{\upsilon} \upsilon \text{ from } M_W \text{ to } m_c$

P_c: charm quark contribution to K⁺ $\rightarrow \pi^+ \bar{\upsilon} \upsilon$ (30% to BR) Series converges very well (NNLO:10% \rightarrow 2.5% uncertainty) NNLO+EW ^[Buras, MG, Haisch, Nierste; Brod MG]

No GIM below the charm quark mass scale higher dimensional operators UV scale dependent One loop ChiPT calculation approximately cancels this scale dependence $\delta P_{c,u} = 0.04 \pm 0.02$ [Isidori, Mescia, Smith `05] Could be calculated on the lattice [Isidori, Martinelli, Turchetti `06]

$K \rightarrow \pi \bar{\upsilon} \upsilon$: Error Budget

 $BR^{th}(K^+ \rightarrow \pi^+ \bar{\upsilon}\upsilon) = 8.2(3)(7) \cdot 10^{-11}$

BR^{exp}(K⁺→ $\pi^+\bar{\upsilon}\upsilon$) = 17(11) · 10⁻¹¹[E787, E949 '08] NA62 aims at 10% accuracy

$K \rightarrow \pi \bar{\upsilon} \upsilon$: Error Budget

 $BR^{th}(K^+ \rightarrow \pi^+ \bar{\upsilon}\upsilon) = 8.2(3)(7) \cdot 10^{-11}$

BR^{exp}(K⁺→ $\pi^+\bar{\upsilon}\upsilon$) = 17(11) · 10⁻¹¹[E787, E949 '08] NA62 aims at 10% accuracy $BR^{th}(K_L \rightarrow \pi^0 \bar{\upsilon} \upsilon) = 2.57(37)(4) \cdot 10^{-11}$

BR^{exp}(K⁺→ $\pi^+ \bar{\upsilon} \upsilon$) < 6.7 · 10⁻⁸ [E391a ´08]

$$\epsilon_{\rm K} \simeq \frac{\langle (\pi\pi)_{\rm I=0} | K_{\rm L} \rangle}{\langle (\pi\pi)_{\rm I=0} | K_{\rm S} \rangle}$$

$$\varepsilon_{K} = e^{i\phi_{\varepsilon}} \sin \phi_{\varepsilon} \left(\frac{\text{Im}(M_{12}^{K})}{\Delta M_{K}} + \xi \right)$$
from experiment small

$$\epsilon_{\rm K} \simeq \frac{\langle (\pi\pi)_{\rm I=0} | {\rm K}_{\rm L} \rangle}{\langle (\pi\pi)_{\rm I=0} | {\rm K}_{\rm S} \rangle}$$

$$\epsilon_{\rm K} = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \left(\frac{{\rm Im}(M_{12}^{\rm K})}{\Delta M_{\rm K}} + \xi \right)$$

from experiment small

$$2M_{K}M_{12} = \langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=2}\,|\bar{\mathsf{K}}^{0}\rangle - \frac{\mathfrak{i}}{2}\int d^{4}x\,\langle\mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=1}(x)\,\mathsf{H}^{|\Delta S|=1}(0)\,|\bar{\mathsf{K}}^{0}\rangle$$

dispersive part

$$\epsilon_{\rm K} \simeq \frac{\langle (\pi\pi)_{\rm I=0} | {\rm K}_{\rm L} \rangle}{\langle (\pi\pi)_{\rm I=0} | {\rm K}_{\rm S} \rangle}$$

$$\epsilon_{\rm K} = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \left(\frac{{\rm Im}(M_{12}^{\rm K})}{\Delta M_{\rm K}} + \xi \right)$$
from experiment small

$$2M_{K}M_{12} = \langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=2}\,|\bar{\mathsf{K}}^{0}\rangle - \frac{\mathfrak{i}}{2}\int \mathsf{d}^{4}x\,\langle\mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=1}(x)\,\mathsf{H}^{|\Delta S|=1}(0)\,|\bar{\mathsf{K}}^{0}\rangle$$

dispersive part

$$\begin{split} & \text{Local Interaction:} \\ & \tilde{Q} = (\bar{s}_L \gamma_\mu d_L) (\bar{s}_L \gamma^\mu d_L) \\ & \text{Lattice:} \quad \langle K^0 | \tilde{Q} | \bar{K}^0 \rangle \end{split}$$

$$\epsilon_{\rm K} \simeq \frac{\langle (\pi\pi)_{\rm I=0} | {\rm K}_{\rm L} \rangle}{\langle (\pi\pi)_{\rm I=0} | {\rm K}_{\rm S} \rangle}$$

