Proposal to search for Heavy Neutral Leptons at the CERN SPS

Mitesh Patel (Imperial College London) UK HEP Forum, 15th November 2013

On behalf of:

W. Bonivento^{1,2}, A. Boyarsky³, H. Dijkstra², U. Egede⁴, M. Ferro-Luzzi², B. Goddard², A. Golutvin⁴,

D. Gorbunov⁵, R. Jacobsson², J. Panman², M. Patel⁴, O. Ruchayskiy⁶, T. Ruf², N. Serra⁷, M. Shaposhnikov⁶, D. Treille^{2 (‡)}

¹Sezione INFN di Cagliari, Cagliari, Italy

²European Organization for Nuclear Research (CERN), Geneva, Switzerland

³Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

⁴Imperial College London, London, United Kingdom

⁵Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

⁶Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

⁷Physik-Institut, Universität Zürich, Zürich, Switzerland

 $^{(\ddagger)}$ retired

(CERN-SPSC-2013-024 / SPSC-EOI-010 / arXiv:1310.1762)

Introduction

- Discovery of a 126 GeV Higgs boson raises possibility that the SM may work successfully up to the Planck scale
- [aside from fine-tuning problems] SM is unable to explain :
 - Neutrino masses
 - Excess of matter over antimatter in the Universe
 - The nature of non-baryonic dark matter
- The neutrino Minimal Standard Model (vMSM) [T.Asaka, M.Shaposhnikov, Phys. Lett B620 (2005) 17] aims to explain these by adding three new, neutral Majorana leptons: N₁, N₂ and N₃

Masses and couplings of HNLs

- Three new Heavy Neutral Leptons (HNL) carry no SM gauge charges – only interact via mixing of SM v and HNL (Yukawa term)
- N₁ can be sufficiently stable to be a DM candidate, M(N₁)~10 keV
- M(N₂) ≈ M(N₃) ~ a few GeV → can dramatically increase amount of CPV to explain Baryon Asymmetry of the Universe (BAU)
- Very weak $N_{2,3}$ -to-v mixing (~ U²) $\rightarrow N_{2,3}$ are much longer-lived than the SM particles
 - Typical lifetimes >10 μ s for (N_{2,3}) ~ 1 GeV \rightarrow decay distance O(km)
 - too large U erases any BAU
- N_{2,3} can be produced in charm decays...

... and subsequently decay

(Focus on $\mu^-\pi^+$ decay)

Experimental and cosmological constraints

 BAU, Seesaw and Big Bang Nucleosynthesis (BBN) constraints indicate that previous expts probed the interesting region only below the kaon mass :

- Mixing at both production and decay
- For D mesons, typical BF expected in allowed vMSM parameter space then,
 B_{D→N} ~ 10⁻⁸ - 10⁻¹²
- τ can give further factor **10**⁻⁴ \rightarrow **need 10**¹⁶ **D mesons!**
- Strong motivation to explore allowed space in region accessible with charm decays

 \rightarrow Propose a new beam dump experiment at CERN SPS

Experimental design

- Propose a beam dump experiment at the CERN SPS with at total of ~2×10²⁰ protons on target (pot)
- Crucial design parameters: residual neutrino and muon fluxes can produce e.g K⁰ that decay in detector and mimic signal events
 - Short-lived resonances generate $\mathbf{10^{11}}$ muons/spill \rightarrow muon shield
 - Neutrinos from light meson decays \rightarrow dense target/hadron absorber/

evacuate decay volume

HNLs produced in charm decays have significant p_T:

- Detector must be close to target to maximise geometrical acceptance
- Shielding for muons must be as short as possible

Secondary beam-line

- Proton target
 - Preference for relatively slow beam extraction O(s) to reduce detector occupancy
 - No requirement to have a small beam spot

Muon shield

- Main sources of muons simulated using PYTHIA (10⁹ p @ 400 GeV)
- Cross-checked with results from CHARM beam-dump experiment
- A muon shield made of ~55 m W(U) should stop muons with E<400 GeV
- Detailed simulations being performed to define the exact length and radial extent of the shield

threshold momentum p (GeV)

