Kaon experiments: recent results and prospects

Cristina Lazzeroni University of Birmingham

Quarks and Leptons UK Forum The Cosener's House 14-15 November 2013

European Research Council Established by the European Commission

Kaon physics facilities

A variety of experimental techniques: K decay-in-flight (e.g. CERN), stopped K⁺, ϕ factory ²

KLOE: latest results

 $\sigma(e^+e^- \rightarrow \phi) \approx 3 \ \mu b \qquad \mathsf{K}_{s'}\mathsf{K}^+ \quad \longleftarrow \quad \phi \longrightarrow \quad \mathsf{K}_{\iota'}\mathsf{K}^-$

 ϕ decay at rest provides monochromatic and pure kaon beams

Search for CP violation in $K_S \rightarrow \pi^0 \pi^0 \pi^0$

arXiv:1301.7623 BR(K_S → 3 π^0) ≤ 2.6 × 10⁻⁸ @ 90% CL $|\eta_{000}|$ < 0.0088 @ 90% CL

1.7 fb⁻¹ of the KLOE data sample

- KLOE preliminary BR(K⁺ -> $\pi^{+}\pi^{-}\pi^{+}$) = (0.05526 ± 0.00035_{stat} ± 0.00036_{syst}), Δ BR/BR = 9.2 ×10⁻³

NA62, R_K Phase: recent results

$R_{\rm K}$ in the SM

$R_{\rm K}$ beyond the SM

In the MSSM large tanβ scenario, the presence of LFV terms (charged Higgs coupling) introduces extra contributions to the SM amplitude ~1% effect Girrbach and Nierste, arXiv:1202.4906

2HDM - tree level

 $K^{\pm} \rightarrow l^{\pm}v$ can proceed via charged Higgs H^{\pm} (in addition to W^{\pm}) exchange

 \rightarrow Does not affect the ratio $\mathbf{R}_{\mathbf{K}}$

2HDM - one-loop level

Dominant contribution to R_{K} : H[±] mediated <u>LFV</u> (rather than LFC) with emission of v_{τ}

 $\rightarrow R_{K}$ enhancement can be experimentally accessible

$$R_{K}^{LFV} = \frac{\Gamma_{SM} \left(K \rightarrow e \nu_{e}\right) + \Gamma_{LFV} \left(K \rightarrow e \nu_{\tau}\right)}{\Gamma_{SM} \left(K \rightarrow \mu \nu_{\mu}\right)}$$
$$R_{K}^{LFV} \approx R_{K}^{SM} \left[1 + \left(\frac{m_{K}^{4}}{m_{H^{\pm}}^{4}}\right) \left(\frac{m_{\tau}^{2}}{m_{e}^{2}}\right) \left|\Delta_{13}\right|^{2} \tan^{6}\beta\right]$$

Sensitive to SM extensions with 4th generation, sterile neutrinos Lacker and Menzel, JHEP 1007 (2010) 006; Abada et al., JHEP 1302 (2013) 048

R_K: Future prospects

Future NA62 (data taking in 2014-2015):

Hermetic veto (large-angle and small-angle veto counters) will strongly decrease the background.

Beam spectrometer (beam tracker plus beam Cherenkov) will allow time correlation between incoming kaons and decay products (improved PID).

Only the $K_{\mu 2}$ ($\mu \rightarrow e$) background will remain: well known ~0.1% contamination.

Assuming an analysis at low lepton momentum and not using electron ID, measurement of $R_{\rm K}$ with much improved relative precision is feasible.