$$\epsilon_{\rm K} = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \left(\frac{{\rm Im}(M_{12}^{\rm K})}{\Delta M_{\rm K}} + \xi \right)$$

from experiment small

$$2M_{K}M_{12} = \langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=2}\,|\bar{\mathsf{K}}^{0}\rangle - \frac{\mathfrak{i}}{2}\int d^{4}x\,\langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta S|=1}(x)\,\mathsf{H}^{|\Delta S|=1}(0)\,|\bar{\mathsf{K}}^{0}\rangle$$

dispersive part

Local Interaction: $\tilde{Q} = (\bar{s}_L \gamma_\mu d_L)(\bar{s}_L \gamma^\mu d_L)$ Lattice: $\langle K^0 | \tilde{Q} | \bar{K}^0 \rangle$

$$\epsilon_{\rm K} \simeq \frac{\langle (\pi\pi)_{\rm I=0} | K_{\rm L} \rangle}{\langle (\pi\pi)_{\rm I=0} | K_{\rm S} \rangle}$$

$$\epsilon_{\rm K} = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \left(\frac{{\rm Im}(M_{12}^{\rm K})}{\Delta M_{\rm K}} + \xi \right)$$

from experiment small

$$2M_{K}M_{12} = \langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta\mathsf{S}|=2}\,|\bar{\mathsf{K}}^{0}\rangle - \frac{\mathfrak{i}}{2}\int \mathsf{d}^{4}x\,\langle\mathsf{K}^{0}|\,\mathsf{H}^{|\Delta\mathsf{S}|=1}(x)\,\mathsf{H}^{|\Delta\mathsf{S}|=1}(0)\,|\bar{\mathsf{K}}^{0}\rangle$$

dispersive part

(+75(1)%):
$$\lambda_t \lambda_t m_t^2 / M_W^2$$
 +
(+40(6)%): $\lambda_c \lambda_t m_c^2 / M_W^2$
 $\log(m_c^2 / M_W^2)$ +

$$\begin{split} & \text{Local Interaction:} \\ & \tilde{Q} = (\bar{s}_L \gamma_\mu d_L) (\bar{s}_L \gamma^\mu d_L) \\ & \text{Lattice:} \quad \langle K^0 | \tilde{Q} | \bar{K}^0 \rangle \end{split}$$

$$\epsilon_{\rm K} \simeq \frac{\langle (\pi\pi)_{\rm I}=0 | {\rm K}_{\rm L} \rangle}{\langle (\pi\pi)_{\rm I}=0 | {\rm K}_{\rm S} \rangle}$$

$$\epsilon_{\rm K} = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \left(\frac{{\rm Im}(M_{12}^{\rm K})}{\Delta M_{\rm K}} + \xi \right)$$
from experiment small

$$2M_{K}M_{12} = \langle \mathsf{K}^{0}|\,\mathsf{H}^{|\Delta\mathsf{S}|=2}\,|\bar{\mathsf{K}}^{0}\rangle - \frac{\mathfrak{i}}{2}\int \mathsf{d}^{4}x\,\langle\mathsf{K}^{0}|\,\mathsf{H}^{|\Delta\mathsf{S}|=1}(x)\,\mathsf{H}^{|\Delta\mathsf{S}|=1}(0)\,|\bar{\mathsf{K}}^{0}\rangle$$

dispersive part

$$(+75(1)\%): \frac{\lambda_t \lambda_t m_t^2}{M_W^2} +$$

 $(+40(6)\%): \lambda_c \lambda_t m_c^2 / M_W^2$ $\log(m_c^2/M_W^2) +$

Local Interaction: $Q=(\bar{s}_L\gamma_\mu d_L)(\bar{s}_L\gamma^\mu d_L)$ (-15(6)%): $\lambda_c\lambda_c\,m_c^2/M_W^2$ $\langle \mathsf{K}^0 | \tilde{\mathsf{O}} | \bar{\mathsf{K}}^0 \rangle$ Lattice:

 η_{ct} : 3-loop RGE, 2-loop Matching [Brod, MG `10] η_{cc} : 3-loop RGE, **3-loop** Matching [Brod, MG `12]

Long Distance ϵ_{K}

 $\int d^4x d^4y \langle K^0 | T\{H(x) H(y)\} | \bar{K}^0 \rangle$ Integrate over $t_A < t_{x,y} < t_B$ [Christ et. al. 13]

Exploratory study for ΔM_K and ideas for ε_K

Long Distance ε_K

 $\int d^4x d^4y \langle K^0 | T\{H(x) H(y)\} | \bar{K}^0 \rangle$ Integrate over $t_A < t_{x,y} < t_B$ [Christ et. al. 13]

Exploratory study for ΔM_K and ideas for ε_K

Use $\lambda_u \lambda_t$ instead of $\lambda_c \lambda_t$

 $\lambda_u \lambda_u$ finite after GIM & charm – renormalise $\Delta S=1$ Operator $\lambda_u \lambda_t$ log divergent – renormalise $\Delta S=1$ & $\Delta S=2$ Operator,

i.e. match Lattice to continuum perturbation theory.