- Expect that muon-induced backgrounds will be reduced to negligible level with such a shield
- After shield expect 2×10⁴ neutrino interactions in the decay volume per 2×10²⁰ pot at atmospheric pressure → negligible at 0.01 mbar

Detector Concept

- Aim to reconstruct HNL decays into the final states: $\mu^-\pi^+$, $\mu^-\rho^+$, $e^-\rho^+$
- Require long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter

Detector Technologies

Dipole magnet

- Magnet similar to LHCb design required, but with ~40% less iron and 3× less power dissipated
- Free aperture of ~16 m² and field integral ~ 0.5Tm over 5 m length

Vaccum tank and straw tracker

- NA62 has 10⁻⁵ mbar pressure cf. 10⁻² mbar required here
- Have demonstrated gas tightness of straw tubes with 120 μm spatial resolution and 0.5% X_0/X material budget in long term tests

• Electromagnetic calorimeter

 Shashlik technology used in LHCb would provide economical solution with good energy and time resolution

Spectrometer resolution

- Arrange spectrometer such that multiple scattering and spatial resolution of straw tubes give similar contribution to the overall $\delta p/p$
- For $m(N_{2,3}) = 1 \text{ GeV}$, 75% of $\mu^-\pi^+$ decay products have p < 20 GeV

- For 0.5 Tm field integral $\sigma_{mass} \sim 40 \text{ MeV}$ for p < 20 GeV
- \rightarrow Ample discrimination between high mass tail from small number of residual $K_I \rightarrow \pi^+ \mu^- \nu$ and 1 GeV HNL

Residual Backgrounds I

- Use a combination of GEANT and GENIE to simulate the Charged Current and Neutral Current neutrino interactions in the final part of the muon shield (again cross-checked with CHARM measurements)
 → CC(NC) rate of ~6(2)×10⁵ per int. length per 2×10²⁰ pot
- Instrumentation of the last part of the muon shield would allow the rate of CC + NC to be measured and neutrino interactions to be tagged
- ~10% of neutrino interactions in the muon shield just upstream of the decay volume produce ∧ or K⁰ (similar fraction from NOMAD measurements)
- Majority of decays occur in the first 5 m of the decay volume
- Requiring μ -id. for one of the two decay products

 \rightarrow 150 two-prong vertices in 2×10²⁰ pot

Residual Backgrounds II

- K_L produced in the final part of the muon shield have very different pointing to the target cf signal events
 - \rightarrow Use Impact Parameter (IP) to further suppress K_L background
- IP < 1 m is 100% efficient for signal and leaves only a handful of background events
- The IP cut will also be used to reject backgrounds induced in neutrino interactions in the material surrounding the detector

12

Expected event yield

- Integral mixing angle U² is given by U² = $U_e^2 + U_{\mu}^2 + U_{\tau}^2$
- Make a conservative estimate of the sensitivity by only considering the decay $N_{2,3} \rightarrow \mu^{-} \pi^{+} \text{probes } U_{\mu}^{-2}$
- Expected number of signal events then, $N_{\text{not}} = 2 \times 10^{20}$

$$N_{signal} = n_{pot} \times 2\chi_{cc} \times BR(U_{\mu}^{2}) \times \varepsilon_{det}(U_{\mu}^{2})$$

$$N_{pot} = 2 \times 10^{20}$$

 $\chi_{cc} = 0.45 \times 10^{-3}$
BR(U_μ²) = BR(D→N_{2,3}X)
× BR(N_{2,3}→μπ)
ε_{det} (U_μ²) = prob. for N_{2,3} to
decay in detector and μ, π
to be reconstructed

- Strongest experimental limit for $M_N \sim 1$ GeV at $U_{\mu}^2 = 10^{-7}$
 - Would then expect $\tau_N = 1.8 \times 10^{-5} s$ and $\sim 12k$ fully reconstructed $N \rightarrow \mu^- \pi^+$
- For cosmologically favoured region $U_{\mu}^{2} = 10^{-8} (\tau_{N} = 1.8 \times 10^{-4} s)$
 - Would expect **120** fully reconstructed events

Expected sensitivity

- ECAL will allow reconstruction of modes with a π^0 e.g. $N \rightarrow \mu^- \rho^+$ where $\rho^+ \rightarrow \pi^+ \pi^0$
- Study of decay channels with electrons would allow to further increase the signal yield (and constrain U_e²)

