UK HEP FORUM on "Quarks and leptons" 14–15 November 2013 – The Cosener's House

Baryogenesis vs. Leptogenesis

Pasquale Di Bari (University of Southampton)

Puzzles of Modern Cosmology

- 1. Dark matter
- 2. Matter antimatter asymmetry
- 3. Inflation

Baryogenesis

- 4. Accelerating Universe
- \Rightarrow clash between the SM and ΛCDM !

Primordial matter-antimatter asymmetry

- Symmetric Universe with matter- anti matter domains? Excluded by CMB + cosmic rays $\Rightarrow \eta_{B}^{CMB(Planck)} = (6.1 \pm 0.1) \times 10^{-10} \gg \eta_{\overline{B}}$
- Pre-existing ? It conflicts with inflation ! (Dolgov '97)

⇒ dynamical generation (baryogenesis) (Sakharov '67)

Models of Baryogenesis

- From phase transitions
- Electroweak Baryogenesis:
- * in the SM
- * in the MSSM
- * in the nMSSM
- * in the NMSSM
- * in the 2 Higgs model
- * at B-L symmetry breaking
- * in Technicolor
- Affleck-Dine:
 - at preheating

............

- Q-balls

- From Black Hole evaporation
- Spontaneous Baryogenesis
- Gravitational Baryogenesis
- From heavy particle decays:
- maximons decays
 - (Sakharov '67)
 - GUT Baryogenesis
 - - LEPTOGENESIS (from decays)
- Leptogenesis from RH neutrino oscillations

Baryogenesis in the SM ?

- All 3 Sakharov conditions are fulfilled in the SM at some level:
- 1) Baryon number violation if $T\gtrsim 100~GeV$

(sphaleron transitions),

- 2) CP violation in the quark CKM matrix,
- 3) Departure from thermal equilibrium (an arrow of time) from the expansion of the Universe

(Kuzmin, Rubakov, Shaposhnikov '85; Kajantie, Laine, Shaposhnikov '97)

If the EW phase transition (PT) is 1st order \Rightarrow broken phase bubbles nucleate

The ratio v_c/T_c is directly related to the Higgs mass ($\propto 1/M_h^2$) and only for $M_h < 40 \text{ GeV}$ one can have a strong PT \Rightarrow EW baryogenesis in the SM is ruled out by the LEP lower bound $M_h \Rightarrow 114 \text{ GeV}$! (also not enough CP)

⇒ New Physics is needed!

EWBG in the MSSM: the light stop scenario

(Carena, Quiros, Wagner '98)

Additional bosonic degrees of freedom (dominantly the light stop

contribution) can make the EW phase transition more strongly first order if:

• Notice that there is a tension between the strong PT requirement and the LEP lower bound on M_h and in particular one has to impose $5 \le tan \beta \le 10$

 In addition there are severe constraints from the simultaneous requirement of CP violation in the bubble walls without generation of too large electric dipole moment of the electron......;

EWBG in the MSSM: the light stop scenario

(Carena, Nardini, Quiros, Wagner '09)

common scale for heavy fermion masses

 $\tilde{m} > 6.5 \text{ TeV}$ $m_H \lesssim 127 \text{ GeV}$ $m_{\tilde{t}} \lesssim 120 \text{ GeV}$. (light stop)

Light stop scenario after LHC8

• A Higgs mass ~ 125 GeV forces the heavy fermio ns mass scale $\ m$) to be much above the EW scale but still MSSM EWB seems viable in some region but...

 A light stop enhances SM-like gluon fusion production rate reducing the decay width into photons incompatibly with LCH8 data

(Cohen et al '12; Curtin, Jaiswal, Meade '12)

⇒ MSSM EWB ruled out?

- Tension can be relaxed with a light neutralino with mass lower than about 60 GeV inducing a sizable Higgs invisible decay width (Carena Nardini, Quiros, Wagner '12)
- Even though not completely dead, MSSM EWB is strongly cornered and this has induced studies of EWB in other BSM models:
 - in a two-Higgs-doublet model (Dorsch, Huber, No '13)
 - in the NMSSM (Balazs, Mazumdar '13)
 -in many more different ways!

EWB, still a "character in search of an author"

Affleck-Dine Baryogenesis (Affleck, Dine '85)

In the Supersymmetric SM there are many "flat directions" in the space of a field composed of squarks and/or sleptons

$$V(\phi) = \sum_{i} \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \frac{1}{2} \sum_{A} \left(\sum_{ij} \phi_i^*(t_A)_{ij} \phi_j \right)^2$$

A flat direction can be parametrized in terms of a complex field (AD field) that carries a baryon number that is violated dynamically during inflation

$$\frac{n_B}{s} \sim 10^{-10} \left(\frac{m_{3/2}}{m_{\Phi}}\right) \left(\frac{m_{\Phi}}{\text{TeV}}\right)^{-\frac{1}{2}} \left(\frac{M}{M_P}\right)^{\frac{3}{2}} \left(\frac{T_R}{10 \text{ GeV}}\right)$$

The final asymmetry is $\propto T_{RH}$ and the observed one can be reproduced $\,$ for low values $T_{RH} \sim 10 \; GeV \,$!

