

Neutrino Oscillations Quo Vadis?

Alfons Weber University of Oxford & STFC/RAL

> Quarks & Leptons Cosener's House, Abingdon Nov 2013

Contentus

- Praelocutio
 - Ubi es
 - Quo vadis
- Futurum
 - With reactors
 - With air & ice
 - With accelerators
- Summarium

Neutrino Mixing The PMNS Matrix

Pontecorvo-Maki-Nakagawa-Sakata

- Assume that neutrinos do have mass:
 - mass eigenstates ≠ weak interaction eigenstates
 - Analogue to CKM-Matrix in quark sector!

Quo vadis?

Juno Goddess of Marriage

JUNO

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{22})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

$$\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

$$\text{NH} : |\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$$

$$\text{IH} : |\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{32}^2|$$

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., hep-ex/0612022 L.

Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008 PRD79:073007, 2009

Possible Sites

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Optimal Baseline around 50 km	0.00
1.4 - Near Site 1.2 - * Far Site	0.00

Fourier-Analysis

	Current	Daya Bay II
Δm_{12}^2	3%	< 1%
Δm^2_{31}	5%	< 1%
$sin^2 \theta_{12}$	6%	< 1%
$sin^2 \theta_{23}$	20%	-
$sin^2 \theta_{13}$	14% → 5% (Daya Bay in 3 years)	-

Technical Challenges

A. Weber, q & l

Large Apparatus for Grand Unification and Neutrino Astrophysics Long Baseline Neutrino Oscillations

- LAGUNA DS (FP7)
 - 2008 2011
 - ~100 members; 10 countries
 - 3 detector technologies ⊗ 7 sites, different baselines (130 → 2300km)

• LAGUNA-LBNO

- 2011 2014
- ~300 members; 14 countries,
 >40 Institutions
- Down selection of sites & detectors

Detector Options

- Prioritisation for neutrino oscillations in light of large $\, heta_{\,13}$
 - 2300 km baseline: Liquid Scintillator/Argon
 - 130 km baseline: Water-Cerenkov

LAr-GLACIER

Several Sites

- Primary site
 - Pyhäsalmi
 - Traditional high energy broadband neutrino (super-) beam
- Secondary site
 - Frejus
 - Beta beam at low energy

Mathematic

• Electron neutrino disappearance $P(\nu_{\mu} \rightarrow \nu_{e}) \sim \frac{1}{2} \sin^{2} 2\theta_{13} \times \sin^{2} \Delta$ $P(\nu_{\mu} \rightarrow \nu_{e}) \sim \sin^{2} 2\theta_{13} \times \sin^{2} \theta_{23} \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}} \quad (\equiv P_{0})$ $-\alpha \sin 2\theta_{13} \times \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \quad (\equiv P_{1})$ $+\alpha \sin 2\theta_{13} \times \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \quad (\equiv P_{2})$ $+\alpha^{2} \times \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}} \qquad (\equiv P_{3})$

M. Freund, Phys.Rev. D64 (2001) 053003

$$\equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sim \frac{1}{30} \quad \Delta \equiv \frac{\Delta m_{31}^2 L}{4E} \quad x \equiv \frac{2\sqrt{2}G_F N_e E}{\Delta m_{31}^2}$$

• Muon neutrino appearance

 $P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - \sin^2 2\theta_{23} \times \sin^2 \Delta$ $P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - \left(\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}\right) \sin^2 \Delta$

 α

A. Weber, q & l

14/11/2013

A. Weber, q & l

Signal

Mass Hierarchy

Provide a >5 σ direct determination of MH for all values of δ_{CP} within 2.5 years of running

CP Sensitivity

Sensitivity combining T2K(295km), NOvA(810km) and LBNO(2300km)

The power of combining several different baselines L: LBNO 20kton(5+5) + T2K(5+0) + NOvA(3+3) \approx 40-45% CPV at >3 σ C.L.

