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QCD is a key part of the Standard Model but quark 
confinement is a complication/interesting feature.

ATLAS
@LHC

vs

Properties of hadrons calculable from QCD if fully nonperturbative 
calculation is done - can test QCD/search for new physics and 
determine parameters (to 1%). 

q and    
annihilate

q�Vqq�CKM 
element

Run: 202742
Event: 98595
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Lattice QCD =  fully nonperturbative 
QCD calculation 
RECIPE
• Generate sets of gluon fields for 
Monte Carlo integrn of Path Integral
(inc effect of u, d, s (+ c) sea quarks)
• Calculate averaged “hadron 
correlators” from valence q props. 

• Determine      and fix       to get 
results in physical units.

a mq

• Fit as a function of time to obtain 
masses and simple matrix elements

a
• extrapolate to                               for 
real world. *now have phys mu,d* 

a = 0, mu,d = phys
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Highly Improved Staggered Quarks (HISQ) formalism has 
errors improved to

Issues with handling ‘heavy’ quarks on the lattice: 
Lq = ψ(D/ + m)ψ → ψ(γ · ∆ + ma)ψ

∆       is a discrete finite difference with discretisation errors. 
What sets the scale for these? 
For light hadrons the scale is               = few hundred MeVΛQCD

For heavy hadrons the scale can be  mQ

mca ≈ 0.4, mba ≈ 2

with good discretisation of Dirac equation and multiple 
values of      can do accurate continuum extrapolation. 

αs(am)2, (am)4 HPQCD, hep-lat/0610092

a ≈ 0.1fm
E(a) = E(a = 0)× (1 +A(mQa)

2 +B(mQa)
3 + . . .)

a

charm is between heavy and light 

Now also using for  b quarks ....
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Example parameters for gluon configurations being made 
using two different formalisms for handling quarks.

mass 
of u,d 
quarks

real 
world  0
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m
2  / 

G
eV

2

a2 / fm2

MILC HISQ, 2+1+1
BMW clover, 2+1

Need volume:

mu,d ≈ ms/10

mu,d ≈ ms/27

mπL > 3

u,d,s,c in sea
Highly Improved 
Staggered Quarks

u,d,s in sea

and >500 
independent
configurations

MILC:1212.4768
BMW: 1011.2711

* NEW! physical u/d 
now possible *

RBC/UKQCD: dw 
quarks underway
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Results for the masses of mesons that are long-lived and so can be 
well-characterised in experiment
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Agreement very good - errors typically a few MeV, need to worry about em, mu-md ..

b quark

c quark

u, d, s quarks

HPQCD: 
1207.5149
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Mapping excited states is harder but important ... Hadron 
Spectrum
Collaborn:
1204.5425

No extrapolation to physical point and only ‘single particle’ 
operators so systematic errors still significant

X(3872)

lightest 
multiplet
(0, 1, 2)−+

1−−

uses aniso-
tropic 
clover c 
quarks
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Lattice QCD is best method to determine quark masses
mq,latt determined very accurately by fixing a  meson mass 
to be correct. e.g. for mc fix Mηc

The issue is conversion to the            schemeMS
•  Direct method

mMS(µ) = Z(µa)mlatt

Calculate Z perturbatively or partly nonperturbatively. 
• Indirect methods: (after tuning           ) match a quantity 
calculated in lattice QCD to continuum pert. th. in terms 
of         quark mass

J J

 Chetyrkin et al, 0907.2110

e.g. Moments of current-current correlators 
for heavy quarks known through       .

mlatt

MS

α3
s

 HPQCD + Chetyrkin et al, 0805.2999, C. Mcneile et al, HPQCD,1004.4285 
Thursday, 14 November 2013



Most accurate to use pseudoscalar correlator time-moments:

G(t) = a6
�

�x

(amc)2 < 0|j5(�x, t)j5(0, 0)|0 >

Gn =
�

t

(t/a)nG(t)

J J

t

unknown perturbative coefficients [Eq. (21)] is twice
as wide as suggested by our simulation results (using
the empirical Bayes criterion [19]); we choose the
larger width to be conservative.

