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The Flavour Problem
What is the origin of quark 
and lepton masses?

Why are neutrino 
masses so small?
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Why is quark mixing so small?

11. CKM quark-mixing matrix 1

11. THE CKM QUARK-MIXING MATRIX

Revised March 2012 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ε φ∗uI

Rj + h.c., (11.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ε is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM




dL
sL
bL



 + h.c., VCKM ≡ V u
L V d

L
† =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



.

(11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13



 , (11.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ( s23 ( s12 ( 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4) . (11.5)

J. Beringer et al.(PDG), PR D86, 010001 (2012) (http://pdg.lbl.gov)
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PMNS matrix

UPMNS =




1 0 0
0 cl23 sl23
0 −sl23 cl23








cl13 0 sl13e

−iδl

0 1 0

−sl13e
iδl 0 cl13








cl12 sl12 0
−sl12 cl12 0
0 0 1








1 0 0
0 α21

2 0
0 0 α31

2




The PMNS matrix is then given by

UPMNS = UeLU
†
νL

. (31)

We use a standard parameterization UPMNS = Rl
23U

l
13R

l
12P

l in terms of slij = sin(θlij),
clij = cos(θlij), the Dirac CP violating phase δl and further Majorana phases contained

in P l = diag(ei
βl1
2 , ei

βl2
2 , 1). The standard PDG parameterization [24] differs slightly due

to the definition of Majorana phases which are by given by P l
PDG = diag(1, ei

α21
2 , ei

α31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by α21 =
βl
2 − βl

1 and α31 = −βl
1, after an overall unphysical phase is absorbed by UeL .

Using the see-saw formula in Eq.29, with the neutrino Yukawa matrix Y ν in Eq.15
and the right-handed Majorana mass matrix MR in Eq.22, we find the neutrino mass
matrix mν , up to an overall irrelevant phase which may be taken to be real, can be
written as

mν = ma




0 0 0
0 1 1
0 1 1



+mbe
2iη




1 4 2
4 16 8
2 8 1



+mc




0 0 0
0 0 0
0 0 1



 (32)

where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-
binations which determine the three physical neutrino masses m3,m2,m1, respectively.
Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due
to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written
the relative phase difference between the first two two terms as 2η. As shown recently
[7], fixing η = −2π/5, using the phases of the singlet flavon VEVs �ξi�, then determines
all the lepton mixing angles and phases in terms of the ratio �ν = mb/ma. Since this
phase is crucial to the predictions in the lepton sector, it is worthwhile discussing the
origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixmν ,
it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana
masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the
effective neutrino mass matrix mν in Eq. 32 emerges from the flavon combinations,

mν ∼ �φatm��φatm�T

�ξatm�
+

�φsol��φsol�T

�ξsol�
+

�φdec��φdec�T

�ξdec�
. (33)

Notice that the powers of � cancel in the see-saw mechanism, leading to a rather mild
hierarchy in the neutrino sector. Since we are assuming that the original theory respects
CP, the only source of phases can be the VEVs of flavons. The phase η = −2π/5 then
must arise from the difference between flavon VEVs. The phases of flavon VEVs arise
in the context of spontaneous CP violation from discrete symmetries as discussed in
[26], and we shall follow the strategy outlined there. The basic idea is to impose CP
conservation on the theory so that all couplings and masses are real. Note that the
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Figure 4: The mixing angles obtained from the three global fits [56–58]. The upper three panels
correspond to the results for normal neutrino mass ordering (NO), while the lower three panels are
for an inverted mass ordering (IO). Shown are the best fit values (green) as well as the 1σ (red)
and 3σ (blue) intervals. Note that the solar angle is insensitive to the mass ordering.

Gonzalez-Garcia et al [58]. The results for the mixing angles are graphically contrasted in

Fig. 4. We emphasise that this compilation is predominantly meant to illustrate some pos-

sibilities arising from present global fits. The reader is referred to the respective references

for the subtleties associated with these numbers.

For the normal mass ordering, we shall take the average values and errors which ap-

proximately encompass the one sigma ranges of all three global fits (ignoring the solution

of θ23 in the second octant found by Forero et al [56]):

sin2 θ12 = 0.31 ± 0.02, (2.20)

sin2 θ23 = 0.41 ± 0.05, (2.21)

sin2 θ13 = 0.024 ± 0.003. (2.22)

These values may be compared to the tri-bimaximal predictions sin2 θ12 = 0.33, sin2 θ23 =

0.5 and sin2 θ13 = 0, showing that TB mixing is excluded by the reactor angle. Alternatively

we may write, remembering that these are one sigma ranges in the squares of the sines and

not the sines themselves,

sin θ12 = 0.56 ± 0.02, (2.23)

sin θ23 = 0.64 ± 0.04, (2.24)

sin θ13 = 0.155 ± 0.01. (2.25)

– 20 –

Global Fits 2012 SFK and C.Luhn, 
``Neutrino Mass and Mixing with Discrete Symmetry,'' 
arXiv:1301.1340

35◦ 45◦ 0◦



NuFIT 1.2 (2013)

Free Fluxes + RSBL Huber Fluxes, no RSBL

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.306+0.012
−0.012 0.271 → 0.346 0.313+0.013

−0.012 0.277 → 0.355

θ12/◦ 33.57+0.77
−0.75 31.38 → 36.01 34.02+0.80

−0.76 31.78 → 36.55

sin2 θ23 0.446+0.007
−0.007 ⊕ 0.587+0.032

−0.037 0.366 → 0.663 0.444+0.036
−0.031 ⊕ 0.592+0.028

−0.042 0.361 → 0.665

θ23/
◦ 41.9+0.4

−0.4 ⊕ 50.0+1.9
−2.2 37.2 → 54.5 41.8+2.1

−1.8 ⊕ 50.3+1.7
−2.4 36.9 → 54.6

sin2 θ13 0.0229+0.0020
−0.0019 0.0170 → 0.0288 0.0244+0.0020

−0.0019 0.0184 → 0.0305

θ13/
◦ 8.71+0.37

−0.38 7.50 → 9.78 8.99+0.36
−0.37 7.80 → 10.05

δCP/
◦ 265+56

−61 0 → 360 270+77
−67 0 → 360

∆m2
21

10−5 eV2
7.45+0.19

−0.16 6.98 → 8.05 7.50+0.19
−0.17 7.03 → 8.08

∆m2
31

10−3 eV2
(N) +2.417+0.013

−0.013 +2.247 → +2.623 +2.429+0.055
−0.054 +2.249 → +2.639

∆m2
32

10−3 eV2
(I) −2.410+0.062

−0.062 −2.602 → −2.226 −2.421+0.063
−0.061 −2.614 → −2.235

2013 Update from NuFIT



Possible leptonic unitarity triangles

Figure 1: The ν2.ν3 unitarity triangle. The angle γ is equal to the CP phase δ to first order. The
unknown Majorana phases just rotate the triangle in the complex plane. The rescaled triangle is
oriented as shown with the opening angles unchanged, the horizontal side having unit length, and the
shortest side having length r to first order. Currently 0 < r < 0.22 at 2σ, and the opening angles α, β
and γ are all undetermined.

simplified by the new parametrization. In the remainder of the paper we shall discuss
unitarity triangles and neutrino oscillation formulae using the above parametrization.

CP violation is described by the Jarlskog [21] invariant which to leading order is

J ≈
r

6
sin δ. (7)

Leptonic unitarity triangles [22] may be constructed using the orthogonality of different
pairs of columns or rows of the mixing matrix. Only the opening angles, side lengths and
areas of the triangles have physical significance. For example the area of each unitarity
triangle is A = 1

2
|J | and CP violation implies that the longest side of each unitarity

triangle is smaller than the sum of the other two. Current solar, reactor and atmospheric
experiments directly constrain the elements Ue2, Ue3 and Uµ3, which have a particularly
simple parametrization in Eq.6. The most important unitarity triangles should therefore
include all of the elements Ue2, Ue3 and Uµ3. There are two such unitarity triangles, the
ν2.ν3 one [16] corresponding to the orthogonality of the second and third column, and
the νe.νµ one [23] corresponding to the orthogonality of the first and second row. Each
of them has a simple expression in terms of the new parametrization, as we now discuss.