Residual Theory Uncertainty

After Lattice QCD & NNLO progress: η_{cc} dominant uncertainty

$$|\epsilon_{\rm K}| = 1.81(28) \cdot 10^{-3}$$

 $\stackrel{\rm exp.}{=} 2.23(1) \cdot 10^{-3}$

V_{cb} dominates parametric uncertainty uncertainty in B_K sub-leading

Residual Theory Uncertainty

After Lattice QCD & NNLO progress: η_{cc} dominant uncertainty

 $\epsilon_{\rm K}$ is very important for phenomenology: Future improvements are expected from Lattice QCD and interplay with perturbative QCD

$$|\epsilon_{\rm K}| = 1.81(28) \cdot 10^{-3}$$

 $\stackrel{\rm exp.}{=} 2.23(1) \cdot 10^{-3}$

V_{cb} dominates parametric uncertainty uncertainty in B_K sub-leading

$K \rightarrow \pi \bar{\upsilon} \upsilon$ and ε_K in the MSSM

The MSSM has many sources of flavour violation encoded in the squark mass matrix

 $\hat{\mathcal{M}}_{\tilde{u}}^{2} = \begin{pmatrix} \hat{\mathcal{M}}_{\tilde{u}_{L}}^{2} & \boldsymbol{\nu_{u}} \hat{\mathcal{A}}_{u}^{\dagger} - \boldsymbol{\nu_{d}} \mu \hat{Y}_{u}^{\dagger} \\ \boldsymbol{\nu_{u}} \hat{\mathcal{A}}_{u} - \boldsymbol{\nu_{d}} \mu^{*} \hat{Y}_{u} & \hat{\mathcal{M}}_{\tilde{u}_{R}}^{2} \end{pmatrix}$

In MFV no large effects are expected

Z Penguin sensitive to up-type A-terms [Collangelo, Isidori `98]

The supersymmetry breaking A mass terms contribute to the numerator of the amplitude

Constraints on $K \rightarrow \pi \bar{\upsilon} \upsilon$

Decoupling property can be surprising in a specific models:

Constraints on $K \rightarrow \pi \bar{\upsilon} \upsilon$

Decoupling property can be surprising in a specific models:

For non-zero up-type A₁₃ & A₂₃: $\varepsilon_K \propto M^{-4}$, $K \rightarrow \pi \bar{\upsilon} \upsilon \propto M^{-2}$

Constraints on $K \rightarrow \pi \bar{\upsilon} \upsilon$

Decoupling property can be surprising in a specific models:

For non-zero up-type A₁₃ & A₂₃: $\varepsilon_K \propto M^{-4}$, $K \rightarrow \pi \bar{\upsilon} \upsilon \propto M^{-2}$

Correlations with ε_K

The chiral enhancement of the scalar $(\bar{s}_R d_L)(\bar{d}_L s_R)$ operator breaks the $\epsilon_K \& K_L \rightarrow \pi^0 \bar{\upsilon} \upsilon$, but there is a correlation with ϵ' / ϵ

Correlations with ε_K

The chiral enhancement of the scalar $(\bar{s}_R d_L)(\bar{d}_L s_R)$ operator breaks the $\epsilon_K \& K_L \rightarrow \pi^0 \bar{\upsilon} \upsilon$, but there is a correlation with ϵ' / ϵ

 $\epsilon_{\rm K}$ constraint can still lead to interesting restrictions of the model parameter space for K⁺ $\rightarrow \pi^+ \bar{\nu} \nu$

Correlations with ε_K

The chiral enhancement of the scalar $(\bar{s}_R d_L)(\bar{d}_L s_R)$ operator breaks the $\epsilon_K \& K_L \rightarrow \pi^0 \bar{\upsilon} \upsilon$, but there is a correlation with ϵ' / ϵ

 $\epsilon_{\rm K}$ constraint can still lead to interesting restrictions of the model parameter space for K⁺ $\rightarrow \pi^+ \bar{\nu} \nu$

