Southampton

School of Physics and Astronomy

Models of mixing in the leptonic (and quark) sector

Steve King, Cosener's House, Abingdon, UK HEP forum on "Quarks and Leptons" 14–15 November 2013

Standard Model of Quarks and Leptons

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

Left-handed quarks and leptons Right-handed quarks and leptons

The Flavour Problem Why is quark mixing so small?

Kobayashí $U_{
m CKM}=$

$$\begin{array}{c} c_{12}c_{13}\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e_{23}\\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\theta}\end{array}$$

 $\begin{array}{ccccccc} s_{12}c_{13} & s_{13}e^{-i\delta} \\ e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{array}$

 $\theta_{12} = 13^{\circ} \pm 0.1^{\circ}$ $\theta_{23} = 2.4^{\circ} \pm 0.1^{\circ}$ $\theta_{13} = 0.20^{\circ} \pm 0.05^{\circ}$ $\delta_{CP} \approx 70^{\circ} \pm 5^{\circ}$

The Flavour Problem Why is lepton mixing so large?

Global Fits 2012

SFK and C.Luhn, "Neutrino Mass and Mixing with Discrete Symmetry," arXiv:1301.1340

2013 Update from NuFIT

NuFIT 1.2 (2013)

	Free Fluxes + RSBL		Huber Fluxes, no RSBL	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 heta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.346$	$0.313\substack{+0.013\\-0.012}$	$0.277 \rightarrow 0.355$
$ heta_{12}/^{\circ}$	$33.57_{-0.75}^{+0.77}$	$31.38 \rightarrow 36.01$	$34.02^{+0.80}_{-0.76}$	$31.78 \rightarrow 36.55$
$\sin^2 \theta_{23}$	$0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$	$0.366 \rightarrow 0.663$	$0.444^{+0.036}_{-0.031} \oplus 0.592^{+0.028}_{-0.042}$	$0.361 \rightarrow 0.665$
$ heta_{23}/^{\circ}$	$41.9^{+0.4}_{-0.4} \oplus 50.0^{+1.9}_{-2.2}$	$37.2 \rightarrow 54.5$	$41.8^{+2.1}_{-1.8} \oplus 50.3^{+1.7}_{-2.4}$	$36.9 \rightarrow 54.6$
$\sin^2 heta_{13}$	$0.0229^{+0.0020}_{-0.0019}$	0.0170 ightarrow 0.0288	$0.0244^{+0.0020}_{-0.0019}$	$0.0184 \rightarrow 0.0305$
$\theta_{13}/^{\circ}$	$8.71_{-0.38}^{+0.37}$	$7.50 \rightarrow 9.78$	$8.99_{-0.37}^{+0.36}$	$7.80 \rightarrow 10.05$
$\delta_{ m CP}/^{\circ}$	265^{+56}_{-61}	$0 \rightarrow 360$	270^{+77}_{-67}	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.45_{-0.16}^{+0.19}$	$6.98 \rightarrow 8.05$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.08$
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$+2.417^{+0.013}_{-0.013}$	$+2.247 \rightarrow +2.623$	$+2.429^{+0.055}_{-0.054}$	$+2.249 \rightarrow +2.639$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.410^{+0.062}_{-0.062}$	$-2.602 \rightarrow -2.226$	$-2.421^{+0.063}_{-0.061}$	$-2.614 \rightarrow -2.235$

Possible leptonic unitarity triangles

or

We simply have no idea...

what is the mass squared ordering (normal or inverted) ?
 what is the neutrino mass scale (mass of lightest neutrino)?
 what is the nature of neutrino mass (i.e. Dirac or Majorana)?
 Origin of neutrino mass?