The ν2.ν3 triangle in Fig.1 corresponds to the unitarity relation

Ue2U
∗
e3 + Uµ2U

∗
µ3 + Uτ2U

∗
τ3 = 0. (8)

To first order the sides of this unitarity triangle are given by

S1 = Ue2U
∗
e3 ≈

1√
6
reiδ

S2 = Uµ2U
∗
µ3 ≈

1√
6
(1 −

s

2
−

r

2
eiδ)

S3 = Uτ2U
∗
τ3 ≈ −

1√
6
(1 −

s

2
+

r

2
eiδ). (9)

3

or

We simply have no idea...

?!



   What is the mass squared ordering (normal or inverted) ?

   What is the neutrino mass scale (mass of lightest neutrino)?

   What is the nature of neutrino mass (i.e. Dirac or Majorana)?

Origin of neutrino mass?

Neutrino Mass 
Questions Normal Inverted 

Absolute neutrino mass scale? 



How we can learn about neutrino mass 



Neutrinoless double beta decayTritium 
beta decay

Present Mainz   < 2.2 eV

KATRIN           ~0.35eV

Majorana only  (no signal if Dirac)

|mνe |2 =
�

i

|Uei|2|mi|2

The violation of lepton number is immediate, since the final state contains two leptons

while the initial state contains none.
3
In the simplest case of light neutrino exchange, the

amplitude for the process is proportional to a quantity called the effective mass mee.

The “problem” with this quantity is that it can be parametrised in several ways, which

may at times look confusing. To unambiguously clarify these points, we will here in some

detail review how the effective mass is obtained, thereby pointing out some important

subtleties. Although these issues are in principle known, we chose to give a detailed

explanation in order to prevent any confusion.

We start with the Feynman diagram for the process, which looks like:

ΝiΝe Νe
Vei mi ei Φi Vei

e� e�

W� W�

d d

u u

Note that we have assumed the most simple version of the process, i.e., there are only left-

handed SM-like W -bosons, and the exchange particle is a light active Majorana neutrino.

Then the propagator of the fermion line is a Majorana propagator which contains a

charge conjugation matrix C [42], which by the Majorana condition νc
i = C(νi)T = eiφiνi

translates into a Majorana phase φi for the mass eigenstate νi. Note that we have already
used the same notation φi for the Majorana phase as done in the sum rules, cf. Sec. 3.

However, we still have to show that this is actually correct.

If there are three active neutrino mass eigenstates ν1,2,3, one obtains the following

proportionality in the amplitude:

Aee ∝
3�

i=1

PLVeie
iφi

/p+mi

p2 −m2
i

VeiPL, (32)

where V denotes the CKM-equivalent part of the PMNS-matrix (V is the same as U with

all Majorana phases set to zero). Note that, due to the Majorana nature of the exchanged

3Note that, however, the relation to the Majorana nature of the neutrino might be more subtle [40,41].
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neutrino, the two vertices are indistinguishable, i.e., the amplitude must be proportional
to V 2

ei instead of |Vei|
2, the use of the latter sometimes being part of the confusion.

In order to arrive at the effective mass, two more steps are necessary. First, due to the
two projection operators PL which originate from the SM-like W -bosons, one can rewrite
PL(/p + mi)PL = miPL. Second, since the average nuclear momentum transfer is much
larger than the neutrino mass,

�
�p2� = O(100 MeV) � mi, one can neglect the term m2

i

in the denominator. Hence, the proportionality in Eq. (32) reduces to

Aee ∝
3�

i=1

V 2
eie

iφimi ≡ mee, (33)

which serves as a definition of the effective mass mee. The final step is to realize that a
detection of 0νββ could only constrain the absolute value |mee|, which means that the
decay rate it can only depend on two phases. Multiplying Eq. (33) by e−iφ1 and defining
αi1 ≡ φi − φ1 (i = 2, 3) then leads the final form of the effective mass

|mee| = |m1V
2
e1 +m2V

2
e2e

iα21 +m3V
2
e3e

iα31 |. (34)

Note that this expression is nearly independent of the parametrisation, except for the
choice to remove the phase from the first term instead of choosing any of the other two.

We can now insert the PDG parametrisation, cf. Eq. (13.79) of Ref. [4],

UPDG
PMNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





� �� �
≡V PDG

PMNS




1 0 0
0 eiα21/2 0
0 0 eiα31/2



 ,

(35)
into Eq. (34) and thereby exactly reproduce the PDG parametrisation of the effective
mass, cf. Eq. (13.84) in Ref. [4],

|mee|PDG = |m1c
2
12c

2
13 +m2s

2
12c

2
13e

iα21 +m3s
2
13e

i(α31−2δ)
|. (36)

Now it suddenly appears as if also the Dirac CP phase δ showed up in the effective mass.
This dependence came in through the PMNS matrix element Ve3 = s13e−iδ. Of course
there can still only be two physical phases inside |mee|, which are α21 and (α31−2δ), which
is why some authors choose to redefine the mass m̃3 in such a way that the Dirac CP phase
δ does not appear in the formula for |mee| (see, e.g., Refs. [29,43]). This step is convenient
– and always perfectly justified – since we can choose any combination of phases to be

12

physical as long as there are in total three independent combinations (in the case of a

3× 3 Majorana mass matrix [4]). However, there is one point we have to be careful with

if we want to investigate sum rules: the redefinition of phases is, in fact, nothing else than

a redefinition of the Majorana phase φ3, and by this it will modify the neutrino mass sum
rule under consideration. This is easy to see, since redefining α31 − 2δ → α31 in Eq. (36)

is equivalent to redefining φ3 → φ3+2δ, which would then show up in the steps following

Eq. (27). While in general, without any sum rule at work, this redefinition does not show

up anywhere else except for |mee|, it does appear when a sum rule is studied in addition.

Hence, we have to be careful when applying any redefinition to a Majorana phase, since

such a redefinition will, in general, also redefine the sum rule involved.
4
Thus we have to

be careful when aiming to determine which phases are actually constrained by the sum

rule. In order to do that in a consistent way, we will in our calculations always stick to

the PDG parametrisation [i.e., to Eq. (36)], without redefining any phases.

Note that one can also think of the effective mass mee geometrically, as a sum of three

vectors, by simply interpreting the complex numbers as vectors in the complex plane [29]:

m1c122 c132

m2s122 c132 ei Α21

m3s132 ei �Α31�2 ∆�

Α21

Α31�2∆

mee

This picture makes it obvious how mee can vanish: if the three vectors can form a triangle

by adjusting the phases α21 and (α31− 2δ), then the resulting “vector” mee will have zero

length. If this is not possible, either due to the three pieces having inappropriate lengths

or due to some external constraints on the phases, just as imposed by the existence of a

certain sum rule, then the resulting vector (and by this |mee|) will be finite.

Before closing this section, we will first comment on an alternative parametrisation

of the PMNS matrix, and we will furthermore show why we can identify the Majorana

phases φi in the sum rule with those in the effective mass.

First, to make the dependence of |mee| on only two phases more immediate, one can

make use of the so-called symmetric parametrisation [40,44,45], in which each of the three

4The only exception is factoring out an overall phase, as we will see for the example of φ1 in a second.
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Neutrino Mass Sum Rules

m1 +m2 = m3

1

m1
+

1

m2
=

1

m3

Rule 1

Rule 2

SFK, Merle, Stuart 

Give restricted 
regions 



Predictions of sum rules
SFK, Merle, Stuart 



Neutrino mass roadmap

Dirac or Majorana? Extra Dim models

See-saw models

Higgs triplet or loop 
models

Extra Higgs @LHC?

Dirac

yes

yes

yesyes

Majorana

no

RPV SUSY@LHC? RPV SUSY models
no



Dirac matrix
Possible type II 
contribution 

P.Minkowski, PLB67(1977)421

                  

 Neutrinos are light because RH 
neutrinos are heavy

 No explanation of neutrino mixing 
without further ingredients 

See-saw mechanisms

Mv = mLR.
1

MRR
.mT

LR

Heavy Majorana matrix

Light Majorana matrix



Neutrino Mixing Questions
Is the atmospheric angle maximal 450?

If not then which octant?

Is the solar angle trimaximal 35o?

If not then less or greater? 

Is the CP phase special 0, pi, pi/2, ...?