Gravitational Baryogenesis (Davoudiasl, Kribs, Kitano, Murayama, Steinhardt '04)

The key ingredient is a CP violating interaction between the derivative of the Ricci scalar curvature \mathcal{R} and the baryon number current J^{μ} :

It works efficiently and asymmetries even much larger than the observed one are generated for $T_{RH} \gg 100$ GeV

Baryogenesi Univer	is and the early se history
$10^{14}GeV \gg T_{RH} \gg 100 GeV$	Inflation Affleck-Dine (at preheating) Gravitational baryogenesis GUT baryogenesis
100 GeV	— EWBG — "Cold" EWBG
0.1- 1 MeV	- BBN
0.1-1 eV	- Recombination

Neutrino mixing parameters ("pre-T2K") $|v_{\alpha}\rangle = \sum U_{\alpha i} |v_{i}\rangle$

 $\theta_{13} = 3.2^{+4.5} (^{+9.6})$,

(Gonzalez-Garcia, Maltoni 08)

 $\theta_{23} = 43.1^{+4.4}_{-3.5} \begin{pmatrix} +10.1 \\ -8.0 \end{pmatrix}, \quad \Delta m^2_{31} = \begin{cases} -2.39 \pm 0.12 \begin{pmatrix} +0.37 \\ -0.40 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 \,, \\ +2.49 \pm 0.12 \begin{pmatrix} +0.39 \\ -0.36 \end{pmatrix} \times 10^{-3} \ \mathrm{eV}^2 \,, \end{cases}$

 $\delta_{CP} \in [0, 360];$

Neutrino masses: $m_1 < m_2 < m_3$

neutrino mixing data

2 possible schemes: normal or inverted

$$m_3^2 - m_2^2 = \Delta m_{\text{atm}}^2 \text{ or } \Delta m_{\text{sol}}^2 \quad m_{\text{atm}} \equiv \sqrt{\Delta m_{\text{atm}}^2 + \Delta m_{\text{sol}}^2} \simeq 0.05 \,\text{eV}$$
$$m_2^2 - m_1^2 = \Delta m_{\text{sol}}^2 \text{ or } \Delta m_{\text{atm}}^2 \quad m_{\text{sol}} \equiv \sqrt{\Delta m_{\text{sol}}^2} \simeq 0.009 \,\text{eV}$$

 $\begin{array}{l} \beta\beta 0\nu: \ m_{\beta\beta} < \ 0.34 - 0.78 \ eV \\ (CUORICINO \ 95\% \ CL, \ similar \\ \ bound \ from \ Heidelberg-Moscow) \\ m_{\beta\beta} < \ 0.14 - 0.38 \ eV \\ (EXO-200 \ \ 90\% \ CL) \\ m_{\beta\beta} < \ 0.2 - 0.4 \ eV \\ (GERDA \ \ 90\% \ CL) \end{array}$

 $\begin{array}{l} \text{CMB+BAO+HO}: \Sigma \ \text{m}_{\text{i}} < 0.23 \ \text{eV} \\ \text{(Planck+high I+WMAPpol+BAO 95\%CL)} \\ \Rightarrow \ \text{m}_{1} < 0.07 \ \text{eV} \end{array}$

Minimal scenario of Leptogenesis (Fukugita, Yanagida '86)

•Type I seesaw

$$\mathcal{L}_{\rm mass}^{\nu} = -\frac{1}{2} \left[\left(\bar{\nu}_L^c, \bar{\nu}_R \right) \left(\begin{array}{cc} 0 & \boldsymbol{m}_D^T \\ \boldsymbol{m}_D & \boldsymbol{M} \end{array} \right) \left(\begin{array}{c} \nu_L \\ \boldsymbol{\nu}_R^c \end{array} \right) \right] + h.c.$$

In the see-saw limit ($M\gg m_D$) the spectrum of mass eigenstates splits in 2 sets:

• 3 light neutrinos $u_1, \,
u_2, \,
u_3$ with masses

 $diag(m_1, m_2, m_3) = -U^{\dagger} m_D \frac{1}{M} m_D^T U^{\star}$

• 3 new heavy RH neutrinos N_1, N_2, N_3 with masses $M_3 > M_2 > M_1 \gg m_D$

•<u>Thermal production of the RH neutrinos</u> \Rightarrow T_{RH} \gtrsim M_i / (2÷10)

...two important questions:

- 1. Can we get an insight on neutrino parameters from leptogenesis?
- 2. Vice-versa: can we probe leptogenesis with low energy neutrino data or even directly at collliders?

A common approach in the LHC era: by lowering the typical expected scale of leptogenesis (~ 10¹⁰ GeV) in order to have additional testable effects (LHC signals, LFV, electric dipole moments, non-unitary leptonic mixing matrix...)

⇒ "TeV Leptogenesis"

In light of LHC8 negative data...is there an alternative approach based on usual high energy scale leptogenesis and relying just on low energy neutrino data?