How we can learn about neutrino mass

$etaeta_{0 u}$	Δm^2_{13}	KATRIN	Conclusion	
yes	> 0	yes	Degenerate, Majorana	
yes	> 0	No	Degenerate, Majorana	
			or normal, Majorana with heavy particle contribution	
yes	< 0	no	Inverted, Majorana	
yes	< 0	yes	Degenerate, Majorana	
no	> 0	no	Normal, Dirac or Majorana	
no	< 0	no	Dirac	
no	< 0	yes	Dirac	
no	> 0	yes	Dirac	

Tritium beta decay

$$|m_{\nu_e}|^2 = \sum_i |U_{ei}|^2 |m_i|^2$$

Present Mainz	< 2.2 eV	
KATRIN	~0.35eV	

Neutrinoless double beta decay

Majorana only (no signal if Dirac)

 $|m_{ee}|_{\rm PDG} = |m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\alpha_{21}} + m_3 s_{13}^2 e^{i(\alpha_{31} - 2\delta)}|$

Neutrino Mass Sum Rules

SFK, Merle, Stuart

Predictions of sum rules

Neutrino mass roadmap

See-saw mechanisms

Possible type 11 contribution

Dírac matrix

Light Majorana matrix

Heavy Majorana matrix

Neutrinos are light because RH neutrínos are heavy

No explanation of neutrino mixing without further ingredients

Neutrino Mixing Questions

- □ Is the atmospheric angle maximal 45°?
- □ If not then which octant?
- □ Is the solar angle trimaximal 35°?
- □ If not then less or greater?
- □ Is the CP phase special 0, pi, pi/2,
- □ If not then what is it?

Origin of neutrino mixing?

Origin of neutrino mixing

GUTs are based on continuous gauge groups

Family Symmetry may be continous or discrete

Direct Models

Direct models can give simple mixing patterns (now excluded)

D Bimaximal

 $U_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} P \quad \theta_{12} = 45^{o}$

Tri-bimaximal

Harríson, Perkíns, Scott

 $\Box Golden ratio Kajirama, Raidal, Strumia; Everett, Stuart <math display="block">\phi = \frac{1+\sqrt{5}}{2}$

$$U_{BM} = \begin{pmatrix} c_{12} & s_{12} & 0\\ -\frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P$$
$$\tan \theta_{12} = \frac{1}{\phi} \qquad \theta_{12} = 31.7^{o}$$

 $U_{TB} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P \\ \theta_{12} = 35.26^{\circ}$

Direct Model Building

Spontaneous CP violation $g \in G_f$ Feruglio, Hagedorn; in direct models Holthausen, Lindner, Schmidt;

Predicting CP: Flavour symmetry \Rightarrow Flavour symmetry "+" Generalised CP symmetry

Ding, SK, Luhn, Stuart; $X_r \rho_r^*(g) X_r^{-1} = \rho_r(g')$, Nishig, Xing

 \bullet S₄ and A₄ models with CP symmetry are constructed, all the possible cases following from the model-independent analysis can be realized. Dirac CP phase is predicted to be trivial or maximal.

Indirect Models

vacuum alignment Approximate Yukawas

$$\langle \phi_{\mathcal{U}_1^c} \rangle = \frac{v_{\mathcal{U}_1^c}}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix} , \qquad \langle \phi_{\mathcal{U}_2^c} \rangle = \frac{v_{\mathcal{U}_2^c}}{\sqrt{21}} \begin{pmatrix} 1\\4\\2 \end{pmatrix} , \qquad \langle \phi_{\mathcal{U}_3^c} \rangle = v_{\mathcal{U}_3^c} \begin{pmatrix} 0\\0\\1 \end{pmatrix} , \qquad (\phi_{\mathcal{U}_1^c}, \mathcal{Q})\mathcal{U}_i^c \longrightarrow Y^\nu \sim Y^u \sim \begin{pmatrix} 0 & b & 0\\a & 4b & 0\\a & 2b & c \end{pmatrix}$$

and

$$\langle \phi_{\mathcal{D}_1^c} \rangle = v_{\mathcal{D}_1^c} \begin{pmatrix} 1\\0\\0 \end{pmatrix} , \qquad \langle \phi_{\mathcal{D}_2^c} \rangle = v_{\mathcal{D}_2^c} \begin{pmatrix} 0\\1\\0 \end{pmatrix} , \qquad \langle \phi_{\mathcal{D}_3^c} \rangle = v_{\mathcal{D}_3^c} \begin{pmatrix} 0\\0\\1 \end{pmatrix} . \qquad (\phi_{\mathcal{D}_i^c} \cdot \mathcal{Q}) \mathcal{D}_i^c \longrightarrow Y^d \sim Y^e \sim \begin{pmatrix} y_d & 0 & 0\\0 & y_s & 0\\0 & 0 & y_b \end{pmatrix}$$

