Quark and Lepton Flavor connections

<u>Gino Isidori</u> [*INFN, Frascati*]

Introduction

SUSY & Flavor

Selected examples in the quark sector

What determines the observed pattern of quark & lepton masses?

Conclusions

Introduction [*direct vs. indirect searches of New Physics*]

After the discovery of a "Higgs-like" boson with mass around 126 GeV [*consistent with e.w. precision tests & stability bounds*], the SM couldn't be in better shape...

After the discovery of a "Higgs-like" boson with mass around 126 GeV [*consistent with e.w. precision tests & stability bounds*], the SM couldn't be in better shape...

Still, this theory suffers of a series of theoretical & cosmological problems:

- Fine-tuning/UV sensitivity of the Higgs-mass term ["*hierarchy problem*"]
- Unexplained hierarchical structure of the Yukawa couplings ["*flavor puzzle*"]
- → No explanation for the quantization of the U(1) charges [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidate for dark matter

After the discovery of a "Higgs-like" boson with mass around 126 GeV [*consistent with e.w. precision tests & stability bounds*], the SM couldn't be in better shape...

Still, this theory suffers of a series of theoretical & cosmological problems:

- Fine-tuning/UV sensitivity of the Higgs-mass term ["*hierarchy problem*"]
- Unexplained hierarchical structure of the Yukawa couplings ["*flavor puzzle*"]
- → No explanation for the quantization of the U(1) charges [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidate for dark matter

The SM is likely to be an *effective theory*, or the low-energy limit of a more fundamental theory, with new degrees of freedom around or above the electroweak scale (i.e. around or above 1 TeV).

<u>Introduction</u>

After the discovery of a "Higgs-like" boson with mass around 126 GeV [*consistent with e.w. precision tests & stability bounds*], the SM couldn't be in better shape...

Still, this theory suffers of a series of theoretical & cosmological problems:

- Fine-tuning/UV sensitivity of the Higgs-mass term ["hierarchy problem"]
- Unexplained hierarchical structure of the Yukawa couplings ["flavor puzzle"]
- → No explanation for the quantization of the U(1) charges [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidate for dark matter

The only (qualitative) indication of NP around 1 TeV:

$$\Delta m_{\rm h}^2 \sim \Lambda^2$$

The SM is likely to be an *effective theory*, or the low-energy limit of a more fundamental theory, with new degrees of freedom around or above $\sim 1 \text{ TeV}$

These structures do not seem to be accidental...

The SM is likely to be an *effective theory*, or the low-energy limit of a more fundamental theory, with new degrees of freedom around or above $\sim 1 \text{ TeV}$

one of the arguments why we believe the SM is not a complete theory

key tool to investigate the nature of physics beyond the SM

$$\mathscr{L}_{SM+v} = \mathscr{L}_{gauge}(A_{a}, \psi_{i}) + D\phi^{+} D\phi - V_{eff.}(\phi, A_{a}, \psi_{i})$$

$$V_{eff.} = -\mu^{2}\phi^{+}\phi + \lambda (\phi^{+}\phi)^{2} + Y^{ij} \psi_{L}^{i} \psi_{R}^{j} \phi + \frac{g^{ij}}{\Lambda} \psi_{L}^{i} \psi_{L}^{Tj} \phi \phi^{T} + \dots$$
From v masses we already know the SM is an effective theory
$$effective v mass term$$

of the model

• The vast majority (*and the less tested*) couplings of the Higgs boson are "<u>flavor couplings</u>"

$$V(\phi) = - \mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + Y^{ij} \psi_L^{i} \psi_R^{j} \phi + \frac{g^{ij}}{\Lambda} \psi_L^{i} \psi_L^{Tj} \phi \phi^T + \dots$$

Beside the direct searches of new degrees of freedom at high energies, the main goal now is to understand if, and how large, are the additional terms in this series (*natural to expect non-vanishing couplings in operators involving* ϕ)

$$V(\phi) = - \mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + Y^{ij} \psi_L^i \psi_R^j \phi + \frac{g^{ij}}{\Lambda} \psi_L^i \psi_L^{Tj} \phi \phi^T + \dots$$

Beside the direct searches of new degrees of freedom at high energies, the main goal now is to understand if, and how large, are the additional terms in this series (*natural to expect non-vanishing couplings in operators involving* ϕ)

the (relatively) small value of m_h + compatibility of the h couplings with SM + absence of NP signals so far