Neutrino mixing parameters

Non-vanishing θ_{13} T2K: sin² 2 θ_{13} = 0.03 - 0.28 (90% CL NO)

- DAYA BAY: $sin^2 2\theta_{13} = 0.092 \pm 0.016 \pm 0.005$
- RENO, MINOS, DOUBLE CHOOZ, new T2K data,

recent global analyses Analogous results by Gonzalez-Garcia, Maltoni and Schwetz but $\delta_{\text{best fit}} \sim -\pi/3$ and θ_{23} in first octant favoured only at 1.5 σ for normal order and at 0.9 σ for inverted ordering

Recent hints (Daya Bay + T2K and SK) seem to support $\delta_{\text{best fit}} \sim -\pi/2$ (talk by F. Di Lodovico)

Seesaw parameter space

Imposing $\eta_B = \eta_B^{CMB}$ one would like to get information on U and m_i <u>Problem: too many parameters</u>

(Casas, Ibarra'01)
$$m_{\nu} = -m_D \frac{1}{M} m_D^T \Leftrightarrow \Omega^T \Omega = I$$

 $m_D = \begin{bmatrix} U \begin{pmatrix} \sqrt{m_1} 0 & 0 \\ 0 & \sqrt{m_2} & 0 \\ 0 & 0 & \sqrt{m_3} \end{pmatrix} \Omega \begin{pmatrix} \sqrt{M_1} 0 & 0 \\ 0 & \sqrt{M_2} & 0 \\ 0 & 0 & \sqrt{M_3} \end{pmatrix} \begin{bmatrix} U^{\dagger} U & = & I \\ U^{\dagger} m_{\nu} U^{\star} & = & -D_m \end{bmatrix}$

(in a basis where charged lepton and Majorana mass matrices are diagonal)

The 6 parameters in the orthogonal matrix Ω encode the 3 life times and the 3 total CP asymmetries of the RH neutrinos and is an invariant

<u>A parameter reduction would help and can occur if:</u>

- $\eta_B = \eta_B^{CMB}$ is satisfied around "peaks"
- some parameters cancel in the asymmetry calculation
- $\boldsymbol{\cdot}$ by imposing some (model dependent) conditions on \boldsymbol{m}_{D}

Vanilla leptogenesis

1) Flavor composition of final leptons is neglected

$$N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \kappa_{i}^{\text{fin}} \Rightarrow \eta_{B} = a_{\text{sph}} \frac{N_{B-L}^{\text{fin}}}{N_{\gamma}^{\text{rec}}} \stackrel{\text{baryon-to}}{\underset{\text{number ratio}}{\overset{\text{-photon}}{\overset{\text{number ratio}}{\overset{\text{number ratio}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}{\overset{\text{sphoton}}{\overset{\text{number ratio}}{\overset{\text{sphoton}}}{\overset{\text{sphoton}}{\overset{\text{sphoton}}}{\overset{shoton}}{\overset{shoton}}\overset{shoton}}{\overset{shoton}}{\overset{shoton}}\overset{shoton}{\overset{shoton}}{\overset{shoton}}{\overset{shoton}}{\overset{shoton}}}}}}}}}}}}}}$$

From the last two assumptions

$$\Rightarrow N_{B-L}^{\text{fin}} = \sum_i \varepsilon_i \,\kappa_i^{\text{fin}} \simeq \varepsilon_1 \,\kappa_1^{\text{fin}}$$

4) Barring fine-tuned mass cancellations in the seesaw

$$\varepsilon_1 \le \varepsilon_1^{\max} \simeq 10^{-6} \left(\frac{M_1}{10^{10} \,\mathrm{GeV}}\right) \frac{m_{\mathrm{atm}}}{m_1 + m_3}$$

(Davidson, Ibarra '02)

5) Efficiency factor from simple Boltzmann equations

Neutrino mass bounds in vanilla leptog.

(Davidson, Ibarra '02; Buchmüller, PDB, Plümacher '02, '03, '04; Giudice et al. '04) $\eta_B \simeq 0.01 \,\varepsilon_1(m_1, M_1, \Omega) \,\kappa_1^{\text{fin}}(K_1) \leq \eta_B^{\text{max}} = 0.01 \,\varepsilon_1^{\text{max}}(m_1, M_1) \,\kappa_1^{\text{fin}}(K_1^{\text{max}})$

No dipendence on the leptonic mixing matrix U

Independence of the initial conditions: strong thermal leptogenesis

Beyond vanilla Leptogenesis

Degenerate limit and resonant <u>leptogenesis</u>

Vanilla Leptogenesis Non minimal Leptogenesis (in type II seesaw, non thermal,....)