 $\begin{array}{ll} \underline{Required\ statistical\ uncertainty} \ is \ \sim 0.05\% \ \rightarrow \ few\ million\ K_{e2}\ candidates.\\ Required\ kaon\ decay\ flux: \ N_{K}\ \sim \ 10^{12}\\ Expected\ NA62\ flux: \ N_{K}\ \sim \ 10^{13} \end{array}$

K_{μ2}: heavy sterile neutrinos

Overview of TREK

TREK detector: Upgrade of E246 detector for the study of various Kaon decay channels at **J-PARC**. installing/running FY2014/2015 Gap

installing/running FY20	Gap Iron pole			
Search for lepton universality violation in a measurement of the ratio of the K_{e2} and $K_{\mu 2}$ decay widths	$K^+ \rightarrow e^+ v$ $K^+ \rightarrow \mu^+ v$ 0.25% precision	e' counte		
Search for a heavy sterile neutrino	$K^+ \rightarrow \mu^+ N$ U <2 10 ⁻⁸ for M<200 MeV			
Search for dark light	$K^{+} \rightarrow \pi^{+}A^{+} \rightarrow \pi^{+}e^{+}e^{-}$ $K^{+} \rightarrow \mu^{+}\nu A^{+} \rightarrow \mu^{+}\nu e^{+}e^{-}$	M. Abe et al., Phys. Rev. D 73, 072005 (2006)		
SM extensions with massive dauge hoson A'				

SIM extensions with massive gauge buson A Sensitivity: mixing parameter ~10⁻⁶ for 10<M(A')<100 MeV 10

TREK: Dark photon

T. Beranek and M. Vanderhaeghen, Phys. Rev. D 87, 015024 (2013)

Fig. from M. Pospelov, PEB2013 workshop (2013)

$K{\rightarrow}\pi\nu\nu$: Theory in the Standard Model

BNL E787/949: $K^+ \rightarrow \pi^+ \nu \nu$

Background in Region 2 from the $K_{2\pi}$ decay with $\pi^{\scriptscriptstyle +}$ scattering in the target.

E787/E949: $BR(K^+ \rightarrow \pi^+ \nu \nu) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$

- 7 observed candidates, 2.6 expected background
 - kground PRD 79 (2009) 092004
- Probability that 7 observed events are all background is 10⁻³
- Still compatible with SM within errors

PRL 101 (2008) 191802;

NA62 @CERN: $K^+ \rightarrow \pi^+ \nu \nu$

NA62 aim: collect O(100) SM K⁺ $\rightarrow \pi^+ vv$ decays with <20% background in 2 years of data taking using a novel decay-in-flight technique

Decay signature: high momentum K⁺ (75GeV/c) → low momentum π⁺ (15–35 GeV/c)
 Advantages: max detected K⁺ decays/proton (p_K/p₀≈0.2); efficient photon veto (>40 GeV missing energy); good π⁺ vs μ⁺ identification with RICH
 Un-separated beam (6% kaons) → higher rates, additional backgrounds

Kinematic variable: $m_{miss}^2 = (P_K - P_{\pi^+})^2$ P_K $P_{\pi K}$ $P_{\pi K}$ P_{ν} P_{ν}

Backgrounds

Background

 K⁺ decay modes
 Accidental single track matched with a K-like track

Accidental single tracks:

Beam interactions in the beam tracker Beam interactions with the residual gas in the vacuum region.

Signal & backgrounds			
(events/year)			
Signal	45		
$K^+ \rightarrow \pi^+ \pi^0$	5		
Κ ⁺→μ⁺ν	1		
K⁺→π⁺π⁺π⁻	<1		
Other 3-track decays	<1		
K⁺→π⁺π ⁰ γ (IB)	1.5		
K⁺→μ⁺νγ (IB)	0.5 ₁₆		
Total background	<10		

The NA62 detector

Kinematic rejection factors (limited by beam pileup and tails of MCS): 5×10^3 for $K^+ \rightarrow \pi^+ \pi^0$, 1.5×10^4 for $K \rightarrow \mu^+ \nu$.

Hermetic photon veto: ~10⁸ suppression of $\pi^0 \rightarrow \gamma\gamma$. Particle ID (RICH+LKr+MUV): ~10⁷ muon suppression.