NP is likely to be <u>weakly coupled</u> with a <u>non-negligible mass gap</u> (*hopefully not too large*..) between NP and SM degrees of freedom

Indirect searches of NP require <u>high precision</u>, but are a <u>fundamental ingredient</u> in searching for physics beyond the SM Under very general assumptions (gauge symmetry + absence of new light states) flavor and e.w. observables used for indirect NP searches can be decomposed as follows:

<u>This decomposition is very general</u>: it holds <u>both</u> for forbidden processes (e.g.: $\mu \rightarrow \epsilon \gamma$) and precision measurements (e.g.: $B_s \rightarrow \mu \mu$)

- The interest of a given obs. depends on the magnitude of c_{SM} vs. c_{NP} and on the theoretical error of $c_{SM} \rightarrow \underline{concentrate}$ on clean & rare processes
- No way to disentangle $\Lambda \& c_{NP}$, but <u>fully complementary</u> to direct searches at high-p_T \rightarrow <u>symmetry-structure of NP & possible access to high scale dynamics</u>

G. Isidori – Quark & Lepton Flavor connections

The present lack of direct signals of NP at the high-energy frontier has reinforced the interest of indirect searches, given their potential sensitivity to high scales:

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM+v}} + \frac{c_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)}$$

G.I., Perez, Nir '10 (2013 update)

Operator	Bounds on A	in TeV $(c_{\rm NP} = 1)$	Bounds on $c_{\mathbb{I}}$	$_{\rm NP} (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	I
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b}_L \gamma^\mu d_L)^2$	6.6×10^{2}	9.3×10^{2}	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^{3}	3.6×10^3	$3.9 imes 10^{-7}$	$1.9 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(b_L \gamma^\mu s_L)^2$	1.4×10^2	2.5×10^2	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
$(\bar{b}_R s_L) (\bar{b}_L s_R)$	4.8×10^2	8.3×10^2	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

If NP is not around the corner, flavor-changing processes <u>might</u> allow to probe high scales (*if the flavor structure of the theory is not trivial*)

N.B.: if NP contributes only at the loop level, then $\Lambda_{NP} \sim 4\pi m_{NP}$

G. Isidori – Quark & Lepton Flavor connections

The present lack of direct signals of NP at the high-energy frontier has reinforced the interest of indirect searches, given their potential sensitivity to high scales:

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM+v}} + \frac{c_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)}$$

This is of course true also in the lepton sector:

$$\frac{c_{\mu e}}{\Lambda^2} \,\overline{e}_L \sigma^{\mu\nu} \,\mu_R \,\phi F_{\mu\nu}$$

 $\Lambda > 4 \times 10^5 \text{ TeV} \times (c_{\mu e})^{1/2} \text{ from } BR(\mu \rightarrow e\gamma)^{exp} < 5.7 \times 10^{-13}$ MEG '13 E.g.: Minimal Flavor Violation

However, we should keep in mind that the constraints on the scale of NP become much less severe in realistic/motivated models where the mechanisms of *flavor-mixing* and *fermion masses* are linked together

Yukawa couplings as unique sources of flavor symmetry breaking

Chivukula & Georgi, '89 D'Ambrosio, Giudice, G.I., Strumia, '02 However, we should keep in mind that the constraints on the scale of NP become much less severe in realistic/motivated models where the mechanisms of *flavor-mixing* and *fermion masses* are linked together

E.g.: Minimal Flavor Violation or Partial Compositeness

Yukawa couplings as unique sources of flavor symmetry breaking

"Elementary-composite mixing" as unique source of fermion mass hierarchies

Mass scale of New Physics (new colored & flavored partic						
Simplifying a complicated multi-dim. problem		< 1 TeV	few TeV	> few TeV		
		Direct New Physics searches @ high pT:				
		NP within direct reach @ 8 TeV	NP within reach @ 14 TeV	NP beyond direct searches @ LHC		
	NP effects in Quark Flavor Physics:					
	Anarchic	huge [> O(1)]	sizable [O(1)]	sizable/small [< O(1)]		
Flavor Structure	Small misalignment (e.g. partial compositeness)	sizable [O(1)]	 small [O(10%)]	small/tiny [O(1-10%)]		
	Aligned to SM (<i>MFV</i>)		tiny [O(1%)]	not visible [< 1%]		