If not then what is it?

Origin of neutrino mixing?



Origin of neutrino mixing

AnarchySymmetry

Daya Bay/RENO
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GUTs are based on continuous 
gauge groups

Figure 13: Some possible candidate unified gauge groups.

decompose into multiplets of the SM gauge group SU(3)C×SU(2)L×U(1)Y as F = (dc, L),

corresponding to,

5 = (3,1, 1/3) ⊕ (1,2,−1/2), (9.2)

and T = (uc, Q, ec), corresponding to,

10 = (3,1,−2/3) ⊕ (3,2, 1/6) ⊕ (1,1, 1). (9.3)

Thus a complete quark and lepton SM family (Q,uc, dc, L, ec) is accommodated in the

F = 5 and T = 10 representations, with right-handed neutrinos, whose CP conjugates are

denoted as νc, being singlets of SU(5), νc = 1. The Higgs doublets Hu and Hd which break

electroweak symmetry in a two Higgs doublet model are contained in the SU(5) multiplets

H5 and H
5
.

The Yukawa couplings for one family of quarks and leptons are given by,

yuH5iTjkTlmεijklm + yνH5iF
iνc + ydH

i
5
TijF

j , (9.4)

where εijklm is the totally antisymmetric tensor of SU(5) with i, j, j, k, l = 1, . . . , 5, which

decompose into the SM Yukawa couplings

yuHuQuc + yνHuLν
c + yd(HdQdc +Hde

cL). (9.5)
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Family Symmetry may be 
continous or discrete 

PSL2(7) SO(3)∆(96)

∆(27)

SU(3)

A4

S4 A5T7

Figure 7: Examples of subgroups of SU(3) with triplet representations discussed in this review.
A line connecting two groups indicates that the smaller is a subgroup of the bigger one.

from these groups in a direct or semi-direct way, see Subsection 6.3. Yet, from the model

building point of view it can still be useful to change to a basis in which the order three

generator becomes diagonal [94], analogously to the case of S4. In Appendix C we list the

generators and Clebsch-Gordan coefficients of the groups S4, A4 and T7 in the T diago-

nal basis. Their relation to SU(3) and some of its subgroups is schematically illustrated

in Fig. 7.

6. Discrete family symmetries and model building approaches

6.1 Family symmetries and flavons

The masses and mixings of the three families of quarks and leptons result from the form

of the respective Yukawa matrices formulated in the flavour basis. Is there an organising

principle which dictates the family structure of these Yukawa couplings? While this review

takes the view that the observed mass and mixing patterns can be traced back to a family

symmetry, we remark that some authors answer this question negatively, referring to a

landscape of parameter choices out of which Nature has picked one that is compatible with

the experimental measurements. In particular, the observation of a large reactor angle

has been interpreted as a sign for an anarchical neutrino mass matrix [95]. Following

the symmetry approach, it is clear that the family symmetry must be broken in order

to generate the observed non-trivial structures. This is achieved by means of Higgs-type

fields. These so-called flavon fields φ are neutral under the SM gauge group and break

the family symmetry spontaneously by acquiring a VEV. This VEV in turn introduces an

expansion parameter

ε =
〈φ〉
Λ

, (6.1)

– 39 –



Figure 8: A sketch of the direct model building approach. The charged lepton sector is (approxi-
mately) diagonal either due to a remnant (approximate) T symmetry or simply by construction.

Z2 factor arises accidentally. The flavons of semi-direct models appear linearly in the

neutrino mass term, similar to Eq. (6.10), and break G down to one of its Z2 subgroups.

An example of such a model is provided by the famous Altarelli-Feruglio A4 model of tri-

bimaximal mixing [30, 103]. A4 is the group of even permutations on four object, and as

such a subgroup of S4. It can be obtained from S4 by simply dropping the U generator.

Not being a part of the underlying family symmetry, it is therefore evident that the U

symmetry of Eq. (6.8) must arise accidentally.

6.4 The indirect model building approach

In the class of indirect models, no Z2 factor of the Klein symmetry of Eq. (6.6) forms a

subgroup of G. Models of this class are typically based on the type I see-saw mechanism

together with the assumption of sequential dominance, see Subsection 4.3. Here, the main

role of the family symmetry consists in relating the Yukawa couplings d, e, f of Eq. (4.21) as

well as a, b, c of Eq. (4.24) by introducing triplet flavon fields which acquire special vacuum

configurations. The directions of the flavon alignments are determined by the G symmetric

operators of the flavon potential [101].

Working in a basis where both the charged leptons as well as the right-handed neutri-

nos are diagonal, the leptonic flavour structure is encoded in the Dirac neutrino Yukawa

operator. The triplet flavons φν
i of indirect models enter linearly in this term,

Lν ∼
∑

i

φν
i

Λ
LνciHu +Miν

c
i ν

c
i , (6.13)

where Λ is a cut-off scale and the sum is over the number of right-handed neutrinos. The

lepton doublet L with hypercharge −1/2 transforms as a triplet of G, while the right-

handed neutrinos νci and the up-type Higgs doublet with hypercharge +1/2 are all singlets

of G. Adopting the notation of Subsection 4.3, extended to include a third right-handed

neutrino νc1, we obtain the Dirac neutrino Yukawa matrix by inserting the flavon VEVs

– 44 –
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Direct Model Building 

Figure 10: Possible strategies for constructing direct models after Daya Bay and RENO. Adopting
small family symmetriesG which predict simple leading order (LO) mixing patters with θ13 = 0 (e.g.
S4, A5), requires higher order (HO) corrections. Larger family symmetries can give rise to richer
LO mixing patterns with non-zero θ13 (e.g. ∆(96)). The A4 family symmetry refers to the semi-
direct case as discussed in the text. In this diagram, we have used the acronyms BT=bi-trimaximal,
TB=tri-bimaximal, BM=bimaximal, GR=golden ratio, TM=trimaximal.

can be perturbed by higher order effects (not shown explicitly in Fig. 10). In general,

higher order corrections are guaranteed to perturb the leading order structure by only

small contributions. The breaking of the leading order structure can happen either in the

charged lepton or the neutrino sector. The former entails charged lepton corrections of the

simple leading order mixing patterns, which give rise to solar mixing sum rules as discussed

in Subsection 3.5. If the breaking occurs in the neutrino sector, it is possible to break either

one or both Z2 factors of the leading order Klein symmetry. As the U symmetry typically

enforces θ13 = 0 in these models, it is necessary to break U in either case. Demanding S

to remain a good symmetry at higher order, gives rise to atmospheric mixing sum rules,

see Subsection 3.6, while breaking also S leads to arbitrary and unpredictive higher order

corrections. In Subsection 10.2 we will present a concrete S4×SU(5) model of tri-bimaximal

mixing at leading order, augmented by higher order corrections which break U but not S.

This model yields the trimaximal neutrino mixing pattern TM2, see Eq. (3.32), which can

accommodate a sizable reactor angle.

The second strategy of constructing direct models compatible with a sizable reactor

angle makes use of larger groups such as ∆(96), see left branch of Fig. 10. Such groups are

capable of predicting richer leading order mixing patterns (e.g. bi-trimaximal mixing [31])

as they contain non-standard Klein symmetries, generated by more complicated forms

of the elements S and/or U [108, 109]. As before, higher order effects can correct these

– 51 –
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FIG. 1: The possible values that |V13| can take in ∆(6n2)
family symmetry groups with even n. Examples include
|V13| = 0.211, 0.170, 0.160, 0.154 for n = 4, 10, 16, 22. The
lines denote the present approximate 3σ range of |V13|.

and found many new family symmetry groups able to
yield lepton mixing angle predictions within 3σ of recent
global fits. All the examples predict exact TM2 mixing in
Eq. (??) with zero Dirac phase but differ in the predic-
tion of |V13| as shown in FIG. 1. Our results show that,
for large n, the predictions for |V13| densely fill the al-
lowed range, rendering any prediction meaningless. Nev-
ertheless, our method of analysing all the ∆(6n2) groups
is of interest since it provides a general method for deal-
ing with an infinite class of groups, which until now have
only been analysed within particular scans up to a much
lower order than we have considered. The general predic-
tion ∆(6n2) models is that of tri-maximal mixing with
Dirac phase of zero or π leading to the testable sum rule,
θ23 = 45◦ ∓ θ13/

√
2.