NA62 Timeline

- 5 years of construction interleaved with a Technical Run in fall 2012
- In 2014 a first Run with full detector
- 3 years of Physics data taking before LHC Long Shutdown 2 (LS2)

K→πνν experiments: ORKA

ORKA @ FNAL Main Injector (K⁺):

Builds on BNL stopped-kaon technique Expect ~100 times higher sensitivity (x10 from beam and x10 from detector) Goal: O(10³) SM K⁺ $\rightarrow \pi^+ \nu \nu$ events Fits inside the CDF solenoid Re-use CDF infrastructure

Stage I approval: US Flavour community and funding agencies are working to find a way to make it possible

K→πvv experiments: KOTO

KOTO @ J-PARC (K_L):

E391a: BR<6.8×10⁻⁸ @ 90%CL Expect ~10³ times higher sensitivity

Builds on KEK E391a technique Detector construction finished Data taking: 2013–2017

Collimators to suppress halo neutrons main background in E391a (n + detector $\rightarrow \pi^0$)

Lepton Flavour/Number violation

LFV in kaon decays

Copious production: high statistics Simple decay topologies: clean experimental signatures

High NP mass scales accessible for tree-level contributions

Dimensional argument:

$$rac{\Gamma_X}{\Gamma_{
m SM}}\sim \left(rac{g_X}{g_W}\cdotrac{M_W}{M_X}
ight)^4$$

For $g_X \approx g_W$ and $\mathcal{B} \sim 10^{-12}$:

 $M_X \sim 100 {
m ~TeV}$

LFV in K[±] decays

Mode	UL at 90% CL	Experiment	Reference
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$]		
$K^+ o \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$	-BNL E865	PRL 85 (2000) 2877
$K^+ ightarrow \pi^- e^+ e^+$	$6.4 imes10^{-10}$		
$K^\pm o \pi^\mp \mu^\pm \mu^\pm$	$1.1 imes 10^{-9}$	CERN NA48/2	PLB 697 (2011) 107
$K^+ ightarrow \mu^- u e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ o e^- u \mu^+ \mu^+$	no data		
•		*	

CERN NA48/2 sensitivities for these 3 modes are similar to those of BNL E865

Expected NA62 single event sensitivities: ~ 10^{-12} for K[±] decays NA62 is capable of improving on all these decay modes e.g. 2003-4 data K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}$: $\mathcal{B}(K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}) < 1.1 \times 10^{-9}$ @90% CL

Precision limited by background from $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ decays in spectrometer, despite SES $\approx 3 \times 10^{-11}$

In future, no $K_{3\pi}$ background expected due to high spectrometer P_T (270 vs 120 MeV/c) and improved $\pi\mu\mu$ mass resolution (1.1 vs 2.6 MeV/c²) ²³

Sensitivity to Majorana neutrino

Summary

Several kaon existing experiments producing results (only a selection shown here) Several planned experiments around the world: KLOE-2, NA62, TREK, KOTO, ORKA, KLOD

Diverse physics programme:

- CP violation, T violation
- Ultra-Rare Decays
- Lepton Flavour/Number violation
- Search for heavy/Majorana neutrinos
- Branching ratios, QCD tests, form factors etc. (not shown)

NA62@CERN (construction/commissioning):

expected single event sensitivity for K^+ decays: ~10⁻¹² preparing for the physics run in 2014 (low intensity) with a rich physics programme

LKr electromagnetic calorimeter: $\sigma_{\rm F}/{\rm E} = (3.2/\sqrt{\rm E} \oplus 9.0/{\rm E} \oplus 0.42)\%$ (E in GeV) $\sigma_x = \sigma_v \sim 1.5$ mm for E=10 GeV $\sigma(M_{\pi\pi^0\pi^0}) = 1.4 \text{ MeV/c}^2$ E/p ratio used for e/π discrimination

- ~100 m long decay region in vacuum
- Similar acceptance between K⁺ and K⁻ beams checked reversing magnetics fields
- Pion decay products, from the hadronic beam, remain into the beam pipe

Leptonic meson decays: P⁺→I⁺v

$\pi^+ \rightarrow \nu: \Delta\Gamma/\Gamma_{SM}$	$\approx -2(m_{\pi}/m_{H})^2 m_d/(m_u+m_d)$ tar	² β≈ 2×10 ⁻⁴
K ⁺ → $ ν: \Delta \Gamma / \Gamma_{SM}$	\approx −2(m _K /m _H) ² tan ² β	≈ 0.3%
$D_{s}^{+} \rightarrow \nu : \Delta \Gamma / \Gamma_{SM}$	$\approx -2(m_D/m_H)^2 (m_s/m_c) \tan^2\beta$	≈ 0.4%
B ⁺ →Iv: $\Delta\Gamma/\Gamma_{SM}$	\approx −2(m _B /m _H) ² tan ² β	≈ 30%