SUSY & Flavor

A (very) concise summary about direct searches for New Physics

Despite several efforts, no non-standard state has been discovered so far at the LHC. Rough summary of the present status of high-energy searches:

- The Higgs boson is around 125 GeV
 - within the "SUSY" region, despite a bit heavier than expected
 - technicolor and most composite-Higgs models somehow disfavored
- Bounds on generic "colored" new states typically above 1 TeV
- Colored new states coupled only to 3rd gen. quarks still allowed below 1 TeV
- Bounds on colorless new states still in the few 100 GeV domain

* but definitely not ruled out !

[wide literature...]

A (very) concise summary about direct searches for New Physics

Despite several efforts, no non-standard state has been discovered so far at the LHC. Rough summary of the present status of high-energy searches:

- The Higgs boson is around 125 GeV
 - within the "SUSY" region, despite a bit heavier than expected
 - technicolor and most composite-Higgs models somehow disfavored
- Bounds on generic "colored" new states typically above 1 TeV
- Colored new states coupled only to 3rd gen. quarks still allowed below 1 TeV
- Bounds on colorless new states still in the few 100 GeV domain

<u>Supersymmetry remains a good candidate</u> : weakly coupled theory + light Higgs (+ dark-matter & unification)

- <u>The SUSY spectrum is less trivial than expected</u>: only a few new states below the TeV
- Some tuning in m_h is unavoidable: do we really care if the fine-tuning is ~1%?

A (very) concise summary about direct searches for New Physics

The strongest bounds on the SUSY spectrum are on gluinos and 1st-2nd gen. squarks

They imply an overall heavy SUSY spectrum only in simplified models, with a MFV structure (such as the CMSSM)

- <u>Supersymmetry remains a good candidate</u> : weakly coupled theory + light Higgs (+ dark-matter & unification)
- <u>The SUSY spectrum is less trivial than expected</u>: only a few new states below the TeV
- Some tuning in m_h is unavoidable: do we really care if the fine-tuning is ~1%?

G. Isidori – Quark & Lepton Flavor connections

<u>"Split-family" SUSY</u>

• Only 3^{rd} gen. squarks + Higgsinos need to be "light" to minimize the tuning in m_h

- A large stop-mixing term is needed to explain $m_h \sim 125 \text{ GeV} \rightarrow \text{ large splitting}$ among the stops \rightarrow one of the two mass eigenstates (*an almost RH stop*) could well be in the few 100 GeV region, with all other colored states above 1 TeV
- The splitting of the 3rd family can be well motivated in flavor models (connection with large top mass)

<u>"Split-family" SUSY</u>

A scenario that LHC experiments have only started to explore, where <u>flavor physics definitely plays a key role</u> given the non-trivial flavor structure of the SUSY spectrum \rightarrow interesting non-standard effects mediated by the exchange of the 3rd generation of squarks and leptons:

<u>"Mini-Split" SUSY</u>

If we give-up the goal of minimizing the fine-tuning in mh, retaining other appealing features of SUSY (such as unification), other options become possible. A particularly interesting one is the so-called "mini-split" scenario:

- "loop-splitting" between gauginos (~TeV) and sfermions (~10-100 TeV)
- Possible generic flavor structure (no "flavor-tuning" on squarks).

Giudice, Luty, Muraya, Rattazzi, '98 Arvanitaki et *al*. '12 + many others...

<u>"Mini-Split" SUSY</u>

Also in this case flavor observables may play a key role in finding-evidences or constraining the model:

 $|m_{\tilde{B}}| = |m_{\tilde{W}}| = 3 \text{ TeV}, \ |m_{\tilde{g}}| = 10 \text{ TeV}$

Selected examples in the quark sector

High-quality flavor physics requires a good selection...