APPENDIX

We begin the consideration of T generators of order
greater than 3 by considering the order of T to be even.
Then, Tm = 1 with m = 2q where q is an integer. As a
result, there are four types of elements that T may be:

cγ
′′

dδ
′′

, bcγ
′′

dδ
′′

, abcγ
′′

dδ
′′

, a2bcγ
′′

dδ
′′

(22)

each having certain constraints on γ′′ and δ′′ depending
on the value of m that fixes the order of the element. For
example, if T = cγ

′′

dδ
′′

is to be of order m, then mγ′′ =
mδ′′ = 0 mod n and γ′′ and δ′′ cannot be simultaneously
zero. cγ

′′

dδ
′′

is a diagonal matrix of phases and will not
yield any phenomenologically viable results. Considering
the other possible T generator candidates after applying
unitary transformations of the form R = cxdy with x and
y real numbers to eliminate unphysical phases and/or
permutations with R = a, only

T = bcξn/q, ξ = 1, . . . , q − 1 (23)

remains.

The matrices of Eq. (23) are diagonalised by

V e =
1√
2





0 e−iπγ/n −e−iπγ/n
√
2 0 0
0 1 1



 (24)

When applying the above matrix to cn/2 results in:

U (BM) =





−1 0 0
0 0 1
0 1 0



 . (25)

The unique eigenvector of this generator is given by
(0, 1, 1)/

√
2. Picking the smallest element of the mix-

ing matrix as V13 gives V13 = 0. For n = 4 this results in
a completely bimaximal mixing matrix [14].
If the order of T is not even but can be divided by

3, application of a unitary transformation R = cxdy can
remove all phases implying only T = a remains, yielding
the previously discussed predictions for T = a.
Continuing the systematic consideration of candidate

T generators leads us to consider the case of a T gen-
erator in which the order is odd, not divisible by 3 but
larger than 3. A ∆(6n2) group can only contain such an
element if m divides n. Then, for this case the possible
T generators are given by

T = cµn/mdρn/m (26)

where µ, ρ = 0, . . . ,m−1 and µ, ρ are not simultaneously
zero. These yield no phenomenologically viable predic-
tions. Therefore, only Z3 subgroups for candidate T gen-
erators are phenomenologically viable.
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Lepton Mixing Predictions with ∆(6n2) Family Symmetry

Stephen F. King,∗ Thomas Neder,† and Alexander J. Stuart‡

University of Southampton

We obtain predictions lepton mixing parameters for models based on ∆(6n2) family symmetry
groups for arbitrarily large n. After reviewing and developing the group theory associated with
∆(6n2), we find many new family symmetry groups able to yield reactor angle predictions within
3σ of recent global fits. Within the framework of direct models, we show that ∆(6n2) generically
leads to tri-maximal mixing with Dirac phase either zero or π, leading to a testable sum rule
θ23 = 45◦ ∓ θ13/

√
2.

INTRODUCTION

The measurement of a rather large reactor mixing an-
gle by the Daya Bay [1], RENO [2], and Double Chooz [3]
collaborations adds further complexity to an already dif-
ficult puzzle of flavour. Perhaps the best way to ad-
dress this dilemma is to utilise the methods developed
in the era of an unmeasured reactor angle and introduce
an additional discrete family symmetry, Gf , under which
all fields transform. This family symmetry will then be
spontaneously broken in order to generate the observed
fermionic masses and mixings [4]. However before even
considering the construction of a model, it may be in-
sightful to know some of the possible candidate symme-
tries for Gf . Herein lies the goal of this work, shedding
light on a particular class of candidates for Gf , i.e. the
∆(6n2) groups.
In the following text, we demand that the discrete

group Gf be a subgroup of the continuous group SU(3)
(or U(3)) because its fundamental representation is 3-
dimensional. We further restrict ourselves to working
with the ∆(6n2) ∼= (Zn × Zn) ! S3 subgroups of SU(3)
due to the past and current popularity of S4

∼= ∆(24)
(n = 2) in flavour model building (see [5] and Refs. con-
tained therein) as well as recent publications demonstrat-
ing that∆(96) (n = 4)[6, 7], ∆(150) (n = 5)[8, 9], ∆(600)
(n = 10)[9, 10] and ∆(1536) (n = 16)[10] generate phe-
nomenologically viable predictions for the lepton mixing
angles. We further limit ourselves to working only with
the ∆(6n2) groups where n is even because these are the
only ∆(6n2) groups which can contain a complete Klein
subgroup, i.e. all four Klein subgroup elements. Thus
with the preliminary assumptions and goals of this work
put forth, we proceed by introducing the framework in
which we will work. Afterwards, a brief review of the rep-
resentations of ∆(6n2) will be presented. Finally, the de-
tails of our method elucidated and the results presented.

FROM Gf TO LEPTON MIXING

As previously mentioned, to address the puzzling is-
sue of flavour, we will introduce a discrete family sym-
metry which will be spontaneously broken to different

subgroups in the charged lepton and neutrino sectors,
thereby generating the observed lepton masses and mix-
ings. In such a direct model of flavour [5], the family
group is broken to some abelian subgroup ZT

m (m an in-
teger) in the charged lepton sector and to the ZS

2 × ZU
2

Klein Symmetry Group in the neutrino sector. The su-
perscripts denote that S, T and U are the generators of
their corresponding Zm group in the diagonal charged
lepton basis. Hence, the ZS

2 ×ZU
2 transformations on νL

and the ZT
m transformations on eL leave the Lagrangian

invariant. This implies that

[S,Mν ] = [U,Mν ] = 0 and [T,M e] = 0, (1)

where Mν and M e represent the mass matrices multi-
plied by their Hermitian conjugates. Since S and U com-
mute with Mν they are diagonalised by the same matrix
V ν . Similarly T and M e are diagonalised by the same
matrix V e. Since Mν and M e relate to the left-handed
fields, the PMNS matrix is then given by

V = V e†V ν . (2)

To obtain the matrices V ν and V e, and hence the PMNS
matrix, we only need to identify the generators S, U and
T and diagonalise them. In practice, this amounts to
finding the eigenvectors of S, U and T which form the
columns of V ν and V e. This is straightforward for T since
the eigenvalues are non-degenerate due to the fact that T
must be an element of Gf of order 3 or greater. However
for the S and U generators the situation is slightly dif-
ferent because they are 3× 3 matrices of order 2. Thus,
each eigenvalue of S or U can only be ±1. Without
loss of generality, we choose det(S) = det(U) = +1, so
that each generator has two−1 eigenvalues, rendering the
corresponding eigenvectors non-unique. Since the three
matrices S, U and SU each have one (unique) +1 eigen-
value this allows for the calculation of three unique eigen-
vectors (one for each non-trivial Klein group generator),
each providing an ith column of the matrix V ν :

GiV
ν
i = +V ν

i , for Gi ∈ {S,U, SU}. (3)

In this way all three columns of V ν can be obtained.
The remarkable method outlined in this section en-

ables the calculation of the lepton mixing matrix by only
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T and diagonalise them. In practice, this amounts to
finding the eigenvectors of S, U and T which form the
columns of V ν and V e. This is straightforward for T since
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for the S and U generators the situation is slightly dif-
ferent because they are 3× 3 matrices of order 2. Thus,
each eigenvalue of S or U can only be ±1. Without
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that each generator has two−1 eigenvalues, rendering the
corresponding eigenvectors non-unique. Since the three
matrices S, U and SU each have one (unique) +1 eigen-
value this allows for the calculation of three unique eigen-
vectors (one for each non-trivial Klein group generator),
each providing an ith column of the matrix V ν :

GiV
ν
i = +V ν

i , for Gi ∈ {S,U, SU}. (3)

In this way all three columns of V ν can be obtained.
The remarkable method outlined in this section en-

ables the calculation of the lepton mixing matrix by only

δ = 0,π

Predictions:

SK, Neder, 
Stuart

cn/2 becomes the “traditional” S generator in the basis in which T is diagonal,

S → V e†cn/2V e =
1

3











−1 2 2

2 −1 2

2 2 −1











(19)

This predicts one trimaximal middle column (TM2), i.e. (1, 1, 1)T/
√
3 [14], in lepton mixing

