Experimental Top Quark Results

Dr Joanne Cole HEP Group, Brunel University 14th November 2013

Brunel

UNIVERSITY

O N

Outline

> As the time available is limited ...

The focus of this talk is on measurements of top quark properties
 I will not talk about BSM-specific results, although some are included at the end of the talk

The talk is also biased towards CMS and ATLAS, although Tevatron results are included where possible

The Top Quark

 \blacktriangleright Top is the Q = +²/₃e, T₃ = +¹/₂ weak isospin partner of the b-quark in the third generation

> Top mass: $m_t = 173.07 \pm 0.52 \pm 0.72 \text{ GeV}$ (PDG value based on Tevatron measurements) \blacktriangleright Mass comparable to Rhenium atom (Z =75)

Top decays to Wb ~100% of the time \succ Implies $|V_{tb}|$ close to unity

- \blacktriangleright Lifetime ~ 0.5 x 10⁻²⁴ s
 - > Top decays before it can hadronize
 - \succ We can study the properties of the bare quark

3

Why is the top quark important?

Top quark plays an important role in EW symmetry breaking

 \succ Large mass \Rightarrow Large Yukawa coupling

 $\overline{Y_D \approx (10^{-5}, 0.0005, 0.026)}$

Andreas Weiler – TOP2013

 $Y_U \approx \begin{pmatrix} 10^{-5} & -0.002 & 0.007 + 0.004i \\ 10^{-6} & 0.007 & -0.04 + 0.0008i \\ 10^{-8} + 10^{-7}i & 0.0003 & 0.92 \end{pmatrix}$

Plays an important role in many BSM scenarios:

- Resonant tt production
- \succ Extra decay modes, eg. t \rightarrow H⁺b, FCNC t \rightarrow qZ, light Stop decays
- Same sign top quark pairs

Brune University LONDON

Production of Top Quark Pairs

Production Mechanisms

Brunel UNIVERSITY

Dominant production mechanism via pQCD:

Top quark pair decays

Classify decays according to how the W bosons decay:

Top Pair Branching Fractions

Backgrounds

QCD background

Particular problem for all-jets decay: Model using event mixing and fitting

Z + jets

Particular problem for di-lepton decay: Model using Z-peak data

W + jets

Particular problem for I + jets decay: Handled using template fit

Brunel

UNIVERSITY

UK HEP Forum, "Quarks and Leptons"

Likelihood

Production cross section: Top pairs

Production cross section: Top pairs

Top Pair Cross Section @ vs = 7 TeV

Top Pair Cross Section @ √s = 8 TeV

Cross Section: Energy Dependence

Differential cross sections

Differential cross sections

Cross section versus Jet Multiplicity

> Top pair cross section in the presence of additional jets

Helps constrain ISR, as well as testing pQCD

CMS-PAS-TOP-12-014 ATLAS-CONF-2012-155

N

0

Brunel

n_{jets}

Top Mass Measurements

- Matrix Element method
 - Use MEs for processes contributing to final state to evaluate event-by-event probability densities. Likelihood fit.
- Neutrino weighting method
 - Dileptons two neutrinos cannot be separated
 - \succ Expect Gaussian distribution for vn (width \propto m₊)
- \succ Ideogram/Template fits
 - \succ Fit reconstructed masses or other kinematic variables
- Extraction from cross section measurements
- \succ B-hadron lifetime technique
 - \blacktriangleright Parametrise L_{xy} in terms of m_t
- Extraction from kinematic endpoints 3-body decay constraints on various forms of transverse mass

200

100

M_{bl} (GeV)

150

200

Brunel

DØ, 4.3 fb⁻¹

14th November 2013

UK HEP Forum, "Quarks and Lep

Lent 150

100

100 150 M_(2,2,1) (GeV)

Top Mass Measurements

Top Mass: Related Issues & Measurements

- What mass are we measuring?
 - \blacktriangleright Extraction from measured cross section: MS scheme
 - Other methods: Effectively measuring "MC" m₊
 - \succ m_t (MC) m_t (pole) \approx uncertainty on mass measurement