(ii) Include more/fewer finite-a corrections: We set
Nam ¼ 30 for our results above. Using Nam ¼ 15
gives results that differ by less than 0:5! for mb

and much less for the other quantities. Much larger
Nam’s can be tested easily using the trick described
in Sec. III B 2. For example, replacing Rlatt

n by !Rlatt
n

[Eq. (18)] with Nam ¼ 80 and !Nam ¼ 30 gives re-
sults that are essentially identical to those above. As
discussed above, taking !Nam ¼ 0 with the same Nam

also gives the same results and is 22 times faster (see
the Appendix for further discussion).

(iii) Change n dependence of finite-a corrections:
Replacing the n-dependent prior for the expansion
coefficients [Eq. (17)] by the n-independent prior
0" 0:5 causes changes that are less than 0:3!. The
width of the original prior is optimal according to the
empirical Bayes criterion—that is, it is the width
suggested by the size of finite-a deviations observed
in our simulation data.

(iv) Add more/fewer "=m"h terms in z: Increasing the
number of terms in the expansion for z from Nz ¼ 4
to 6 changes nothing by more than 0:1!. Decreasing
to Nz ¼ 3 also has no effect. Again the width of the
prior is optimal according to the empirical Bayes
criterion.

(v) Include more/fewer moments: Keeping all moments
4 # n # 18 changes nothing by more than 0:5! and
reduces errors slightly for everything other than mb,
where the errors are cut almost in half: mbð10Þ ¼
3:623ð15Þ GeV or mbðmbÞ ¼ 4:170ð13Þ GeV, both
for nf ¼ 5. We continue to restrict ourselves to mo-
ments with n # 10 because these are the only mo-
ments for which we have exact third-order
perturbation theory. Keeping just n ¼ 4, 6 gives al-

most identical results for mc and #MS, with almost
the same errors, but doubles the error on mb.

(vi) Omit simulation data: The coarsest two lattice spac-
ings (configuration sets 1–5) affect our results only
weakly. Leaving these out shifts no result by more
than 0:5! and leaves errors almost unchanged.
Leaving out the smallest lattice spacing, however,
increases errors significantly (almost double for
#MS), while still shifting central values by less than
0:5!.

(vii) Add large masses: Including cases with am"h
> 1:95

from Table II leads to poor fits. The excluded data,
however, do not deviate far from the best-fit lines.
For example, the points marked with an & in Fig. 1
are for the largest mass we studied, corresponding to
m"h

¼ 9:15 GeV (last line in Table II). Although
am"h

is too large for this case to be included in our
fit, the values of Rn=rn are only slightly below the fit
results.

V. NONPERTURBATIVE mb=mc

It is possible to extract the ratio of quark masses mb=mc

directly, without using the moments and without using
perturbation theory. This provides an excellent nonpertur-
bative check on our results from the moments.
Ratios of quark masses are UV cutoff independent and

therefore the ratio of MS masses

mbð$; nfÞ
mcð$; nfÞ

¼ m0b

m0c
þOð#sa

2m2
bÞ (39)

for any $ and nf, where m0b and m0c are the bare quark
masses in the lattice quark action that give correct masses
for the "c and "b, respectively. We obtain accurate mass
ratios from this relationship by extrapolating to a ¼ 0. We
used such a method recently to determine mc=ms [11].
Here we have to modify our earlier method slightly

because we cannot reach the b-quark mass directly, but
rather must simultaneously extrapolate to the b mass and
the continuum limit. This is most simply done by deter-
mining the functional dependence of the ratio

wðm"h
; aÞ ( 2m0h

m"h

(40)

on the "h mass and the lattice spacing. The ratio of MS
masses is then given by the experimental masses of the "c

and "b and the equation:

mbð$; nfÞ
mcð$; nfÞ

¼ mexp
"b wðmexp

"b ; 0Þ
mexp

"c wðmexp
"c ; 0Þ

: (41)

It might seem simpler to fit m0h directly, rather than the
ratio w; but using w significantly reduces the m"h

depen-
dence (and therefore our extrapolation errors), and also

FIG. 3 (color online). Lattice-spacing dependence of Rn for
masses m"h

within 5% of m"c
and moments n ¼ 4, 6, 8, and 10.