[19]. This was also assumed in [9]. The other elements of the same Klein subgroup also

provide columns of V which is then up to the order of rows and columns given by

V =











√

2

3
cos(ϑ) 1√

3

√

2

3
sin(ϑ)

−
√

2

3
sin

(

π
6
+ ϑ

)

1√
3

√

2

3
cos

(

π
6
+ ϑ

)

√

2

3
sin

(

π
6
− ϑ

)

− 1√
3

√

2

3
cos

(

π
6
− ϑ

)











, (20)

where ϑ = πγ′/n (cf. [9]). Since γ′ = 1, . . . , n/2, we obtain discrete predictions for the

mixing angles corresponding to ϑ = π/n, . . . , π/2. In general we cannot predict the order

of the rows and columns with this method, so we pick the entry with the smallest absolute

value and assign it to be |V13|. Notice that for the different values of ϑ, different elements of
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Indirect Models

Figure 9: A sketch of the indirect model building approach. The charged lepton sector is (approx-
imately) diagonal by construction.

on the origin of the Z2 × Z2 Klein symmetry of the neutrino sector, formulated in a basis

of (approximately) diagonal charged leptons. In direct models, this symmetry, generated

by the order two elements S and U , arises as a subgroup of G, whereas this is not the

case for indirect models. In both approaches, the family symmetry G has to be broken

spontaneously by flavon fields acquiring a VEV. The flavon vacuum configuration of direct

models is dictated by the requirement that S and U be preserved. In indirect models

based on the type I see-saw, the vacuum alignment of the flavons enters in the columns of

the Dirac neutrino Yukawa matrix, thereby generating contributions to the effective light

neutrino mass matrix of the form proportional to 〈φν〉〈φν〉T .
We emphasise that the charged leptons have to be (approximately) diagonal by con-

struction for the purpose of this classification. In the framework of direct models, this can

be enforced by demanding a subgroup of G, generated by T , to be (approximately) pre-

served in the charged lepton sector. However, in grand unified models such a T symmetry

cannot be exact as it would then apply to the quarks as well. This in turn would entail a

phenomenologically unacceptable quark sector without CKM mixing.

7. Direct model building

In models based on a family symmetry G, the Dirac Yukawa and the Majorana couplings

are typically generated dynamically fromG invariant operators involving one or more flavon

fields. In general, these flavons can transform in any of the irreducible representations of G.

For non-Abelian discrete symmetries, the choice is limited to a finite set of representations.

With flavons transforming as multiplets of the family symmetry G, the breaking of G and

with it the family structure of the Dirac Yukawa and the Majorana couplings crucially de-

pends on the alignment of the flavon VEVs. In this section we discuss general strategies for

identifying useful flavons alignments in direct models where the family symmetry G is bro-

ken to a particular subgroup in the neutrino sector. Furthermore, we give explicit examples
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A model of quark and lepton mixing
SK

Q U c
i Dc

i φUc
i

φDc
i

HU HU hu hd hD Σ15 Σ�
15 XQi XQi

A4 3 1 1 3 3 1 1 1 1 1 1 1 1 1

SU(4)PS 4 4 4 1 1 4 4 1 1 15 15 15 4 4

SU(2)L 2 1 1 1 1 1 1 2 2 2 1 1 2 2

U(1)R 0 −1
2

1
2 0 0 −1

2
1
2

1
2 −1

2 −1
2 0 0 0 0

Table 1: Fields and their transformation properties under A4 and Pati-Salam symmetries. Fields not
shown in this table (for example Σ) are singlets under A4 and Pati-Salam symmetries.

2 The tetra-model

2.1 Overview

The model is based on tetrahedral A4 family symmetry combined with the tetra-colour

Pati-Salam gauge group SU(4)PS together with SU(2)L × U(1)R,

A4 × SU(4)PS × SU(2)L × U(1)R, (1)

where we refer to this group as A4SU421. Formally U(1)R may be identified as the

diagonal subgroup of the Pati-Salam right-handed gauge group SU(2)R with R = T3R,

the third generator of SU(2)R. However we only assume a U(1)R gauge group since we

require diagonal down and charged lepton Yukawa matrices together with off-diagonal
up and neutrino Yukawa matrices, and this is very difficult to achieve if the full SU(2)R

is respected. For the same reason it is not possible to embed the model into SO(10). An

additional reason why the SO(10) embedding is not possible is that the left-handed and

right-handed quarks and leptons transform differently under A4, as discussed below.

The left-handed quarks and leptons are unified into the single multiplet Q while

the (CP conjugated) right-handed fields U c
i and Dc

i are A4 singlets, transforming under

A4SU421 as,

Q = (3, 4, 2, 0), U
c
i = (1, 4, 1,−1/2), D

c
i = (1, 4, 1, 1/2). (2)

The unification of quarks and leptons has already been depicted in Fig. 1. The full

list of fields which transform under the A4 and/or the Pati-Salam group are shown in

Table 1. Clearly above tetra-model cannot be embedded into A4×SO(10) since different
components of the 16-dimensional representation of SO(10) transform differently under

A4. However the tetra-model may arise from string theories such as heterotic string

theory, F-theory or M-theory, without SO(10) being realised at the field theory level.
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The partial Pati-Salam gauge group is broken to the SM,

SU(4)PS × U(1)R → SU(3)C × U(1)B−L × U(1)R → SU(3)C × U(1)Y , (3)

by PS Higgs, HU = (HUc , HNc) and HU = (HUc , HNc), which acquire VEVs in the

“right-handed neutrino” directions �HNc� = �HNc�. If the breaking occurs at high

scales, close to 2×10
16

GeV, then supersymmetric gauge coupling unification of the SM

gauge couplings is maintained. The preserved hypercharge generator is given by,

Y =
B − L

2
+R. (4)

Electroweak symmetry is broken by two Higgs doublets: hu and a light linear combina-

tion of hd and hD. The A4 is broken by the VEVs of six triplet flavons φUc
i
and φDc

i
,

which couple in a one-one correspondence with U c
i and Dc

i . The remaining fields are

messengers entering the diagrams in Figure 2 as discussed later.

2.2 CSD4 Vacuum Alignments

The structure of the Yukawa matrices depends on the so-called CSD4 vacuum alignments

which were first derived in [8],
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1
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The mechanism for the vacuum alignment, especially the tetra-alignment (1, 4, 2), relies

mainly on othogonality of flavons as discussed in [8]. It is noteworthy that we impose

a CP symmetry which is spontaneously broken by VEVs of the flavons. Due to the Z5

symmetries, the φUc
i
flavons can only acquire a discrete choice of overall phase corre-

sponding to some multiple of 2π/5. Similarly, due to the Z3 symmetries, the φDc
i
flavons

can only acquire a discrete choice of overall phase corresponding to some multiple of

2π/3. As in [8], we will select all the phases of the triplet flavons to be all zero, with

CP violation originating from the phases of the singlet flavons ξi as discussed later.

At leading order, the CSD4 vacuum alignment of the flavons, together with oper-

ators of the form (φUc
i
.Q)U c

i and (φDc
i
.Q)Dc

i , imply that the Yukawa matrices (in LR

convention) are constructed from the column vectors above.

5

The up and neutrino Yukawa matrices are obtained from (φUc
i
.Q)U c

i by sticking

together the three column vectors in Eq.5,

Y ν ∼ Y u ∼




0 b 0

a 4b 0

a 2b c



 , (7)

where each column is multiplied by a different constant of proportionality. The Yukawa
matrices are not expected to be exactly equal due to Clebsch-Gordan coefficients, as

discussed later.

The down and charged lepton Yukawa matrices are similarly obtained from (φDc
i
.Q)Dc

i

by amalgamating the three column vectors in Eq.6 and are hence diagonal,

Y d ∼ Y e ∼




yd 0 0

0 ys 0

0 0 yb



 . (8)

As mentioned above, the Yukawa matrices are not expected to be exactly equal due to

Clebsch-Gordan coefficients, as discussed later.

The quark-lepton unification implies that the second column (1, 4, 2)T of the neutrino

Yukawa matrix is equal to that of the up quark Yukawa matrix and hence predicts a

Cabibbo angle approximately equal to 1/4. The third column (approximately decoupled

from the see-saw mechanism) is proportional to (0, 0, 1)T at leading order giving the top

quark Yukawa coupling. Higher order corrections modify the leading order predictions

and are responsible for the other quark mixing angles and CP violation.