Example I: $\underline{B}_{s,d} \rightarrow \mu\mu$

These modes are a <u>unique</u> source of information about flavor physics beyond the SM:

- theoretically very clean (virtually no long-distance contributions)
- particularly sensitive to FCNC scalar currents and FCNC Z penguins

Clean probe of the Yukawa interaction $(\rightarrow$ Higgs sector) beyond the tree level

Example I: $\underline{B}_{s,d} \rightarrow \mu\mu$

These modes are a <u>unique</u> source of information about flavor physics beyond the SM:

- theoretically very clean (virtually no long-distance contributions)
- particularly sensitive to FCNC scalar currents and FCNC Z penguins

Relevant for BR = O(SM)

Possible large enhancement (e.g. SUSY @ large tanβ)

Example I: $\underline{B}_{s,d} \rightarrow \mu\mu$

Recent developments both on the theory and on the experimental side:

$$\overline{\text{BR}}_{\text{s,SM}} = (3.65 \pm 0.23) \times 10^{-9}$$

(time-integrated average)

Bobeth, Gorbahn, Hermann, Misiak, Stamou, Steinhauser '13 + progress from Lattice QCD

 $BR_{d,SM} = (1.06 \pm 0.09) \times 10^{-10}$

An overall th. error below 5% is definitely within the reach in the next few years

$$\overline{\text{BR}}_{\text{s}}^{(\text{exp})} = (2.9 \pm 0.7) \times 10^{-9}$$

LHCb + CMS '13

$$BR_{d}^{(exp)} = (3.6 \pm 1.5) \times 10^{-10}$$

G. Isidori – Quark & Lepton Flavor connections

...and the good agreement with SM has important implications:

E.g.: Impact of the present experimental bound on BR($B_s \rightarrow \mu^+ \mu^-$) in constrained versions o the MSSM

G. Isidori – Quark & Lepton Flavor connections

...and the good agreement with SM has important implications:

E.g.: Impact of the present experimental bound on $BR(B_s \rightarrow \mu^+ \mu^-)$ in constrained versions o the MSSM

Example II: $\Delta F=2$ amplitudes

Despite the overall consistency of the CKM picture, looking more closely the agreement of the various constraints is not perfect. Long-standing tension between $\epsilon_{\rm K}$ (CPV in K⁰ mixing) & S_{vK} = sin(2\beta) (CPV in B_d mixing)

The discrepancy does not exceed the 2σ level, but is "intriguing", since it appears in <u>two</u> amplitudes particularly sensitive to NP.

Lunghi & Soni '08 Buras & Guadagnoli '08 Lenz *et al.* '12

Example II: $\Delta F=2$ amplitudes

Best way to clarify the situation: improve the precision on γ and $|V_{ub}| \rightarrow CKM$ from pure tree-level observables (*not easy...*)

Alternative route: compare CKM constraints from $\Delta F=2$ with $K \rightarrow \pi v v$ (*not easy*

 Two ways to disentangle <u>NP in kaon mixing</u>
 (as expected in the "splitfamily" or "mini-split" SUSY models)

Example II: $\Delta F=2$ amplitudes

Best way to clarify the situation: improve the precision on γ and $|V_{ub}| \rightarrow CKM$ from pure tree-level observables (*not easy...*)

Alternative route: compare CKM constraints from $\Delta F=2$ with $K \rightarrow \pi v v$ (*not easy*

 Two ways to disentangle <u>NP in kaon mixing</u>
 (as expected in the "splitfamily" or "mini-split" SUSY models)

Quite interesting to see also what happens in the $\Delta F=2 \text{ b} \rightarrow \text{s}$ mixing amplitude (CPV in B_s mixing), where the <u>SM prediction is more precise</u> (*easier in the short term, but less conclusive...*):

$$\mathbf{B}_{\mathbf{s}} \underbrace{\overline{\mathbf{B}}_{\mathbf{s}}} \psi \phi(\mathbf{f}_{0})$$

 $sin(2\beta_{s})^{SM} = 0.036 \pm 0.01$ $sin(2\beta_{s})^{exp} = -0.01 \pm 0.07 \pm 0.01$ LHCb '13 So far, no signs of deviations from the SM, but the precision is not conclusive yet

Example III: <u>CP-violation in the charm system</u>

The physics of charm mixing and charm decays ($c \rightarrow u$ transitions) is quite different with respect to the B_{s,d} ($b \rightarrow s,d$) and K ($s \rightarrow d$) systems.