• For $M_N < 2$ GeV the proposed experiment has discovery potential for the cosmologically favoured region with $10^{-7} < U_{\mu}^{2} < a$ few $\times 10^{-9}$

Conclusions

- The proposed experiment will search for NP in the largely unexplored domain of new, very weakly interacting particles with masses below the Fermi scale
- Detector is based on existing technologies
- Ongoing discussion of the beam line with CERN experts
- The discovery of a HNL would have enormous impact could solve several of the significant problems of the SM
 - The origin of the baryon asymmetry of the Universe
 - The origin of neutrino mass
 - The results of this experiment, together with cosmological and astrophysical data, could be crucial to determine the nature of Dark Matter

Backup

Detector Concept II

Masses and couplings of HNLs II

• Constraints from **BAU**, **Seesaw** and Big Bang Nucleosynthesis (**BBN**) :

- Branching fractions depend on the level of mixing, typically,
 - $\ B(N \to \mu^{-}\!/e^{-} \, \pi^{+}) \ \sim 0.1 50\%$
 - $B(N \rightarrow \mu^{-}/e^{-}\rho^{+}) \sim 0.5 20\%$
 - $B(N \rightarrow \nu \mu e) \sim 1 10\%$
- Focus on $\mu^-\pi^+$ signature, below
- μ⁻ρ⁺ and e⁻π⁺ final states could extend the sensitivity

Residual neutrino flux

• Momentum spectrum of the neutrino flux after the muon shield

 At atmospheric pressure expect 2×10⁴ neutrino interactions in the decay volume per 2×10²⁰ pot

 \rightarrow becomes negligible at 0.01 mbar

Other BSM physics

- Can make searches for other light, very weakly interacting new particles :
 - Light superpartners of goldstino in SUSY models e.g. D→πX, X→I⁺I⁻
 [Gorbunov (2001)]
 - R-parity violating neutralinos in SUSY models e.g. D→IX, X→I+I⁻v
 [A.Dedes, H.K Dreiner, P Richardson (2001)]
 - Massive paraphotons (in secluded dark matter models) e.g. Σ→IX, X→I+I⁻
 [M.Pospelov, A. Ritz, M.B. Voloshin (2008)]

Other facilities

- Have considered if could perform experiment elsewhere
- Fermilab
 - 120 GeV proton beam, 4×10¹⁹ POT
 - · factor ten lower event yield than in the proposed SPS experiment
 - 800 GeV proton beam, 1×10¹⁹ POT
 - Lower POT would be approximately compensated by higher charm crosssection
 - Would require much longer muon shield \rightarrow loss of acceptance
- KEK
 - 30 GeV proton beam, 1×10²¹ POT
 - large uncertainty due to the poor knowledge of the charm cross-section at low energy
 - Estimate factor 1.5-2 lower signal yields
- Colliding beam experiment at LHC, 1000 fb⁻¹, 14 TeV
 - Assuming experiment located 60m away from the interaction region and 50 mrad off-axis to avoid LHC beams – factor 200 worse than proposal

N₁ as Dark Matter

• For small Yukawa couplings, HNL can be long-lived and therefore a dark matter candidate

$$\sum_{\nu_e}^{N} \sum_{\bar{\nu}_{\alpha}}^{\nu_e} \sum_{\bar{\nu}_{\alpha}}^{Z} \sum_{\nu_{\alpha}}^{\nu_{\alpha}} \text{Lifetime} = \frac{192\pi^3}{G_F^2 M^5 U^2} \approx 10^{27} \sec\left(\frac{\text{keV}}{M}\right)^5 \left(\frac{10^{-8}}{U^2}\right)$$

Characteristic signature: can have radiative decay which will give a monochromatic decay line in the spectra of galaxies

$$\rightarrow \otimes \rightarrow \longrightarrow$$

Searches for N₁

- N₁ has been searched or by the XMM-Newton, Chandra, Suzaku and Integral experiments
- Spectral resolution is insufficient (require $\Delta E/E \sim 10^{-3}$)
- Several proposed/planned x-ray missions which will have sufficient resolution:

Origin/Xenia

Reading the Metal Diaries of the Universe

Parameter space for N₁