As discussed in the following subsections, the model employs other auxiliary Z5 and

Z3 symmetries in order to ensure the one-one correspondence of the couplings of the

flavons φUc
i
and φDc

i
with U c

i and Dc
i in the Yukawa operators. These symmetries also

predict Clebsch-Gordan relations between the down quark and charged lepton masses,

as well as the up quark mass hierarchy, with the charges cancelling in the see-saw

mechanism, leading to a mild normal neutrino mass hierarchy. However right-handed

neutrino masses are predicted to be very hierarchical, being proportional to the squares

of up-type quark masses, which is another consequence of quark-lepton unification.

2.3 The down sector

We first consider the down sector, where the postulated Z3 symmetries and charges are

shown in Table 2. The Z
Dc

i
3 are used to make the Yukawa operators diagonal (i.e. to

stick a particular flavon φDc
i
to a particular matter field Dc

i ). The Z
D
3 is used to control

the down messenger sector of the model leading to the diagrams in Figure 2.
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shown in this table (for example Σ) are singlets under A4 and Pati-Salam symmetries.
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
0

1

1



 , �φUc
2
� =

vUc
2√
21




1

4

2



 , �φUc
3
� = vUc

3




0

0

1



 , (5)

and

�φDc
1
� = vDc

1




1

0

0



 , �φDc
2
� = vDc

2




0

1

0



 , �φDc
3
� = vDc

3




0

0

1



 . (6)

The mechanism for the vacuum alignment, especially the tetra-alignment (1, 4, 2), relies

mainly on othogonality of flavons as discussed in [8]. It is noteworthy that we impose

a CP symmetry which is spontaneously broken by VEVs of the flavons. Due to the Z5

symmetries, the φUc
i
flavons can only acquire a discrete choice of overall phase corre-

sponding to some multiple of 2π/5. Similarly, due to the Z3 symmetries, the φDc
i
flavons

can only acquire a discrete choice of overall phase corresponding to some multiple of

2π/3. As in [8], we will select all the phases of the triplet flavons to be all zero, with

CP violation originating from the phases of the singlet flavons ξi as discussed later.

At leading order, the CSD4 vacuum alignment of the flavons, together with oper-

ators of the form (φUc
i
.Q)U c

i and (φDc
i
.Q)Dc

i , imply that the Yukawa matrices (in LR

convention) are constructed from the column vectors above.

5

The up and neutrino Yukawa matrices are obtained from (φUc
i
.Q)U c

i by sticking

together the three column vectors in Eq.5,

Y ν ∼ Y u ∼




0 b 0

a 4b 0

a 2b c



 , (7)

where each column is multiplied by a different constant of proportionality. The Yukawa
matrices are not expected to be exactly equal due to Clebsch-Gordan coefficients, as

discussed later.

The down and charged lepton Yukawa matrices are similarly obtained from (φDc
i
.Q)Dc

i

by amalgamating the three column vectors in Eq.6 and are hence diagonal,

Y d ∼ Y e ∼




yd 0 0

0 ys 0

0 0 yb



 . (8)

As mentioned above, the Yukawa matrices are not expected to be exactly equal due to

Clebsch-Gordan coefficients, as discussed later.

The quark-lepton unification implies that the second column (1, 4, 2)T of the neutrino

Yukawa matrix is equal to that of the up quark Yukawa matrix and hence predicts a

Cabibbo angle approximately equal to 1/4. The third column (approximately decoupled

from the see-saw mechanism) is proportional to (0, 0, 1)T at leading order giving the top

quark Yukawa coupling. Higher order corrections modify the leading order predictions

and are responsible for the other quark mixing angles and CP violation.

As discussed in the following subsections, the model employs other auxiliary Z5 and

Z3 symmetries in order to ensure the one-one correspondence of the couplings of the

flavons φUc
i
and φDc

i
with U c

i and Dc
i in the Yukawa operators. These symmetries also

predict Clebsch-Gordan relations between the down quark and charged lepton masses,

as well as the up quark mass hierarchy, with the charges cancelling in the see-saw

mechanism, leading to a mild normal neutrino mass hierarchy. However right-handed

neutrino masses are predicted to be very hierarchical, being proportional to the squares

of up-type quark masses, which is another consequence of quark-lepton unification.

2.3 The down sector

We first consider the down sector, where the postulated Z3 symmetries and charges are

shown in Table 2. The Z
Dc

i
3 are used to make the Yukawa operators diagonal (i.e. to

stick a particular flavon φDc
i
to a particular matter field Dc

i ). The Z
D
3 is used to control

the down messenger sector of the model leading to the diagrams in Figure 2.
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identifym1 ≡ mdec, m2 ≡ msol, m3 ≡ matm and hence the heaviest right-handed neutrino

of mass M3 (from the top quark multiplet) is identified as the decoupled one Ndec. The

intermediate one of mass M2 (from the charm quark multiplet) is denoted as Nsol, since

it is responsible for the solar neutrino mass. The lightest right-handed neutrino of mass

M1 (from the up quark multiplet) is denoted as Natm since it is responsible for the

atmospheric neutrino mass. These identifications, familiar from SD [10], were depicted

in Fig. 1.

3 Leading Order Results

3.1 Overview

It is convenient to collect in one place all the lowest order quark and lepton Yukawa

matrices (in LR convention) and heavy Majorana mass matrix MR which are predicted

by the model just below the high energy Pati-Salam breaking scale ∼ few ×10
16

GeV,

Y d
=




yd 0 0

0 ys 0

0 0 yb



 , Y e
=




yd/3 0 0

0 3ys 0

0 0 yb



 , (26)

Y u
=




0 b� 0

a�2 4b� 0

a�2 2b� c



 , Y ν
=




0 b� 0

a�2 4b� 0

a�2 2b� c/3



 , MR =




�4M̃1 0 0

0 �2M̃2 0

0 0 M̃3



(27)

where we assume the phenomenologically required values of yd, ys, yb and we fix � = 10
−3
,

which implies that the remaining parameters take natural values,

a ∼ b ∼ c ∼ 1, M̃1 ∼ M̃2 ∼ M̃3 ∼ 10
16 GeV, (28)

where we allow these parameters to differ from each other by up to an order of magnitude.

The main results follow directly from the simple forms of matrices above:

• me =
md
3 , mµ = 3ms, mτ = mb (yd, ys, yb chosen to fit the down quark masses)

• mD
ν1 = mu =

√
2|a|vu�2, mD

ν2 = mc =
√
21|b|vu�, mD

ν3 = mt/3 = |c|vu/3

• M1 : M2 : M3 ∼ m2
u : m2

c : m
2
t (RH neutrino masses are very hierarchical)

• For example, M1 ∼ 10 TeV, M2 ∼ 10
10

GeV, M3 ∼ 10
16

GeV

• The model predicts a normal neutrino hierarchy, due to the Clebsch suppression

factor of 1/3 in the neutrino Yukawa mass which implies
(mD

ν3)
2

M3
� (mD

ν2)
2

M2
, (m

D
ν1)

2

M1

• For example, m1 ∼ 0.3 meV, m2 ∼ 8.5 meV, m3 ∼ 50 meV (normal hierarchy)
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Leading Order Yukawas
The PMNS matrix is then given by

UPMNS = UeLU
†
νL

. (31)

We use a standard parameterization UPMNS = Rl
23U

l
13R

l
12P

l
in terms of slij = sin(θlij),

clij = cos(θlij), the Dirac CP violating phase δl and further Majorana phases contained

in P l
= diag(ei

βl1
2 , ei

βl2
2 , 1). The standard PDG parameterization [25] differs slightly due

to the definition of Majorana phases which are by given by P l
PDG = diag(1, ei

α21
2 , ei

α31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by α21 =

βl
2 − βl

1 and α31 = −βl
1, after an overall unphysical phase is absorbed by UeL .