The dashed lines show our fit for the average of these masses,
and the points at a ¼ 0 are the continuum extrapolations of our
data.

HIGH-PRECISION c AND b MASSES, AND QCD . . . PHYSICAL REVIEW D 82, 034512 (2010)

034512-9

Rn,latt = G4/G(0)
4 n = 4

=
amηc

2amc
(Gn/G(0)

n )1/(n−4) n = 6, 8, 10 . . .

ratio to results with no gluon 
field improves disc. errors

extrapolate to a=0 and compare 
to contnm pert. th.
Fit first 4 moments simultaneously, 
gives                 AND αs(µ)

mc(mc) = 1.273(6)GeV

Mηc/2mc(µ)

RESULT: NOTE 0.5% error

H → ccinput for 
Thursday, 14 November 2013



mc/ms

Obtained directly from lattice QCD if same quark formalism 
is used for both quarks. 
Ratio is at same     and for same nf.

�
mq1,latt

mq2,latt

�

a=0

=
mq1,MS(µ)
mq2,MS(µ)

3

0.000 0.005 0.010 0.015 0.020
a2 (in fm2)
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14

m
c
/m

s

FIG. 1: Grey points show the raw data for every ratio of
mc/ms on each ensemble (Table II); these ratios are fit to
eq. 4. The dashed line and associated grey error band (and red
point at a = 0) show our extrapolation of the resulting tuned
mc/ms to the continuum limit. Blue points with error bars
are from a simple interpolation, separately for each ensemble,
to the correct mc/ms, and are shown for illustration.

semble by ensemble basis this is taken from a parameter
in the heavy quark potential called r1. Values for r1/a
determined by the MILC collaboration [14] are given in
Table I. They have errors of 0.3-0.5%. The physical value
for r1 must then be obtained by comparing to experimen-
tally known quantities and we use the value 0.3133(23)
fm obtained from a set of four such quantities, tested for
consistency in the continuum limit [18, 19].

Using the information about meson masses that we
have on each ensemble we can interpolate to the cor-
rect ratio for am0c and am0s using appropriate contin-
uum values for the masses of the ηc and ηs. We cor-
rect the experimental value of mηc of 2.9803 GeV to
mηc,phys = 2.9852(34) GeV. This allows for electromag-
netic effects (2.4 MeV) [18] and ηc annihilation to gluons
(2.5MeV) [11], both of which are missing from our calcu-
lation, so increasing the ηc mass. We take a 50% error on
each of these corrections and also increase the experimen-
tal error to 3 MeV to allow for the spread of results from
different ηc production mechanisms [1]. Since the total
shift is only around 0.2% of the ηc mass it has a negligible
effect as can be seen from our error budget below.

The ηs is not a physical particle in the real world be-
cause of mixing with other flavor neutral combinations to
make the η and η�. However, in lattice QCD, the particle
calculated (as here) from only ‘connected’ quark propag-
tors does not mix and is a well-defined meson. Its mass
must be determined by relating its properties to those
of mesons such as the π and K that do appear in ex-
periment. From an analysis of the lattice spacing and
ml-dependence of the π, K, and ηs masses we conclude
that the value of the ηs mass in the continuum and phys-
ical ml limits is 0.6858(40) GeV [18].

The connection between the MS mass at a scale µ and

the lattice bare quark mass is given by [10, 20]:

m(µ) =
am0

a
Zm(µa,m0a), (2)

Zm = 1 + αs(−
2

π
log(µa) + C + b(am0)

2 + . . .) + . . . .

From these two equations it is clear that

mc(µ)

ms(µ)
=

am0c

am0s

����
phys

, (3)

where phys denotes extrapolation to the continuum limit
and physical sea quark mass limit.
On each ensemble the ratios we have for am0c/am0s

then differ from the physical value because of three ef-
fects: mistuning from the correct physical meson mass;
finite a effects that need to be extrapolated away and ef-
fects because the sea light quark masses are not correct.
We incorporate these into our fitting function:

m0c

m0s

����
lat

=
m0c

m0s

����
phys

×
�
1 + dsea

δmsea
tot

ms

�
(4)

×



1 +
�

i,j,k,l

cijkl δ
i
c δ

j
s

�amηc

2

�2k
(amηs)

2l



 .