No top-enhancement of FCNC amplitudes (both $\Delta F=2 \& \Delta F=1$):

- $V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$ In all CP-conserving amplitudes we can safely approximate the CKM matrix to a <u>2x2 real</u> mixing matrix, and long-distance contributions are largely dominant
 - CP-violating amplitudes are not calculable with high-accuracy within the SM, but are expected to be very small because of the CKM hierarchy ⇒ possible interesting null-tests of the SM

Example III: CP-violation in the charm system

The "quasi-evidence" (4 σ !) of CP violation in two-body Cabibbo-suppressed charm decays D \rightarrow KK, $\pi\pi$ (c \rightarrow u+ss,dd) reported by LHCb & other experiments in 2012 was a big surprise:

$$\Delta a_{\rm CP} = a_{\rm CP}({\rm K}^+{\rm K}^-) - a_{\rm CP}(\pi^+\pi^-) = (0.67 \pm 0.16)\%$$

•Unambiguous evidence of <u>direct CP violation:</u>

$$a_{\rm CP}^{\rm (dir)} = \frac{\Gamma(D \rightarrow PP) - \Gamma(\overline{D} \rightarrow PP)}{\Gamma(D \rightarrow PP) + \Gamma(\overline{D} \rightarrow PP)}$$

• <u>Totally unexpected</u>, at least according to (most of the) pre-LHCb predictions

Example III: CP-violation in the charm system

The "quasi-evidence" (4 σ !) of CP violation in two-body Cabibbo-suppressed charm decays D \rightarrow KK, $\pi\pi$ (c \rightarrow u+ss,dd) reported by LHCb & other experiments in 2012 was a big surprise.

After the 2013 LHCb results this evidence is much weaker... New HFAG average [March '13] $\Delta a_{CP}^{\rm dir} = (-0.33 \pm 0.12)\%$...but the basic question of what can we expect in the SM (and what can we learn about **BSM**) from direct CP-violation in Cabibbo-suppressed modes remains interesting.

Example III: CP-violation in the charm system

A value of $\Delta a_{CP} > 0.5\%$ is definitely too large compared to its "natural" SM expectation, but is not large enough, compared to SM uncertainties, to be considered a clear signal of NP:

 $\Delta R>1$ is not what we expect for $m_c \gg \Lambda_{QCD}$, but is not impossible treating the charm as a light quark (*possible connection with the* $\Delta I=1/2$ *rule in Kaons*) More work (and especially more observables) needed in order to clarify the situation.

Example III: <u>CP-violation in the charm system</u>

A value of $\Delta a_{CP} > 0.5\%$ is definitely too large compared to its "natural" SM expectation, but is not large enough, compared to SM uncertainties, to be considered a clear signal of NP.

A value of $\Delta a_{CP} > 0.5\%$ fits well in a wide class of NP models predicting sizable CPV in <u>*chromo-magnetic*</u> operators (Q₈).

- Stringent bounds from D meson mixing naturally satisfied
- Easily generated in various well-motivated models (SUSY with partial compositness,....)

 Open window on <u>flavor-mixing in the up sector</u> (about which we know very little...)

Example III: <u>CP-violation in the charm system</u>

A value of $\Delta a_{CP} > 0.5\%$ is definitely too large compared to its "natural" SM expectation, but is not large enough, compared to SM uncertainties, to be considered a clear signal of NP.

A value of $\Delta a_{CP} > 0.5\%$ fits well in a wide class of NP models predicting sizable CPV in <u>*chromo-magnetic*</u> operators (Q₈).

Unavoidable large CPV (*model-independent connection via QCD*) also in the <u>*electric-dipole*</u>

operators (Q_7) :

The best way to distinguish SM vs. NP is to look at radiative Cabibbo-suppressed decays, especially $D \rightarrow V \gamma$ or $D \rightarrow V l^+ l^-$ where the hadronic matrix element of Q_7 is enhanced [Δa_{CP} (radiative) ~ 10× Δa_{CP} (non-leptonic)]

What determines the observed pattern of quark & lepton masses?

What determines the observed pattern of quark & lepton masses?

Two main roads:

Anarchy + Anthropic selection

("Chance & Necessity" [J. Monod])

The symmetric way

("The book of nature is written in terms of circles, triangles and other geometrical figures..." [G. Galilei])

What determines the observed pattern of quark & lepton masses?

Two main roads:

Anarchy + Anthropic selection

("Chance & Necessity" [J. Monod])

Many unanswered questions:

....