Using the see-saw formula in Eq.29, with the neutrino Yukawa matrix Y ν
in Eq.15

and the right-handed Majorana mass matrix MR in Eq.22, we find the neutrino mass

matrix mν
, up to an overall irrelevant phase which may be taken to be real, can be

written as

mν
= ma




0 0 0

0 1 1

0 1 1



+mbe
2iη




1 4 2

4 16 8

2 8 1



+mc




0 0 0

0 0 0

0 0 1



 (32)

where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-

binations which determine the three physical neutrino masses m3,m2,m1, respectively.

Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due

to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written

the relative phase difference between the first two two terms as 2η. As shown recently

[8], fixing η = ±2π/5, using the phases of the singlet flavon VEVs �ξi�, then determines

all the lepton mixing angles and phases in terms of the ratio �ν = mb/ma. Changing

the sign of the phase η = ±2π/5 leaves the predictions for the angles unchanged, but

reverses the signs of the Dirac and Majorana phases [9]. Here we shall select η = 2π/5
since it leads to a negative Dirac phase, preferred by the most recent global fits [2].

Since η is crucial to the predictions in the lepton sector, it is worthwhile discussing the

origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixmν
,

it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana

masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the

effective neutrino mass matrix mν
in Eq. 32 emerges from the flavon combinations,

mν ∼ �φatm��φatm�T

�ξatm�
+

�φsol��φsol�T

�ξsol�
+

�φdec��φdec�T

�ξdec�
. (33)

Notice that the powers of � cancel in the see-saw mechanism, leading to a rather mild

hierarchy in the neutrino sector. Since we are assuming that the original theory respects

CP, the only source of phases can be the VEVs of flavons. The phase η = 2π/5 then

must arise from the difference between flavon VEVs. The phases of flavon VEVs arise
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• Y ν ∼ Y u
is the only non-diagonal matrix is responsible for all quark and lepton

mixing, which is fully specified once a, b, c are fixed by up quark masses

• Lepton mixing angles and CP violation are predicted for the phenomenological

range of m2/m3, assuming a relative phase of 2π/5 between the first and second

columns.

• The Cabibbo angle is predicted to be θC ≈ 1/4 or θC ≈ 14
◦
at leading order

• The other quark mixing angles and CP violating phase are zero at leading order

The first set of relations (which are valid at the Pati-Salam breaking scale) are just the

usual Georgi-Jarlskog (GJ) relations from SU(5) [19]. The tetra-model also yields an

SO(10)-like pattern of Dirac and heavy Majorana neutrino masses widely studied in the

literature [22]. However the light physical Majorana neutrino masses are not so hierar-

chical since the powers of � cancel in the see-saw mechanism. It has recently been shown

that the serious difficulties facing thermal leptogenesis in SO(10)-like models may be

circumvented when the production from the next-to-lightest right-handed neutrinos and

flavour effects are properly taken into account [23], so the prospects for thermal lepto-

genesis in the tetra-model look promising. Finally, it is noteworthy that the Cabibbo

angle is successfully predicted at leading order (to within one degree) as a consequence

of the vacuum alignment and quark-lepton unification, providing the Cabibbo connec-

tion between quark and lepton mixing. This is one of the main successes of the model,

being a consequence of the (1, 4, 2) vacuum alignment which also successfully reproduces

lepton mixing, as we now discuss.

3.2 Leading order lepton mixing

In this subsection we discuss the leading order predictions for PMNS mixing which arise

from the vacuum alignment.

The physical effective neutrino Majorana mass matrix mν
is determined from the

columns of Y ν
via the see-saw mechanism,

m
ν
= −v

2
u Y

ν
M

−1
R Y

νT
, (29)

where the Majorana neutrino mass matrix mν
, defined by

1 Lν = −1
2m

ννLνc
L + h.c., is

diagonalised by

UνL m
ν
U

T
νL

=




m1 0 0

0 m2 0

0 0 m3



. (30)

1Note that this convention for the light effective Majorana neutrino mass matrix mν differs by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [24].
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See-saw

• Y ν ∼ Y u
is the only non-diagonal matrix is responsible for all quark and lepton

mixing, which is fully specified once a, b, c are fixed by up quark masses

• Lepton mixing angles and CP violation are predicted for the phenomenological

range of m2/m3, assuming a relative phase of 2π/5 between the first and second

columns.

• The Cabibbo angle is predicted to be θC ≈ 1/4 or θC ≈ 14
◦
at leading order

• The other quark mixing angles and CP violating phase are zero at leading order

The first set of relations (which are valid at the Pati-Salam breaking scale) are just the

usual Georgi-Jarlskog (GJ) relations from SU(5) [19]. The tetra-model also yields an

SO(10)-like pattern of Dirac and heavy Majorana neutrino masses widely studied in the

literature [22]. However the light physical Majorana neutrino masses are not so hierar-

chical since the powers of � cancel in the see-saw mechanism. It has recently been shown

that the serious difficulties facing thermal leptogenesis in SO(10)-like models may be

circumvented when the production from the next-to-lightest right-handed neutrinos and

flavour effects are properly taken into account [23], so the prospects for thermal lepto-

genesis in the tetra-model look promising. Finally, it is noteworthy that the Cabibbo

angle is successfully predicted at leading order (to within one degree) as a consequence

of the vacuum alignment and quark-lepton unification, providing the Cabibbo connec-

tion between quark and lepton mixing. This is one of the main successes of the model,

being a consequence of the (1, 4, 2) vacuum alignment which also successfully reproduces

lepton mixing, as we now discuss.

3.2 Leading order lepton mixing

In this subsection we discuss the leading order predictions for PMNS mixing which arise

from the vacuum alignment.

The physical effective neutrino Majorana mass matrix mν
is determined from the

columns of Y ν
via the see-saw mechanism,

m
ν
= −v

2
u Y

ν
M

−1
R Y

νT
, (29)

where the Majorana neutrino mass matrix mν
, defined by

1 Lν = −1
2m

ννLνc
L + h.c., is

diagonalised by

UνL m
ν
U

T
νL

=




m1 0 0

0 m2 0

0 0 m3



. (30)

1Note that this convention for the light effective Majorana neutrino mass matrix mν differs by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [24].
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The Cabibbo connection

The PMNS matrix is then given by

UPMNS = UeLU
†
νL

. (31)

We use a standard parameterization UPMNS = Rl
23U

l
13R

l
12P

l
in terms of slij = sin(θlij),

clij = cos(θlij), the Dirac CP violating phase δl and further Majorana phases contained

in P l
= diag(ei

βl1
2 , ei

βl2
2 , 1). The standard PDG parameterization [25] differs slightly due

to the definition of Majorana phases which are by given by P l
PDG = diag(1, ei

α21
2 , ei

α31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by α21 =

βl
2 − βl

1 and α31 = −βl
1, after an overall unphysical phase is absorbed by UeL .

Using the see-saw formula in Eq.29, with the neutrino Yukawa matrix Y ν
in Eq.15

and the right-handed Majorana mass matrix MR in Eq.22, we find the neutrino mass

matrix mν
, up to an overall irrelevant phase which may be taken to be real, can be

written as

mν
= ma




0 0 0

0 1 1

0 1 1



+mbe
2iη




1 4 2

4 16 8

2 8 1



+mc




0 0 0

0 0 0

0 0 1



 (32)

where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-

binations which determine the three physical neutrino masses m3,m2,m1, respectively.

Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due

to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written

the relative phase difference between the first two two terms as 2η. As shown recently

[8], fixing η = ±2π/5, using the phases of the singlet flavon VEVs �ξi�, then determines

all the lepton mixing angles and phases in terms of the ratio �ν = mb/ma. Changing

the sign of the phase η = ±2π/5 leaves the predictions for the angles unchanged, but

reverses the signs of the Dirac and Majorana phases [9]. Here we shall select η = 2π/5
since it leads to a negative Dirac phase, preferred by the most recent global fits [2].