> Improved Kinetic description

(momentum dependence, quantum kinetic effects,finite temperature effects,....., density matrix formalism)

Flavour Effects (heavy neutrino flavour effects, lepton flavour effects and their interplay)

Lepton flavour effects

(Abada, Davidson, Losada, Josse-Michaux, Riotto'06; Nardi, Nir, Roulet, Racker '06; Blanchet, PDB, Raffelt '06; Riotto, De Simone '06)

Flavor composition of lepton quantum states:

$$\begin{aligned} |l_1\rangle &= \sum_{\alpha} \langle l_{\alpha} | l_1 \rangle | l_{\alpha} \rangle & (\alpha = e, \mu, \tau) \\ |\bar{l}_1'\rangle &= \sum_{\alpha} \langle l_{\alpha} | \bar{l}_1' \rangle | \bar{l}_{\alpha} \rangle & \bar{P}_{1\alpha} \equiv |\langle \bar{\ell}_1' | \bar{\alpha} \rangle|^2 \end{aligned}$$

For $T \ge 10^{12} \text{ GeV} \Rightarrow \tau$ -Yukawa interactions $(\bar{l}_{L\tau} \phi f_{\tau\tau} e_{R\tau})$ are fast enough to break the coherent evolution of $|l_1\rangle$ and $|\bar{l}_1'\rangle$

 \Rightarrow they become an incoherent mixture of a τ and of a μ +e component

At T \gtrsim 10⁹ GeV then also μ - Yukawas in equilibrium \Rightarrow 3-flavor regime

Two fully flavoured regime

$$\begin{array}{l} \left(\mathbf{a} = \mathbf{T}, \, \mathbf{e} + \mathbf{\mu} \right) & P_{1\alpha} \equiv |\langle \bar{l}_{\alpha} | l_{1} \rangle|^{2} = P_{1\alpha}^{\mathbf{0}} + \Delta P_{1\alpha}/2 & \left(\sum_{\alpha} P_{1\alpha}^{\mathbf{0}} = 1 \right) \\ \bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha} | \bar{l}_{1}' \rangle|^{2} = P_{1\alpha}^{\mathbf{0}} - \Delta P_{1\alpha}/2 & \left(\sum_{\alpha} \Delta P_{1\alpha} = 0 \right) \end{array}$$

$$\Rightarrow \varepsilon_{1\alpha} \equiv -\frac{P_{1\alpha}\Gamma_1 - \bar{P}_{1\alpha}\bar{\Gamma}_1}{\Gamma_1 + \bar{\Gamma}_1} = P_{1\alpha}^0 \varepsilon_1 + \Delta P_{1\alpha}(\Omega, U)/2$$

Classic Kinetic Equations (in their simplest form)

$$\frac{dN_{N_1}}{dz} = -D_1 \left(N_{N_1} - N_{N_1}^{\text{eq}} \right) \qquad \text{on U}$$

dependence

$$\frac{dN_{\Delta_{\alpha}}}{dz} = -\varepsilon_{1\alpha} \frac{dN_{N_1}}{dz} - P_{1\alpha}^0 W_1 N_{\Delta_{\alpha}}$$
$$\Rightarrow N_{B-L} = \sum_{\alpha} N_{\Delta_{\alpha}} \qquad (\Delta_{\alpha} \equiv B/3 - L_{\alpha})$$

 $\Rightarrow N_{B-L}^{\text{fin}} = \sum_{\alpha} \varepsilon_{1\alpha} \kappa_{1\alpha}^{\text{fin}} \simeq 2\varepsilon_1 \kappa_1^{\text{fin}} + \left(\frac{\Delta P_{1\alpha}}{2} \left[\kappa_{1\alpha}^{\text{fin}} - \kappa_{1\beta}^{\text{fin}}\right]\right)$

•Though not theoretically motivated, it is interesting that just CP violation in neutrino mixing could be the only source successful leptogenesis and it is approximately realised in some models such as 2RH neutrino model (Antusch, PDB, Jones, King 2010) In general, however, flavour effects do not open new ways to test leptogenesis in a model independent way: too many parameters!

Density matrix and CTP formalism to describe the transition regimes

(De Simone, Riotto '06; Beneke, Gabrecht, Fidler, Herranen, Schwaller '10)

$$\frac{\mathrm{d}Y_{\alpha\beta}}{\mathrm{d}z} = \frac{1}{szH(z)} \left[(\gamma_D + \gamma_{\Delta L=1}) \left(\frac{Y_{N_1}}{Y_{N_1}^{\mathrm{eq}}} - 1 \right) \epsilon_{\alpha\beta} - \frac{1}{2Y_{\ell}^{\mathrm{eq}}} \left\{ \gamma_D + \gamma_{\Delta L=1}, Y \right\}_{\alpha\beta} \right] - \left[\sigma_2 \mathrm{Re}(\Lambda) + \sigma_1 |\mathrm{Im}(\Lambda)| \right] Y_{\alpha\beta}$$

Heavy neutrino flavours: the N₂-dominated scenario

(PDB '05)

If light flavour effects are neglected the asymmetry from the next-to-lightest (N_2) RH neutrinos is typically negligible:

$$N_{B-L}^{\mathrm{f},\mathrm{N}_2} = \varepsilon_2 \kappa(K_2) \, e^{-\frac{3\pi}{8} K_1} \ll N_{B-L}^{\mathrm{f},\mathrm{N}_1} = \varepsilon_1 \, \kappa(K_1)$$

...except for a special choice of $\Omega = R_{23}$ when $K_1 = m_1/m_* \ll 1$ and $\varepsilon_1 = 0$:

$$\Rightarrow \boxed{N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \, \kappa_{i}^{\text{fin}} \simeq \varepsilon_{2} \, \kappa_{2}^{\text{fin}}} \qquad \varepsilon_{2} \stackrel{<}{\sim} 10^{-6} \left(\frac{M_{2}}{10^{10} \, \text{GeV}}\right)$$

The lower bound on M_1 disappears and is replaced by a lower bound on M_2 ... that however still implies a lower bound on T_{reh} !