Brunel

INIVERSITY

ONDON

$B(t \rightarrow Wb)/B(t \rightarrow Wq)$

- > Decay rate of t \rightarrow Wq (q = d, s, b) is proportional to $\left|V_{tq}\right|^2$
- Assuming that the CKM is a 3 × 3 unitary matrix highly constrains |V_{tb}| to be close to unity

$$R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)} = \frac{\left|V_{tb}\right|^2}{\left|V_{tb}\right|^2 + \left|V_{ts}\right|^2 + \left|V_{td}\right|^2}$$

$$\succ$$
 Allows the study of $|V_{tq}|$

CMS-PAS-TOP-12-035 CDF CONF NOTE 11048 D0: PRL 107 (2011) 121802

 $R(D0) = 0.90 \pm 0.04(stat + syst)$ $R(CDF) = 0.94 \pm 0.09(stat + syst)$ $R(CMS) = 1.023^{+0.036}_{-0.034}(stat + syst)$

 $R(SM) = 0.99830_{-0.00009}^{+0.00006}$

Good consistency between experiments and with SM expectations

14th November 2013

- Difference expected from QCD in angular distributions for top and anti-top quarks
 - Known as the charge asymmetry
 - ➢ @ LHC expect ~1% effect
- > Expect different behaviour at Tevatron vs. LHC
 - \succ Tevatron results deviate from SM expectations at 2-3 σ level
 - \succ Interesting enhancement observed at large m_{tt}

Top Charge Asymmetry

Brunel UNIVERSITY

14th November 2013

Spin Correlations

- Expect negligible top-quark polarization and finite spin correlation in SM

Top Quark Polarization

ATLAS results:

 $\alpha_l P_{CPC} = -0.035 \pm 0.014 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $\alpha_l P_{CPV} = 0.020 \pm 0.016 \text{ (stat)}_{-0.017}^{+0.013} \text{ (syst)}$

hep-ex/1307.6511

CPC = top and anti-top have same polarization

CPV = top and anti-top have opposite polarization

Results are consistent with SM expectations and earlier CMS measurement (note factor of 2)

$$P = -0.009 \pm 0.029 \text{ (stat)} \pm 0.041 \text{ (syst)}$$

CMS-PAS-TOP-12-016

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos(\theta_i)} = \frac{1}{2} (1 + (2)\alpha_i P \cos(\theta_i))$$
$$B_i \equiv \alpha_i P$$

P = the degree of polarisation α_i = spin analyzing power of the final-state particle (LHC uses charged leptons α = 1.0)

SM P ≈ 0.003 (arXiv:1305.2066)

$$P = \frac{N(\cos(\theta^{+}) > 0) - N(\cos(\theta^{+}) < 0)}{N(\cos(\theta^{+}) > 0) + N(\cos(\theta^{+}) < 0)}$$

Brunel

ND

0

W Boson Polarization

Massive spin-1 W boson has three polarization (helicity) states

- \succ SM predictions for helicity fractions: F_0 , F_L and F_R
- > Extracted from angular distributions of W decay products

Brunel

D

N

0

Modeling of Top Quark Events

Brunel UNIVERSITY

CMS-PAS-TOP-13-007

- Perugia11 tunes could be further constrained especially for the case where colour reconnection effects are excluded
- b-quark fragmentation and hadronization also studied

Modeling of Top Quark Events

Integrated jet shape:

$$\Psi(r) = \frac{p_T(0,r)}{p_R(0,R)}; \quad r \le R$$

- Observations support earlier CDF measurements: b-jets expected to be broader than light-quark jets
- Behaviour consistent with pQCD
- Perugia11 tunes slightly disfavoured by jet shapes data
- Help improve modeling of jets in MC

e

Bru

ttV production

Top quark couplings need to be tested:

Test Wtb coupling via single top production

ATLAS-CONF-2012-126

- > Test coupling to γ/Z via tt+ γ/Z
 - ttγ measured at Tevatron & LHC
 - ttZ cross section too low for observation at the Tevatron

CDF tty result: $\sigma_{t\bar{t}\gamma} = 0.18 \pm 0.07(stat) \pm 0.04(syst) \pm 0.01(lumi)$ pb $\sigma_{t\bar{t}\gamma}^{NLO} = 0.17 \pm 0.03$ pb PRD 84 031104

ATLAS tty result: $\sigma_{t\bar{t}\gamma} \cdot BR = 2.0 \pm 0.5(stat) \pm 0.7(syst) \pm 0.08(lumi)$ pb $\sigma_{t\bar{t}\gamma}^{SM} \cdot BR = 2.1 \pm 0.4$ pb ATLAS-CONF-2011/153

95% credibility

ttH production

Large top Yukawa coupling \rightarrow special role for top in EW symmetry breaking?