It works well for $m_{u,d}$ maybe also for $m_t \& v$ mixing, but what about CKM and the other masses? Why 3 generations?

No clear direction for future searches

The symmetric way

("The book of nature is written in terms of circles, triangles and other geometrical figures..." [G. Galilei])

- Main road of particle physics so far.
- It works well in the Yukawa sector (*several possible options*), less evident, but not excluded, in the neutrino case
- "large" flavor symmetry + "small" breaking is the best way to explain the absence of NP signals so far [*and often implies visible NP signals with higher precision*].

The symmetric way [a possible option]

Minimally-broken $U(2)^3 = U(2)_{Q_L} \times U(2)_{U_R} \times U(2)_{D_R}$ acting on the 1st & 2nd generations of quarks Barbieri *et al.* '11 Pomarol, Tommasini, '96 Barbieri, Dvali, Hall, '96

• The exact symmetry limit is good starting point for the SM quark spectrum $(m_u=m_d=m_s=m_c=0, V_{CKM}=1) \rightarrow$ we only need to introduce <u>small breaking terms</u>

 $Y \propto (0,0,1)$

This symmetry accommodates "naturally" heavy squarks for the first 2 generations (in the SUSY context)

The "small & minimal breaking" ensures small effects in rare processes (in agreement with present data)

The symmetric way [a possible option]

Minimally-broken $U(2)^3 = U(2)_{Q_L} \times U(2)_{U_R} \times U(2)_{D_R}$ acting on the 1st & 2nd generations of quarks Barbieri *et al.* '11 Pomarol, Tommasini, '96 Barbieri, Dvali, Hall, '96

• The exact symmetry limit is good starting point for the SM quark spectrum $(m_u=m_d=m_s=m_c=0, V_{CKM}=1) \rightarrow$ we only need to introduce <u>small breaking terms</u>

A potential problem of this approach and, more generally, of any approach attributing a special role to the hierarchies in the Yukawa sector, is the problem of neutrino masses (*under the hypothesis we are interested to describe in a unified way quark and lepton sectors*):

- Why neutrino mixing angles are not as small as in the quark sector?
- Why the mass hierarchies in the neutrino sector are not as large as in the quark/charged-lepton sector?

The symmetric way [a possible option]

The only possibility of extending this idea to the neutrino sector, is to assume a different initial symmetry for Dirac and Majorna sectors (*or a different initial breaking of some larger flavor symmetry*)

The only two small parameters in the neutrino (Majorana) mass matrix are

$$\begin{split} \zeta &= \left| \frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2} \right|^{1/2} = 0.174 \pm 0.007 \; ,\\ s_{13} &= \left| (U_{\rm PMNS})_{13} \right| = 0.15 \pm 0.02 \; , \end{split}$$

$$M_{\nu}^{+}M_{\nu} \xrightarrow{\zeta, s_{13} \to 0} m_{\nu}^{2}I + \Delta m_{\text{atm}}^{2}\Sigma \xrightarrow{\Delta m_{\text{atm}}^{2} << m_{\nu}^{2}} m_{\nu}^{2}I$$
$$\Sigma \approx \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Let's assume the Yukawa couplings and the neutrino mass matrix are *dynamical fields* of the MFV flavor group, and that their values are determined by a *minimization principle* (e.g. the potential minimum)

"natural solutions" = configurations preserving maximally unbroken subgroups.

> Michel & Radicati, '69 Cabibbo & Maiani, '69

A "natural orientation" of $O(3)_L$ vs. $U(2)_L$ preserving an unbroken U(1) symmetry implies a $\pi/4$ mixing angle in the PMNS matrix.

The symmetric way [a possible option]

If all this is correct... $0v2\beta$ decay experiments (and maybe KATRIN) should be very close to observe a positive signal...

- Despite we have not seen any clear NP signal yet, it is still likely (and experimentally allowed) to expect some new degrees of freedom around the TeV scale.
- The absence of NP signal so far fits well with the idea of a *weakly interacting extension of the SM* + *little hierarchy around the e.w. scale* + *mildly broken flavor symmetry* (coherent picture of precision tests + light Higgs + lack of deviations from SM at high-pT) → Low-scale supersymmetry remains a good candidate.
- We have understood that the flavor structure of this weakly interacting extension of the SM is not trivial, but we have not clearly identified this structure yet
 → Improved experiments/searches in flavor physics play a key role in uncovering the nature of physics beyond the SM

If all this is correct...