N₂-flavored leptogenesis

(Vives '05; Blanchet, PDB '06; Blanchet, PDB '08)

Combining together lepton and heavy neutrino flavour effects one has

$$N_{B-L}^{\rm f}(N_2) = P_{2e}^0 \,\varepsilon_2 \,\kappa(K_2) \, e^{-\frac{3\pi}{8} \,K_{1e}} + P_{2\mu}^0 \,\varepsilon_2 \,\kappa(K_2) \, e^{-\frac{3\pi}{8} \,K_{1\mu}} + P_{2\tau}^0 \,\varepsilon_2 \,\kappa(K_2) \, e^{-\frac{3\pi}{8} \,K_{1\tau}}$$

Notice that $K_1 = K_{1e} + K_{1\mu} + K_{1\tau}$

With flavor effects the domain of applicability goes much beyond the choice $\Omega = R_{23}$ The existence of the heaviest RH neutrino N₃ is necessary for the ε_{2a} not to be negligible !

N₂-dominated **Particularly attractive** scenario **for two reasons**

First: It is just that one realised in SO(10) inspired models

SO(10)-inspired leptogenesis

(Branco et al. '02; Nezri, Orloff '02; Akhmedov, Frigerio, Smirnov '03)

Expressing the neutrino Dirac mass matrix m_D (in the basis where the Majorana mass and charged lepton mass matrices are diagonal) as:

$$m_D = V_L^{\dagger} D_{m_D} U_R$$

$$D_{m_D} = \text{diag}\{\lambda_{D1}, \lambda_{D2}, \lambda_{D3}\}$$

SO(10)-inspired conditions:

 $\lambda_{D1} = \alpha_1 \, m_u \,, \, \lambda_{D2} = \alpha_2 \, m_c \,, \, \lambda_{D3} = \alpha_3 \, m_t \,, \ (\alpha_i = \mathcal{O}(1))$

$$V_L \simeq V_{CKM} \simeq I$$

(not realised just in SO(10) models, see e..g. tetra-model, talk by S. King)

From the seesaw formula one can express: $U_R = U_R (U, m_i; \alpha_i, V_L), M_i = M_i (U, m_i; \alpha_i, V_L) \Rightarrow \eta_B = \eta_B (U, m_i; \alpha_i, V_L)$

one typically obtains (barring fine-tuned 'crossing level' solutions):

 $M_1 \gg \alpha_1^2 \, 10^5 \,\text{GeV} \,, \ M_2 \gg \alpha_2^2 \, 10^{10} \,\text{GeV} \,, \ M_3 \gg \alpha_3^2 \, 10^{15} \,\text{GeV}$

since $M_1 \ll 10^9 \text{ GeV} \Rightarrow \eta_B(N_1) \ll \eta_B^{CMB}$! \Rightarrow failure of the N₁-dominated scenario !

The N₂-dominated scenario rescues SO(10) inspired models

(PDB. Riotto '08)

Another way to rescue SO(10) inspired models is by considering a left-right symmetric seesaw (Abada, Hosteins, Josse-Michaux, Lavignac'08)

The model yields constraints on all low energy neutrino observables !

An improved analysis

(PDB, Marzola '11-'12)

We optimised the procedure increasing of two orders of magnitudes the number of solutions (focus on yellow points for the time being):

What are the blue green and red points? There is a second reason why the N_2 - dominated scenario is important

The conditions for the wash-out of a pre-existing asymmetry ('strong thermal leptogenesis') can be realised only within a N_2 -dominated scenario where the final asymmetry is dominantly produced in the tauon flavour

This mass pattern is just that one realized in the SO(10) inspired models: can they realise strong thermal leptogenesis?

SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '13)

$$N_{B-L}^{\rm f} = N_{B-L}^{\rm p,f} + N_{B-L}^{\rm lep,f}$$
,

Imposing both successful SO(10)-inspired leptogenesis $\eta_{B} = \eta_{B} = (6.2 \pm 0.15) \times 10^{-10}$ and $N_{B-L}^{P,f} \leftrightarrow N_{B-L}^{IeP,f}$

There are NO Solutions for Inverted Ordering ! But for Normal Ordering there is a subset with definite predictions NON-VANISHING REACTOR MIXING ANGLE

The lightest neutrino mass is constrained in a narrow range (10-30 meV)

SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11, '12)

$$N_{B-L}^{\rm f} = N_{B-L}^{\rm p,f} + N_{B-L}^{\rm lep,f} \,,$$

Imposing both successful SO(10)-inspired leptogenesis $\eta_{B} = \eta_{B}^{CMB} = (6.2 \pm 0.15) \times 10^{-10}$ and $N_{B-L}^{P,f} \leftrightarrow N_{B-L}^{leP,f}$

UPPER BOUND ON THE ATMOSPHERIC MIXING ANGLE

SO(10)-inspired+strong thermal leptogenesis (PDB, Marzola '11-'12) $N_{B-L}^{\rm f} = N_{B-L}^{\rm p,f} + N_{B-L}^{\rm lep,f}$,

Link between the sign of J_{CP} and the sign of the asymmetry

 $\eta_{\rm B} = \eta_{\rm B}^{\rm CMB} \qquad \qquad \eta_{\rm B} = - \eta_{\rm B}^{\rm CMB}$

A Dirac phase $\delta \sim -45^{\circ}$ is favoured for large Θ_{13}

SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11-'12) $N_{B-L}^{\rm f} = N_{B-L}^{\rm p,f} + N_{B-L}^{\rm lep,f}$,

Imposing both successful SO(10)-inspired leptogenesis $\eta_{B} = \eta_{B}^{CMB} = (6.2 \pm 0.15) \times 10^{-10}$ and $N_{B-L}^{P,f} \leftrightarrow N_{B-L}^{leP,f}$

Sharp prediction on the absolute neutrino mass scales

Strong thermal SO(10) inspired leptogenesis: summary

 SO(10)-inspired leptogenesis is not only alive but it contains a subset of solutions able to satisfy quite a tight condition when flavour effects are taken into account: *independence of the initial conditions (strong thermal leptogenesis)*

ORDERING	NORMAL
θ ₁₃	≳ 2°
θ ₂₃	≲ 41°
δ	~ -45°
$m_{ee} \simeq 0.8 m_1$	~ 15 meV

- It provides an example of how (minimal) leptogenesis within a reasonable set of assumptions can yield testable predictions
- Corrections: flavour coupling, RGE effects,...
- Statistical analysis

Strong thermal SO(10)-inspired leptogenesis:

on the right track?

(PDB, Marzola '13)

If we do not plug any experimental information (mixing angles left completely free) :

Strong thermal leptogenesis and the absolute neutrino mass scale

(PDB, Sophie King, Michele Re Fiorentin 2013)

 θ_{13} = 8° ÷ 10.

Allowed regions in m_1, δ plane - $M_2 \leq 5 \cdot 10^{11} \,\text{GeV}$

Conclusion

- There is a long list of Baryogenesis models but only a few are testable.
- EWB is cerrtainly one of those but in this moment there is no hint of New Physics able to realise it.
- Other mechanisms could plausibly produce a large asymmetry after inflationary stage especially at large reheat temperatures
- Leptogenesis at TeV scale is also not supported by LHC data so far
- The interplay between heavy neutrino and charged lepton flavour effects introduces many new ingredients in the calculation of the final asymmetry
- Minimal leptogenesis (high scale) is not testable but adding theoretical information one can get nice tests: e.g. SO(10) inspired models
- The strong thermal condition increases predictive power especially on the absolute neutrino mass scale

	ORDERING	NORMAL
Strong thermal	Θ_{13}	≳ 2°
50(10)-inspired	θ ₂₃	≲ 41°
solution	δ	~ -45°
	$m_{ee} \simeq 0.8 m_1$	≃ 15 meV

More generally one has to distinguish 10 different RH neutrino mass patterns (Bertuzzo,PDB,Marzola '10)

For each pattern a specific set of Boltzmann equations has to be considered

Density matrix formalism with heavy neutrino flavours

2

(Blanchet, PDB, Jones, Marzola '11) For a thorough description of all neutrino mass patterns including transition regions and all effects (flavour projection, phantom leptogenesis,...) one needs a description in Terms of a density matrix formalism The result is a "monster" equation:

 $dN^{B-}_{\alpha\beta}$

Strong thermal SO(10)-inspired leptogenesis: the atmospheric mixing angle test

The allowed range for the Dirac phase gets narrower at large values of $\theta_{23}\gtrsim 35^{0}$

A statistical analysis

Talk by Luca Marzola at the DESY theory workshop 28/9/11

Crossing level solutions

(Akhmedov, Frigerio, Smirnov '03)

At the crossing the CP asymmetries undergo a resonant enhancement (Covi,Roulet,Vissani '96; Pilaftsis '98; Pilaftsis,Underwood '04; ...)