Single Top Production

Production mechanisms

Brunel UNIVERSITY

Electroweak top quark production – all involve a Wtb vertex in the production mechanism

t-channel production

Dominant production mechanism for LHC and Tevatron

Consistent results between experiments and with SM predictions

t-channel production

> At LHC, expect asymmetry in production of top and anti-top quarks:

$$\sigma_{top} = 56.4_{-0.3}^{+2.1}(scale) \pm 1.1(PDF) \text{pb}$$

$$\sigma_{anti-top} = 30.7 \pm 0.7(scale)_{-1.1}^{+0.9}(PDF) \text{pb}$$

$$R = \frac{\sigma_{top}}{\sigma_{anti-top}} = 1.84$$

Top Polarization: t-channel measurement

 \blacktriangleright Expect top quarks to be \approx 100% polarized

> Examine the V-A coupling structure of the Wtb vertex

$$A_{l} = \frac{1}{2} P_{t} \alpha_{l} = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$

 α_{I} = 1.0 in SM for charged leptons

 $P_{t} = -1^{+0.5}$

Cannot exclude opposite polarization or unpolarized production

Bru

tW production

Second largest production mechanism at LHC; negligible at Tevatron

UK HEP Forum, "Quarks and Leptons"

s-channel production

ATLAS s-channel measurement from Vs = 7 TeV

σ < 26.5 pb @ 95% CL

So far only evidence for s-channel production from Tevatron

ATLAS-CONF-2011-118

runel

Summary & Prospects

At Vs = 13-14 TeV and 300 fb⁻¹, expect 250M tt pairs and 100M single top events

Expect some substantial improvements to top-related measurements, plus some new ones

> Exploit different top mass extraction techniques eg. $t \rightarrow b \rightarrow J / \psi \rightarrow \mu^+ \mu^-$

- Improved ttV (V = W, Z) measurements, plus first measurement of tZ
 - Constraint of top couplings to both Z and photon
- Top Yukawa coupling
- Improvement of systematics on existing measurement techniques
- Lots of new and exciting physics to come!

Extra Material

Top-Anti-Top Resonances

Obs. 95% CL upper limit Exp. 95% CL upper limit

Exp. 1 σ uncertainty Exp. 2 σ uncertainty Leptophobic Z' (LO x 1.3)

ATLAS Preliminary

 $\sigma_{Z'} \times BR(Z' {\rightarrow} t \bar t) \; [pb]$

10

√s = 8 TeV

 $L dt = 14.3 \text{ fb}^{-1}$

- > A number of BSM theories allow for resonant top pair production:
 - Benchmark theories:
 - Leptophobic top-colour Z' (narrow resonances)
 - ➢ KK gluons from RS models (broad resonances)
- Tops tend to be highly boosted
 - Use jet substructure observables to identify them

Top Quarks & Supersymmetry

Stop pair production decaying to either top plus neutralino or botton plus chargino

Brunel

Ratio of σ (ttbb) to σ (ttqq)

Brunel UNIVERSITY

- Irreducible background to ttH measurement
- Measure ratio as many systematics cancel

Examples of LO ttbb production diagrams

 $\sigma(t\overline{t}b\overline{b}) / \sigma(t\overline{t}jj) = 0.023 \pm 0.003(stat) \pm 0.005(syst)$

Jet $p_T > 20 \text{ GeV/c}$

 $\sigma(t\overline{t}b\overline{b}) / \sigma(t\overline{t}jj) = 0.022 \pm 0.004(stat) \pm 0.005(syst)$

Jet $p_T > 40 \text{ GeV/c}$

MADGRAPH: 0.016 ± 0.002, 0.013 ± 0.002 POWHEG: 0.017 ± 0.002, 0.014 ± 0.002

Results appear reasonably consistent with MC predictions