 \rightarrow 0v2 β decay experiments should be very close to observe a positive signal

... and if we add (low-energy) SUSY

 \rightarrow LFV in charged leptons ($\mu \rightarrow e\gamma$) may also be close to present exp. bounds:

Flavor-violating Higgs couplings

If we consider the SM as a low-energy effective theory, it is natural to include possible flavor-violating couplings of the physical Higgs boson.

h-mediated FCNCs are unavoidable in models with more Higgs doublets and, more generally, can be viewed as the effect of higher-dimensional operators (in the EFT approach):

$$Y^{ij} \psi_L^{\ i} \psi_R^{\ j} \phi + \varepsilon^{ij} \psi_L^{\ i} \psi_R^{\ j} \phi^3 + \dots$$

$$\varepsilon^{ij} = \frac{c^{ij}}{\Lambda^2}$$

 $(\mathbf{v}\mathbf{Y}^{ij} + \mathbf{v}^3 \,\boldsymbol{\varepsilon}^{ij}) \,\psi_L{}^i \psi_R{}^j + (\mathbf{Y}^{ij} + 3\mathbf{v}^2 \,\boldsymbol{\varepsilon}^{ij}) \,\psi_L{}^i \psi_R{}^j \,h + \dots$

h FCNC couplings if $Y^{ij} \neq c \epsilon^{ij}$

q

 $\mathcal{L}_{eff} = \bigvee_{\substack{i,j=d,s,b \ (i\neq j)}}^{I} c_{ij} \ \overline{d}_{L}^{i} d_{R}^{j} h + \sum_{\substack{i,j=u,c,t \ (i\neq j)}}^{I} c_{ij} \ \overline{u}_{L}^{i} u_{R}^{j} h + \sum_{\substack{i,j=e,\mu,\tau \ (i\neq j)}}^{I} c_{ij} \ \overline{\ell}_{L}^{i} \ell_{R}^{j} h + \text{H.c.}$ (fermion mass-eigenstate basis) Strongly bounded by $\Delta F=2$

(except for terms involving the top)

Operator	Eff. couplings	95% C.L. Bound		Observables
		$ c_{ m eff} $	$ \mathrm{Im}(c_{\mathrm{eff}}) $	
$(ar{s}_Rd_L)(ar{s}_Ld_R)$	$c_{sd} \; c_{ds}^{*}$	$1.1 imes 10^{-10}$	$4.1 imes 10^{-13}$	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)^2, \ (\bar{s}_L d_R)^2$	$c_{ds}^2, \ c_{sd}^2$	2.2×10^{-10}	$0.8 imes 10^{-12}$	
$(ar{c}_R u_L)(ar{c}_L u_R)$	$c_{cu} c_{uc}^*$	$0.9 imes 10^{-9}$	$1.7 imes 10^{-10}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)^2, \ (\bar{c}_L u_R)^2$	$c_{uc}^2, \ c_{cu}^2$	$1.4 imes 10^{-9}$	2.5×10^{-10}	
$(ar{b}_Rd_L)(ar{b}_L d_R)$	$c_{bd} \; c_{db}^{*}$	$0.9 imes 10^{-8}$	2.7×10^{-9}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_R d_L)^2, (\bar{b}_L d_R)^2$	$c_{db}^2, \ c_{bd}^2$	$1.0 imes 10^{-8}$	$3.0 imes10^{-9}$	
$(ar{b}_Rs_L)(ar{b}_L s_R)$	$c_{bs} \; c_{sb}^{*}$	$2.0 imes 10^{-7}$	$2.0 imes 10^{-7}$	Δm_{B_s}
$(\bar{b}_R s_L)^2, (\bar{b}_L s_R)^2$	$c_{sb}^2,\ c_{bs}^2$	$2.2 imes 10^{-7}$	$2.2 imes 10^{-7}$	

Blankenburg, Ellis, G.I. '12

Flavor-violating Higgs couplings

$$\mathcal{L}_{\text{eff}} = \sum_{i,j=d,s,b} \sum_{(i\neq j)} c_{ij} \ \bar{d}_L^i d_R^j h + \sum_{i,j=u,c,t} \sum_{(i\neq j)} c_{ij} \ \bar{u}_L^i u_R^j h + \sum_{i,j=e,\mu,\tau} \sum_{(i\neq j)} c_{ij} \ \bar{\ell}_L^i \ell_R^j h + \text{H.c.}$$