The measured η_B can be attained for a fine tuned choice of parameters: many models have made use of these solutions but as we will see there is another option

Upper bound on m₁

(Abada et al.' 07; Blanchet, PDB, Raffelt; Blanchet, PDB '08)

Some insight from the decay parameters

Interplay between lepton and heavy neutrino flavour effects:

- N₂ flavoured leptogenesis
 (Vives '05: Blanchet, PDB '06: Blanchet, PDB '08)
- Phantom leptogenesis

(Antusch, PDB, King, Jones '10; Blanchet, PDB, Jones, Marzola '11)

Flavour projection
 (Barbieri, Creminelli, Stumia, Tetradis '00;

Engelhard, Grossman, Nardi, Nir '07)

• Flavour coupling (Abada, Josse Michaux '07, Antusch, PDB, King, Jones '10)

What happens to $N_{B-L}~$ at $T\sim 10^{12}~GeV?$ How does it split into a $N_{\Delta\tau}$ component and into a $N_{\Delta e^{+\mu}}$ component? One could think:

$$N_{\Delta \tau} = p_{2\tau} N_{B-L}$$

 $N_{\Delta e+\mu} = p_{2 e+\mu} N_{B-L}$

Phantom terms

However one has to consider that in the unflavoured case there are contributions to $N_{\Delta\tau}$ and $N_{\Delta e+\mu}$ that are not just proportional to N_{B-L} Remember that: $D_{D}^{0} = \Delta P_{1\alpha}$

$$\varepsilon_{1\alpha} = P_{1\alpha}^0 \,\varepsilon_1 + \frac{\Delta P_{1\alpha}}{2}$$

Assume an initial thermal N₂-abundance at T~ M₂ >> 10¹² GeV

Phantom Leptogenesis

(Antusch, PDB, King, Jones '10)

Let us then consider a situation where K₂>> 1 so that at the end of the N₂ washout the total asymmetry is negligible: 1) T ~ M₂ : unflavoured regime

$$egin{array}{c|c|c|c|c|} \hline au & {f e}^+\mu \ \hline \overline au & {f e}^+\mu \end{array} & \Rightarrow & N^{T\sim M_2}_{B-L}\simeq 0 \;! \end{array}$$

2) 10^{12} GeV \gtrsim T >> M₁ :decoherence \implies 2 flavoured regime

 $N_{B-L}^{T \sim M_2} = N_{\Delta au}^{T \sim M_2} + N_{\Delta_{e+\mu}}^{T \sim M_2} \simeq 0 !$ 3) T $\simeq M_1$: asymmetric washout from lightest RH neutrino Assume K_{1T} $\lesssim 1$ and K_{1e+µ} >> 1 $N_{B-L}^{f} \simeq N_{\Delta_{ au}}^{T \sim M_2} !$

The N_1 wash-out un-reveal the phantom term and effectively it creates a N_{B-L} asymmetry.

Phantom Leptogenesis within a density matrix formalism

(Blanchet, PDB, Marzola, Jones '11-12')

In a picture where the gauge interactions are neglected the lepton and anti-leptons density matrices can be written as:

There is a recent update (see 1112.4528 v2 to appear in JCAP)

Because of the presence of gauge interactions, the difference

of flavour composition between lepton and anti-leptons is measured and this induces a wash-ou the phantom terms from Yukawa interactions though with halved wash-out rate compared to to one acting on the total asymmetry and in the end:

$$N_{\tau\tau}^{B-L,f} \simeq p_{2\tau}^0 N_{B-L}^f - \frac{\Delta p_{2\tau}}{2} \kappa(K_2/2),$$

Flavour projection

(Engelhard, Nir, Nardi '08 , Bertuzzo,PDB,Marzola '10) Assume M_{i+1} ≥ 3M_i (i=1,2)

The heavy neutrino flavour basis cannot be orthonormal 2 otherwise the CP asymmetries would vanish: this complicates the calculation of the final asymmetry $p_{ij} = |\langle \ell_i | \ell_j \rangle|^2 \qquad p_{ij} = \frac{\left| (m_D^{\dagger} m_D)_{ij} \right|^2}{(m_D^{\dagger} m_D)_{ij} (m_D^{\dagger} m_D)_{ij}}.$ 10c (1-P12) $N_{B-L}^{(N_2)}(T \ll M_1) = N_{\Delta_1}^{(N_2)}(T \ll M_1) + N_{\Delta_{1\perp}}^{(N_2)}(T \ll M_1)$ Component from heavier RH neutrinos Contribution from heavier RH parallel to l1 and washed-out by N1 neutrinos orthogonal to l₁ and escaping inverse decays N₁ wash-out $N^{(N_2)}_{\Delta_1}(T \ll M_1) = p_{12} e^{-\frac{3\pi}{8}K_1} N^{(N_2)}_{B-L}(T \sim M_2)$

2 RH neutrino scenario revisited

(King 2000;Frampton,Yanagida,Glashow '01,Ibarra, Ross 2003;Antusch, PDB,Jones,King '11) In the 2 RH neutrino scenario the N₂ production has been so far considered to be safely negligible because ε_{2α} were supposed to be strongly suppressed and very strong N₁ wash-out. But taking into account:

- the N_2 asymmetry N_1 -orthogonal component
- an additional unsuppressed term to $\epsilon_{2\alpha}$

New allowed N₂ dominated regions appear

dominated neutrino mass models realized in some grandunified models

Flavour projection

(Engelhard, Nir, Nardi '08 , Bertuzzo, PDB, Marzola '10)