The Higgs production channel puts severe constraints on these type of models

Leptonic and Semileptonic

Observables: $K(\pi) \rightarrow l \bar{v}_l$, $K \rightarrow \pi l \bar{v}_l$ Observables: $K(\pi) \rightarrow l \bar{v}_l$ & $K \rightarrow \pi l \bar{v}_l$

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_K^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2 / m_K^2}{1 - m_\ell^2 / m_\pi^2} \right)^2 \times (1 + \delta_{em}) \quad \text{[Cirigliano, Giannotti, Neufeld `08]} \\
\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{ew} |V_{us}|^2 f_+(0)^2 I_K^\ell(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{em}^{K\ell} \right)^2$$

Isospin breaking effects: Flavianet `10

Leptonic and Semileptonic

Observables: $K(\pi) \rightarrow l \bar{v}_l, K \rightarrow \pi l \bar{v}_l$

Observables: $K(\pi) \rightarrow l \bar{\nu}_l \& K \rightarrow \pi l \bar{\nu}_l$

Isospin breaking effects: Flavianet `10

CKM Unitarity

$$\begin{split} \Gamma(\mathsf{K}_{13}) & |\mathsf{V}_{us}|\mathsf{f}_{+}(0) = 0.2163(5) \\ \frac{\Gamma(\mathsf{K}_{12})}{\Gamma(\pi_{12})} & \frac{|\mathsf{V}_{us}|\mathsf{f}_{\mathsf{K}}}{|\mathsf{V}_{ud}|\mathsf{f}_{\pi}} = 0.2758(5) \\ & |\mathsf{V}_{ud}|^{2} + |\mathsf{V}_{us}|^{2} + |\mathsf{V}_{ub}|^{2} = 1 \end{split}$$

3 Equations, 4 Unknowns (V_{us}, V_{us}, $f_+(0)$, f_K/f_π)

CKM Unitarity

$$\begin{split} \Gamma(\mathsf{K}_{13}) & |\mathsf{V}_{us}|\mathsf{f}_{+}(0) = 0.2163(5) \\ \frac{\Gamma(\mathsf{K}_{12})}{\Gamma(\pi_{12})} & \frac{|\mathsf{V}_{us}|\mathsf{f}_{\mathsf{K}}}{|\mathsf{V}_{ud}|\mathsf{f}_{\pi}} = 0.2758(5) \\ & |\mathsf{V}_{ud}|^{2} + |\mathsf{V}_{us}|^{2} + |\mathsf{V}_{ub}|^{2} = 1 \end{split}$$

3 Equations, 4 Unknowns (V_{us} , V_{us} , $f_+(0)$, f_K/f_π)

 $\begin{array}{ll} f_{+}(0) \mbox{ from } & N_{F} = 2 + 1 \\ Lattice & JLQCD \mbox{ 12 } \\ gives \mbox{ } f_{K}/f_{\pi} & JLQCD \mbox{ 12 } \\ V_{us}, V_{ud} & RBC/UKQCD \mbox{ 10 } \\ RBC/UKQCD \mbox{ 10 } \\ \end{array}$

CKM Unitarity

$$\begin{split} \Gamma(\mathsf{K}_{13}) & |\mathsf{V}_{us}|\mathsf{f}_{+}(0) = 0.2163(5) \\ \frac{\Gamma(\mathsf{K}_{12})}{\Gamma(\pi_{12})} & \frac{|\mathsf{V}_{us}|\mathsf{f}_{\mathsf{K}}}{|\mathsf{V}_{ud}|\mathsf{f}_{\pi}} = 0.2758(5) \\ & |\mathsf{V}_{ud}|^{2} + |\mathsf{V}_{us}|^{2} + |\mathsf{V}_{ub}|^{2} = 1 \end{split}$$

3 Equations, 4 Unknowns (V_{us}, V_{us}, $f_+(0)$, f_K/f_π)

$f_+(0)$ from	$N_{\rm F} = 2 + 1$	f_K/f_{π} from	$N_{\rm F} = 2 + 1$	$N_F = 2 + 1 + 1$
Lattice	MILC 12 JLQCD 12	Lattice	RBC/UKQCD 12 Laibo 11	HPQCD 13A
gives f_K/f_{π}	JLQCD 11	find $f_+(0)$	MILC 10	MILC 13A MILC 11
V_{us} , V_{ud}	RBC/UKQCD 10 RBC/UKQCD 07	V_{us} , V_{ud}	JLQCD/TWQCD 10 RBC/UKQCD 10A	ETM 10E

CKM Unitarity Test Test unitarity: $\Delta_{CKM} = |V_{ud}^2| + |V_{us}^2| + |V_{ub}^2| - 1$