NA62 data set for R_K

CKM Unitarity and Rare Kaon Decays

The NA62 Beam

Primary Beam:

- 400 GeV/c protons
- 4.8/16.8 s duty cycle

Only 6% K⁺ but:

- protons and positrons don't decay...
- pions and muons decays cannot mimic K⁺ decays
- but beam-gas interactions do!!

Keep vacuum at 10⁻⁶ mbar: use existing NA48 decay tank

Secondary Beam:

- 75 GeV/c momentum ($\Delta p/p \sim 1\%$)
- 3 10¹² protons/pulse (3 NA48/2)
 Beam acc.: 12.7 mstr (32 NA48/2)
 - Total rate: 800 MHz
 - K⁺ ~ 6%
 - 4.5 10¹² K⁺decays/y (45 NA48/2)

- Size @ beam tracker: 5.5 x 2.2 cm²
- Rate @ beam tracker: 800 MHz
- Rate @ KTAG: 50 MHz
- Rate downstream 10 MHz (K⁺ decay mainly)
- Angular spread in X and Y < 100 μ rad

NA48/2 K[±] $\rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$ upper limit

K[±]→ π [∓] μ [±] μ [±] at NA62

Prospects for LFNV Searches in K⁺ and π⁰ decays at NA62

Decay mode	Physics Interest	UL at 90% CL (Experiment)
$K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +}\mu^{\scriptscriptstyle +}e^{\scriptscriptstyle -}$	LFV	< 1.3 × 10 ⁻¹¹ (BNL E777/E865)
K⁺ → π⁺ μ⁻ e⁺	LFV	< 5.2 × 10 ⁻¹⁰ (BNL E865)
$K^+ \rightarrow \pi^- \mu^+ e^+$	LFNV: $\Delta L_{\mu} = \Delta L_{e} = -1$	< 5.0 × 10 ⁻¹⁰ (BNL E865)
$K^+ \rightarrow \pi^- e^+ e^+$	LNV: $ \Delta L_e = 2$	< 6.4 × 10 ⁻¹⁰ (BNL E865)
$K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle -} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle +}$	LNV: $ \Delta L_{\mu} = 2$	< 1.1 × 10 ⁻⁹ (NA48/2)
$K^+ \rightarrow \mu^- \nu_\mu e^+ e^+$	LNV: $ \Delta L_e = 2$ or LFV	< 2.8 × 10 ⁻⁸ (Geneva-Saclay)
$K^+ \rightarrow e^- \nu_e \mu^+ \mu^+$	LNV: $ \Delta L_{\mu} = 2$ or LFV	No Data
$\pi^0 \rightarrow \mu \pm e^{\mp}$	LFV	< 3.6 × 10 ⁻¹⁰ (KTEV)

- Total number of decays in fiducial volume: 1.2×10^{13} K⁺ & $2.5 \times 10^{12} \pi^{0}$ - Expected Acceptance O(10%)

NA62 SINGLE-EVENT SENSITIVITY(*): ~ 10⁻¹² ON K⁺ DECAY ~ 10⁻¹¹ ON π^{0} DECAY

NA62 Detector 2012 and 2014

K⁺→ π ⁺ π ⁰ Sample in 2012

Exploit the timing and spatial correlations between the subdetectors to define a Kaon candidate, pion candidate and a muon candidate.

Using time-correlation and signal from New KTAG and MUV:

Selection based on LKr (π^0 vertex assuming π^0 mass, and assumed kaon direction)

$$P_{\pi^+} = (P_K - P_{\pi^0}) \rightarrow P_{\pi^+}^2 = m_{\pi^+}^2 \text{ for } K^+ \rightarrow \pi^+ \pi^0$$