14/11/2013

A. Weber, q & l

14/11/2013

LBNE Detector

14/11/2013

LBNE 35kt

LBNE Mass-Hirarchie

Normal

Inverted

xford

hysics

Sensitivity to MH

Exposure 245 kt.MW.yr (700 kW x (5v+5v) yr or 1.2 MW x (3v+3v) yr

Mass Hierarchy Sensitivity Variable δ_{CP} Coverage

Sensitivity to CPV

Exposure 245 kt.MW.yr CP Violation Sensitivity Variable δ_{CP} Coverage **CP** Violation Sensitivity BNE 35 kt LAr Beam, Signal/BG Uncertainty: $\sin^2 2\theta_{13} = 0.094$ $\sin^2 \theta_{23} = 0.39$ ------ CDR, 5%/10% 10 25% Normal Hierarchy ----- 80 GeV, 5%/10% 9 80 GeV, 1%/5% 8 $\overleftarrow{}$ 7 50% 5σ Minimum g= 6 5 **5**σ 4 3σ 75% 3 64% 2 80 GeV Beam Signal/background uncertainty: 1%/5% 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 200 600 800 1000 0.8 0 400 -1 δ_{CP}/π Exposure (kt.MW.years)

- J-PARC Neutrino beam (T2K)
- Improve SK technology
- 1 Mt water-Cherenkov detector

- For HyperKamiokande
 - Large differences between neutrinos and antineutrinos
 - Mostly depending on CP-phase

- Little Matter effects
 - Short distance & low neutrino energy

Effect of δ

A. Weber, q & l

Mass Hierarchy

33

Octant

PINGU

14/11/2013

The Signature

- Atmospheric Neutrinos oscillate
 - Mass ES are not weak interaction ES
 - What is the mass hierarchy?

Summarium

- Hunt for the MH and CPV is on
- Several contestants
 - Reactors
 - Atmospheric neutrinos
 - Intense beams
- Next generation of experiments
 - Complementary
 - Constrain standard oscillation picture
 - Determine unknown parameters
 - Precision experiments
- Large effort in theory and experiments is needed
 Systematics can become the limit
 - Systematics can become the limit

... and more

RESEARCH REACTOR

- SCK•CEN BR2 Mol, Belgium
- 45-80 MW, 4-5 cycles (20-25 days) per year
- Small effective core ~ 50cm diameter

DETECTOR

- 2.88t fiducial volume
- Novel type of composite solid scintillator detector (PVT + 6LiF:ZnS)
- 2x 20 planes 1.2m x 1.2m x 1m with 576 5cm x 5cm x 5cm cubes
- read out by WLS fibres and Geigermode APDs (MPPC), 1920 channels total
- 65MS/S dead timeless electronics

REACTOR-DETECTOR

- Minimal distance @ 5.5m
- ~1200 events/day reconstructed

BACKGROUND

- High signal to background ratio : S/B ~
 6
- Soft Gamma-rays (< 3 MeV)
- No reactor neutrons
- Overburden ~10 m.w.e

Anti-Neutrino Detection

22000

18000 16000

14000

20000

Height (ADC)

antineutrino

- Different response for neutron in ⁶LiF:ZnS and other particles
 - High neutron-gamma rejection factor
- 3D reconstruction close to interaction point : topological information of IBD
- High light yield and good energy resolution
 - dE/E ~ 17% at 1 MeV
- Vertex resolution < 5 cm
- High background rejection capability using hit multiplicity and flexible fiducial cuts

MC

Sensitivity & Status

- Average distance at 6.8m with 2.88t fiducial mass
- 300 days (~ two years running)
- 45% IBD efficiency
- L binning of 20 cm
- Systematics : normalisation 4.1%, total ~5%
- Physics run scheduled for start of 2016

8kg Fiducial mass

- Development of small prototype
- under commissioning at Oxford
- Deployment at BR2 for August 2013 reactor cycle (~25-30 days)
 - study of background conditions
 - antineutrinos measurement trial at 5m from reactor core
 - expect 6 evts/day, S:B ~ 1:5