Since η is crucial to the predictions in the lepton sector, it is worthwhile discussing the

origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixmν
,

it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana

masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the

effective neutrino mass matrix mν
in Eq. 32 emerges from the flavon combinations,

mν ∼ �φatm��φatm�T

�ξatm�
+

�φsol��φsol�T

�ξsol�
+

�φdec��φdec�T

�ξdec�
. (33)

Notice that the powers of � cancel in the see-saw mechanism, leading to a rather mild

hierarchy in the neutrino sector. Since we are assuming that the original theory respects

CP, the only source of phases can be the VEVs of flavons. The phase η = 2π/5 then

must arise from the difference between flavon VEVs. The phases of flavon VEVs arise
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Higher Order Yukawas

4.3 Higher order corrections to quark mixing

The up quark Yukawa matrix defined by
3 L = −vuY u

iju
i
Lu

j
R + h.c. is diagonalised by,

UuL Y
u U †

uR
=




yu 0 0

0 yc 0

0 0 yt



. (43)

The CKM matrix is given by

UCKM = UuLU
†
dL

, (44)

where UdL is a diagonal matrix of phases since Y d
is diagonal. We use the PDG param-

eterization in the standard notation UCKM = Rq
23U

q
13R

q
12 in terms of sqij = sin(θqij) and

cqij = cos(θqij) and the CP violating phase δq. Since the down Yukawa matrix is diagonal,

the CKM matrix is given by UCKM = UuL· diag (1, eiβ2 , eiβ3). The hierarchical form of

the columns of Y u
,

Y u
=




ε11�2 b�(1 + ε12) ε13c

a�2(1 + ε21) 4b�(1 + ε22) ε23c
a�2(1 + ε31) 2b�(1 + ε32) c(1 + ε33)



 ≡




d p s
e q t
f r u



 , (45)

implies that UuL is determined by,

UuL ·




d p s
e q t
f r u



 =




∗ 0 0

∗ ∗ 0

∗ ∗ ∗



 . (46)

This is the same procedure that was followed for right-handed charged lepton sequential

dominance [31]. Indeed here we have an analogous right-handed up-quark sequential

dominance, with the third right-handed up quark dominating over the second, which in

turn dominates over the first in their contributions to the up quark Yukawa matrix in

Eq 45. We hence obtain for the CKM parameters, writing tqij = tan(θqij),

eiβ2tq12 ≈
− s

u +
p
r

t
u − q

r

≈ −1

4
(1 + ε12 − ε22 + ε23/2− 2ε13) , (47a)

e−iδqeiβ3sq13 ≈ −(cq12 s+ sq12e
iβ2 t)

u
≈ −

�
cq12ε13 + sq12e

iβ2ε23
�
, (47b)

eiβ3tq23 ≈ sq12 s− cq12e
iβ2 t

cq13u
≈

�
sq12ε13 − cq12e

iβ2ε23
�

(47c)

The parameters εij are complex and the phases on the LHS of the above equations

are fixed by the requirement that the mixing angles are real and positive. We have

3
Note that this convention for the quark Yukawa matrix differs by an Hermitian conjugation com-

pared to that used in the Mixing Parameter Tools package [24] due to the RL convention used there.

19

checked that these results very accurately reproduce the numerical results from the
MPT package [24], to within an accuracy of better than 0.1% (taking into account the
different conventions used there).

From the above results we find the simpler but less accurate approximations:

θq12 ≈ 1

4
|1 + ε12 − ε22| , (48a)

θq23 ≈ |ε23| , (48b)

θq13 ≈ |ε23/4− ε13| , (48c)

ε13
ε23

≈ tq12 −
sq13

tq23c
q
12

e−iδq (48d)

Hence we find the following estimates:

• From 48a, the Cabibbo angle requires |ε12 − ε22| ∼ 0.07 ∼ O(λ2)

• From 48b, Vcb is determined by |�23| ∼ 0.04 ∼ O(λ2)

• From 48c, Vub is determined by |ε23/4− ε13| ∼ O(λ3)

• From 48d, the CP phase δq ∼ 70◦ requires Arg
�

ε13
ε23

�
∼ 22◦ and |

ε13
ε23

| ∼ 0.22

The ratio | ε13ε23
| ∼ 0.22 is close the value | ε13ε23

| ∼ 1/4 expected from the vacuum alignments.

4.4 Higher order corrections to lepton mixing

We expect the neutrino Yukawa matrix which to have similar corrections to those pre-
viously considered for the up quark sector. However, as already mentioned, the HO
corrections appearing in the third column of the Yukawa matrix, in particular ε13, ε23,
which are necessary for obtaining the small quark mixing angles and quark CP violation,
will be relatively unimportant for lepton mixing. On the other hand, the HO correc-
tions appearing in the first column of the Yukawa matrix, are unimportant for quark
mixing but will affect lepton mixing. Only the HO corrections in the second column are
important for both quark and lepton mixing, ε12, ε22 are important for correcting the
Cabibbo angle.

The important message from the quark sector is that one expects that all the HO
corrections relevant for quark mixing angles to be small, and so we may infer that the
neutrino Yukawa matrix involves similar corrections |εij| <∼ λ2, where λ = 0.225 is the
Wolfenstein parameter. In addition the right-handed neutrino mass matrix may gain
small off-diagonal entries at HO due to the operators discussed previously, which will lead
to further additional corrections unrelated to the quark sector. However, as discussed,
if flavour is broken well below the PS breaking scale then such Majorana corrections are
negligible. Therefore, we need only consider the effect of small corrections |εij| to the
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Lepton Mixing predictions
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Figure 3: Overview of the PMNS predictions including the “noise” of the higher order corrections. Left
panel shows the predictions for the atmospheric angle θl23 (upper) and solar angle θl12 (middle) and
reactor angle θl13 (lower) in the presence of HO corrections. Right panel shows the predictions for the
oscillation phase angle δl (middle), together with the Majorana phase βl

2 (upper) and the Majorana
phase βl

1 (lower) in the presence of HO corrections. The predictions are all given in degrees and
presented as a function of �ν = mb/ma and hence m2/m3, for m1 = 0.3 meV and m2 = 50 meV. Note
that these predictions assume η = 2π/5. The predictions are obtained numerically using the Mixing
Parameter Tools (MPT) package based on [24], taking into account the different conventions.

elements of the neutrino Yukawa matrix, with the most important corrections arising
from the first two columns, 4

Y ν =




ε11�2 b�(1 + ε12) ε13

a�2(1 + ε21) 4b�(1 + ε22) ε23
a�2(1 + ε31) 2b�(1 + ε32) c/3(1 + ε33)



 . (49)

The corrections in the third column are not important for lepton mixing, but we include
them in the scans. Due to Clebsch factors in the HO corrections, we consider the
neutrino corrections to be independent of the up quark corrections, but of the same
order of magnitude.

In Fig.3 we show the predictions for the PMNS atmospheric and solar angles and all
the phases, obtained from the Yukawa matrix in Eq.49 as a function of the ratio �ν =
mb/ma where we have implemented the see-saw mechanism leading to a light effective
Majorana neutrino mass matrix as in Eq.32, but involving the HO corrections εij. In
Fig.4 we show a blow-up of the atmospheric and solar angle predictions, together with
the Dirac CP violating oscillation phase. The reactor angle has a stronger correlation
with �ν = mb/ma and hence m2/m3 as shown in Fig. 5. These results may be compared
to the LO predictions shown in Table 4. In Figs. 3,4,5 we have randomly scanned
over the independent (uncorrelated) complex parameters εij which are allowed to take

4Note that Y ν is diagonalised by U �
νL

Y ν U �†
νR

where U �
νL

is not the same as UνL in Eq.30. In fact
U �
νL

is rather similar (but not identical due to Clebsch factors) to UuL which diagonalises the up quark
Yukawa matrix in Eq.43. Therefore U �

νL
is also of similar form to the CKM matrix, U �

νL
∼ UCKM.
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random scans over complex  |εij | < 0.03



Conclusions
The Origin of Neutrino Mass is unknown but see-saw most likely option if 
no new physics found at LHC

But see-saw does not explain lepton mixing, we need symmetry (or anarchy)

Direct models preserve part of the family symmetry and tend to give simple 
patterns (excluded by data)

Many strategies e.g. large groups Delta(6n2)

Or use indirect models which completely break the family symmetry 

We have considered a model of quark and lepton mixing - the tetra-model 
which at leading has 10 predictions including all 6 PMNS parameters, the 
three down-quark masses and the Cabibbo angle (the “Cabibbo connection”)

At higher order the predictions become blurred but still predicts: a normal 
neutrino mass hierarchy, atmospheric angle in first octant 40+/- 1 degree, 
solar angle 34+/- 1 degree, reactor angle 9.0+/- 0.5 degree, Dirac oscillation 
phase 260+/-5 degrees 