The bounds are significantly less severe in the lepton sector, especially for the $\tau\mu$ and τe effective couplings:

C	Eff. couplings	Bound	Constraint		
$l_i \qquad l_k \begin{cases} \gamma \\ l_i \end{cases}$	$ c_{e au}c_{ au e} $ $(c_{e\mu}c_{\mu e})$	1.1 × 10 ⁻² (1.8 × 10 ⁻¹)	$ \delta m_e < m_e$		
	$ \operatorname{Re}(c_{e\tau}c_{\tau e}) (\operatorname{Re}(c_{e\mu}c_{\mu e}))$	0.6×10^{-3} (0.6×10^{-2})	$ \delta a_e < 6 \times 10^{-12}$		
	$ \mathrm{Im}(c_{e\tau}c_{\tau e}) (\mathrm{Im}(c_{e\mu}c_{\mu e}))$	0.8×10^{-8} (0.8 × 10 ⁻⁷)	$ d_e < 1.6 \times 10^{-27} \ e {\rm cm}$		
	$ c_{\mu au}c_{ au\mu} $	2	$ \delta m_{\mu} < m_{\mu}$		
n n	$ { m Re}(c_{\mu au}c_{ au\mu}) $	$2 imes 10^{-3}$	$ \delta a_{\mu} < 4 \times 10^{-9}$		
l_{\cdot}	$ \mathrm{Im}(c_{\mu au}c_{ au\mu}) $	0.6	$ d_{\mu} < 1.2 \times 10^{-19} \ e { m cm}$		
	$ c_{e au}c_{ au\mu} ,\; c_{ au e}c_{\mu au} $	$1.7 imes 10^{-7}$	$\mathcal{B}(\mu \to e \gamma) < 2.4 \times 10^{-12}$		
	$ c_{\mu au} ^2,\; c_{ au\mu} ^2$	$0.9 imes 10^{-2}$ [*]	$\mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$		
1	$ c_{e au} ^2, \; c_{ au e} ^2$	$0.6 imes 10^{-2} \ [*]$	$\mathcal{B}(\tau \to e \gamma) < 3.3 \times 10^{-8}$		
li					
h t	Eff. cou	plings Bound	Constraint		
ξ	$ c_{e\mu} ^2,$	$ c_{\mu e} ^2$ 1 × 10 ⁻¹¹ [*] <i>l</i>	$\mathcal{B}(\mu \to e \gamma) < 2.4 \times 10^{-12}$		
ζ	$ c_{\mu au} ^2,$	$ c_{\tau\mu} ^2$ 5 × 10 ⁻⁴ [*]	$\mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$		
	$ c_{e au} ^2,$	$ c_{\tau e} ^2$ $3 \times 10^{-4} [*]$	${\cal B}(au o e \gamma) < 3.3 imes 10^{-8}$		

Flavor-violating Higgs couplings

$$\mathcal{L}_{\text{eff}} = \sum_{i,j=d,s,b} c_{ij} \, \bar{d}_L^i d_R^j h + \sum_{i,j=u,c,t} c_{ij} \, \bar{u}_L^i u_R^j h + \sum_{i,j=e,\mu,\tau} c_{ij} \, \bar{\ell}_L^i \ell_R^j h + \text{H.c.}$$

The bounds are significantly less severe in the

lepton sector, especially for the $\tau\mu$ and τe effective couplings.

Taking into account also the smallness of the Higgs width for m ~ 125 GeV (dominant partial width controlled by $y_b \sim 0.02$)

Flavor-changing decays into lepton pairs -<u>with one tau</u>- are not strongly constrained: BR(h $\rightarrow \tau\mu$, τe) $\leq 10\% \rightarrow$ worth a direct search !! Blankenburg Ellis G

Blankenburg, Ellis, G.I. '12

ATLAS & CMS already have the sensitivity to set bounds on BR($h \rightarrow \tau \mu$) $\leq 1\%$ Harnik Kopp Zupan '1

Harnik, Kopp, Zupan, '12 Davidson, Verdier, '12