The heavy neutrino flavour basis cannot be orthonormal otherwise the CP asymmetries would vanish: this complicates the calculation of the final asymmetry μ $p_{ij} = |\langle \ell_i | \ell_j \rangle|^2 \qquad p_{ij} = \frac{\left| (m_D^{\dagger} m_D)_{ij} \right|^2}{(m_D^{\dagger} m_D)_{ii} (m_D^{\dagger} m_D)_{ij}}.$ 615 $N_{\rm B\,i\,\,L}^{\rm (N_{\,2})}(T\,\dot{\epsilon}\ M_{\rm 1}) = N_{\rm c_{\,1}}^{\rm (N_{\,2})}(T\,\dot{\epsilon}\ M_{\rm 1}) + N_{\rm c_{\,1?}}^{\rm (N_{\,2})}(T\,\dot{\epsilon}$ M_1) Component from heavier RH neutrinos Contribution from heavier RH **parallel** to I_1 and washed-out by N_1 neutrinos orthogonal to I_1 and escaping inverse decays N₁ wash-out $N_{\rm c_1}^{\rm (N_2)}(T \doteq M_{\rm 1}) = p_{\rm 12} e^{{\rm i} -\frac{3\,{\rm M}}{8}\,{\rm K_1}} N_{\rm B\,{\rm i}\,{\rm L}}^{\rm (N_2)}(T \gg M_{\rm 2})$

Phantom Leptogenesis

(Antusch, PDB, King, Jones '10)

Consider this situation

 M_2 $\sim 10^{12} \text{ GeV}$ M_1 $\sim 10^9 \text{ GeV}$ $N_1 - \text{washout in the 2 fl. regime}$

What happens to N_{B-L} at T ~ 10^{12} GeV? How does it split into a $N_{\Delta\tau}$ component and into a $N_{\Delta e^{+\mu}}$ component? One could think:

$$N_{\Delta \tau} = p_{2\tau} N_{B-L}$$

 $N_{\Delta e^{+}\mu} = p_{2 e^{+}\mu} N_{B-L}$

Phantom terms

However one has to consider that in the unflavoured case there are contributions to $N_{\Delta \tau}$ and $N_{\Delta e^{+\mu}}$ that are not just proportional to N_{B-L} Remember that: $\varepsilon_{1\alpha} = P_{1\alpha}^0 \varepsilon_1 + \frac{\Delta P_{1\alpha}}{2}$

Assume an initial thermal N_2 -abundance at T~ M_2 >> 10^{12} GeV

Phantom Leptogenesis

(Antusch, PDB, King, Jones '10)

Let us then consider a situation where $K_2 >> 1$ so that at the end of the N₂ washout the total asymmetry is negligible:

1) $T \sim M_2$: unflavoured regime

$$N_{\rm B\,i\,L}^{\rm T\,\,*\,\,M_{\,2}}$$
 ' 0!

2) 10¹² GeV X T >> M₁: decoherence X 2 flavoured regime N^T_{B i L} = N^T_{c i} M₂ + N^T_{c e+1} 0 !
3) T X M₁: asymmetric washout from lightest RH neutrino Assume K_{1T} X 1 and K_{1e+µ} >> 1 N^f_{B i L} N^T_{c i} M₂ !
The N₁ wash-out un-reveal the phantom term and effectively it creates a N_{B-L} asymmetry. Fully confirmed within a density matrix formalism (Blanchet, PDB, Marzola, Jones '11)

Remarks on phantom Leptogenesis

We assumed an initial N_2 thermal abundance but if we were assuming An initial vanishing N_2 abundance the phantom terms were just zero !

$$N_{ extsf{c}_{\dot{c}}}^{ extsf{phantom}} = rac{ extsf{c} \ extsf{p}_{2\dot{c}}}{2} N_{ extsf{N}_{2}}^{ extsf{in}}$$

The reason is that if one starts from a vanishing abundance during the N₂ production one creates a contribution to the phantom term by inverse decays with opposite sign and exactly cancelling with what is created in the decays

In conclusionphantom leptogenesis introduces additional strong dependence on the initial conditions

NOTE: in strong thermal leptogenesis phantom terms are also washed out: full independence of the initial conditions!

Phantom terms cannot contribute to the final asymmetry in N₁ leptogenesis but (canceling) flavoured asymmetries can be much bigger than the baryon asymmetry and have implications in active-sterile neutrino oscillations

$I \leq V_L \leq V_{CKM}$

INVERTED ORDERING

 $\alpha_2 = 5$ $\alpha_2 = 4$ $\alpha_2 = 1.5$

No link between the sign of the asymmetry and \mathbf{J}_{CP}

(PDB, Marzola)

It is confirmed that there is no link between the matter-antimatter asymmetry and CP violation in neutrino mixing......for the yellow points

WHAT ARE THE NON-YELLOW POINTS?

Link between the sign of J_{CP} and the sign of the asymmetry $\eta_{B} = \eta^{CMB}_{B}$ $\eta_{B} = -\eta^{CMB}_{B}$