Lattice for $N_F = 2+1$

 $f_+(0)$ and $f_{K+}/f_{\pi+}$: $\Delta_{CKM} = -13(15) \ 10^{-3}$

V_{ud} (n β decay) and f₊(0): $\Delta_{CKM} = -8(6) \ 10^{-4}$

V_{ud} (n β decay) and
$$f_{K+}/f_{\pi+}$$
:
 $\Delta_{CKM} = 0(6) \ 10^{-4}$

[Cirigliano et. al. `09]

$$\Lambda_{\rm NP} \gg M_W$$
 Neglect $O\left(\frac{M_W}{\Lambda_{\rm NP}}\right)$ corrections

Use SU(2) \otimes U(1) invariant operators [Buchmüller-Wyler `06] (plusU(3)⁵ flavour symmetry)

$$O_{lq}^{(3)} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{q}\gamma_{\mu}\sigma^{a}q) \qquad O_{ll}^{(3)} = \frac{1}{2}(\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{l}\gamma_{\mu}\sigma^{a}l)$$

Constrained from EW precision data [Han, Skiba `05]

Redefine
$$\begin{array}{l} G_{F}(\mu \to e \, \nu \, \bar{\nu}) \to G_{F}(1 - 2 \bar{\alpha}_{ll}^{(3)}) \longrightarrow G_{F}^{\mu} \\ G_{F}(d \to u \, e \, \bar{\nu}) \to G_{22}^{F}(1 - 2 \bar{\alpha}_{lq}^{(3)}) \longrightarrow G_{F}^{SL} \end{array}$$

$$\mathbf{V}_{ud_{i}}^{\text{PDG}} = \frac{\mathsf{G}_{\mathsf{F}}^{\text{SL}}}{\mathsf{G}_{\mathsf{F}}^{\mu}} \mathbf{V}_{ud_{i}} \longrightarrow \Delta_{\mathsf{CKM}} = 4\left(\overline{\alpha}_{ll}^{(3)} - \overline{\alpha}_{lq}^{(3)} + \dots\right)$$

$$\mathbf{V}_{ud_{i}}^{\text{PDG}} = \frac{\mathsf{G}_{\mathsf{F}}^{\text{SL}}}{\mathsf{G}_{\mathsf{F}}^{\mu}} \mathbf{V}_{ud_{i}} \longrightarrow \Delta_{\text{CKM}} = 4\left(\overline{\alpha}_{ll}^{(3)} - \overline{\alpha}_{lq}^{(3)} + \dots\right)$$

$$G_{\rm F} = \frac{2\sqrt{2}\pi\alpha}{M_Z^2 \sin^2 2\theta_W (1-\Delta\hat{r})}$$

Before M_H measurement Δr dominates uncertainties

$$V_{ud_{i}}^{PDG} = \frac{G_{F}^{SL}}{G_{F}^{\mu}} V_{ud_{i}} \longrightarrow \Delta_{CKM} = 4 \left(\overline{\alpha}_{ll}^{(3)} - \overline{\alpha}_{lq}^{(3)} + \dots \right)$$

$$G_{F} = \frac{2\sqrt{2}\pi\alpha}{M_{Z}^{2}\sin^{2}2\theta_{W}(1-\Delta\hat{r})}$$

Before M_H measurement
 Δr dominates uncertainties
After M_H: sin θ_{W} MSbar
important parametric
uncertainty
CKM Unitarity (Model Independent)

$$\mathbf{V}_{ud_{i}}^{\text{PDG}} = \frac{\mathsf{G}_{\mathsf{F}}^{\text{SL}}}{\mathsf{G}_{\mathsf{F}}^{\mu}} \mathbf{V}_{ud_{i}} \longrightarrow \Delta_{\mathsf{CKM}} = 4\left(\overline{\alpha}_{ll}^{(3)} - \overline{\alpha}_{lq}^{(3)} + \dots\right)$$

High intensity experiments and high precision theory prediction lead to competitive constraints on physics beyond the standard model.

High intensity experiments and high precision theory prediction lead to competitive constraints on physics beyond the standard model.

On the theory side progress is expected from Lattice QCD on the calculation of previously sub-leading non-perturbative effects. This will also include a matching of the Lattice results to the continuum.

High intensity experiments and high precision theory prediction lead to competitive constraints on physics beyond the standard model.

On the theory side progress is expected from Lattice QCD on the calculation of previously sub-leading non-perturbative effects. This will also include a matching of the Lattice results to the continuum.

The upcoming searches for rare Kaon decays will test so far unconstrained parameter space of new physics.