Leading Order Yukawas

 $Y^{d} = \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}, \quad Y^{e} = \begin{pmatrix} y_{d}/3 & 0 & 0 \\ 0 & 3y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}, \quad \text{The Cabibbo connection}$ $\theta_{C} \approx 1/4 \text{ or } \theta_{C} \approx 14^{\circ}$

$$Y^{u} = \begin{pmatrix} 0 & b\epsilon & 0 \\ a\epsilon^{2} & 4b\epsilon & 0 \\ a\epsilon^{2} & 2b\epsilon & c \end{pmatrix}, \quad Y^{\nu} = \begin{pmatrix} 0 & b\epsilon & 0 \\ a\epsilon^{2} & 4b\epsilon & 0 \\ a\epsilon^{2} & 2b\epsilon & c/3 \end{pmatrix}, \quad M_{R} = \begin{pmatrix} \epsilon^{4}M_{1} & 0 & 0 \\ 0 & \epsilon^{2}\tilde{M}_{2} & 0 \\ 0 & 0 & \tilde{M}_{3} \end{pmatrix}$$

See-saw $m^{\nu} = -v_u^2 Y^{\nu} M_{\rm R}^{-1} Y^{\nu T}$ $\eta = 2\pi/5$

$$m^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{2i\eta} \begin{pmatrix} 1 & 4 & 2 \\ 4 & 16 & 8 \\ 2 & 8 & 1 \end{pmatrix} + m_c \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Dominant
Dominant
Decompled

Higher Order Yukawas

$$Y^{u} = \begin{pmatrix} \varepsilon_{11}\epsilon^{2} & b\epsilon(1+\varepsilon_{12}) & \varepsilon_{13}c \\ a\epsilon^{2}(1+\varepsilon_{21}) & 4b\epsilon(1+\varepsilon_{22}) & \varepsilon_{23}c \\ a\epsilon^{2}(1+\varepsilon_{31}) & 2b\epsilon(1+\varepsilon_{32}) & c(1+\varepsilon_{33}) \end{pmatrix}$$

$$\theta_{12}^{q} \approx \frac{1}{4} |1 + \varepsilon_{12} - \varepsilon_{22}$$

$$\theta_{23}^{q} \approx |\varepsilon_{23}|,$$

$$\theta_{13}^{q} \approx |\varepsilon_{23}/4 - \varepsilon_{13}|,$$

Small quark míxing angles entirely from HO corrections

$$Y^{\nu} = \begin{pmatrix} \varepsilon_{11}\epsilon^2 & b\epsilon(1+\varepsilon_{12}) & \varepsilon_{13} \\ a\epsilon^2(1+\varepsilon_{21}) & 4b\epsilon(1+\varepsilon_{22}) & \varepsilon_{23} \\ a\epsilon^2(1+\varepsilon_{31}) & 2b\epsilon(1+\varepsilon_{32}) & c/3(1+\varepsilon_{33}) \end{pmatrix}$$

random scans over complex $|\varepsilon_{ij}| < 0.03$

- The Origin of Neutrino Mass is unknown but see-saw most likely option if no new physics found at LHC
- But see-saw does not explain lepton mixing, we need symmetry (or anarchy)
- Dírect models preserve part of the family symmetry and tend to give simple patterns (excluded by data)
- Many strategies e.g. large groups Delta (6n²)
- Or use indirect models which completely break the family symmetry
- We have considered a model of quark and lepton mixing the tetra-model which at leading has 10 predictions including all 6 PMNS parameters, the three down-quark masses and the Cabibbo angle (the "Cabibbo connection")
- At higher order the predictions become blurred but still predicts: a normal neutrino mass hierarchy, atmospheric angle in first octant 40+/-1 degree, solar angle 34+/-1 degree, reactor angle 9.0+/-0.5 degree, Dirac oscillation phase 260+/-5 degrees