δc =
mηc,MC −mηc,phys

mηc,phys
; δs =

m2
ηs,MC −m2

ηs,phys

m2
ηs,phys

(5)

are the measures of mistuning, where MC denotes lattice
values converted to physical units. The last bracket fits
the finite lattice spacing effects as a power series in even
powers of a. These can either have a scale set by mc

(for which we use amηc/2) or by ΛQCD (for which we use
amηs). i, j, k, l all start from zero and are varied in the
ranges: i, j ≤ 3, k ≤ 6, l ≤ 2 with i + j + k + l ≤ 6.
Doubling any of the upper limits has negligible effect on
the final result. The prior on cijkl is set to 0(1). δmsea

tot

is the total difference between the sea-quark masses used
in the simulation and the correct value for 2ml+ms [18].
This has a tiny effect and we simply use a linear term
(adding higher orders has negligible effect). The prior for
dsea is 0.0(1). Figure 1 shows the results of the fit, giving
mc/ms in the continuum limit as 11.85(16) (χ2/dof =
0.42). The error budget is given in Table III.
ms/ml is known to 1% from lattice QCD as a byprod-

uct of standard chiral extrapolations of m2
π and m2

K to
the physical point [21]. MILC quote 27.2(3) using asq-
tad quarks [14]. Our HISQ analysis in [12] gave a re-
sult in agreement at 27.8(3), using a Bayesian fit to a
function including terms from chiral perturbation theory
up to third order in ml and allowing for discretisation
errors up to and including a4 and for mixed terms (i.e
ml-dependent discretisation errors). A full error budget
is given in Table III; the data are given in [18].

mc

ms
= 11.85(16)

HPQCD, 0910.3102; 1004.4285

Not possible any other way ...

allows 1% accuracy in ms 

Quark mass ratios

µ

10

the ηc and ηb and the equation:

mb(µ, nf )
mc(µ, nf )

=
mexp

ηb
w(mexp

ηb
, 0)

mexp
ηc w(mexp

ηc , 0)
. (41)

It might seem simpler to fit m0h directly, rather than
the ratio w; but using w significantly reduces the mηh

dependence (and therefore our extrapolation errors), and
also makes our results quite insensitive to uncertainties
in our values for the lattice spacing.

We parameterize function w with an expansion mod-
eled after the one we used to fit the moments:

w(mηh ,a) = Zm(a)

�
1 +

Nw�

n=1

wn

�
2Λ
mηh

�n
�

/ (42)



1 +
Nam�

i=1

Nw�

j=0

cij

�amηh

2

�2i
�

2Λ
mηh

�j


 ,

where, as for the moments,

i + j ≤ max(Nam, Nw). (43)

Coefficients cij and wn are determined by fitting function
w(mηh , a) to the values of 2am0h/(amηh) from Table II.
The fit also determines the parameters Zm(a), one for
each lattice spacing, which account for the running of
the bare quark masses between different lattice spacings.

The finite-a dependence is smaller here than for the
moments, because the ηh is nonrelativistic [8], and the
variation with mηh stronger (twice that of z(µ/mh =
3, mηh)). So here we use priors

cij = 0± 0.05 (44)
wn = 0± 4

Zm(a) = 1± 0.5

with Nw =8. We again take Nam =30, although identical
results are obtained with Nam = 15.

Our fit results are illustrated by Figure 4 which plots
the ratio m0h/mηh divided by m0c/mηc for a range of
ηh masses. Our data for different lattice spacings is com-
pared with our fit, and with the a = 0 limit of our fit
(solid line). The fit is excellent, with χ2/22 = 0.42 for
the 22 pieces of data we fit (we again exclude cases with
amηh > 1.95). Using the ηc and ηb masses from Sec-
tion IVB, and Eq. (41) with the best-fit values for the
parameters, we obtain finally

m0b

m0c
→ 4.49(4) as a→0 (45)

=
mb(µ, nf )
mc(µ, nf )

,

which agrees well with our result from the moments
(Eq. (36)).

mηc 4 6 8 mηb

mηh (GeV)

0.8
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η
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m
0
c
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η
h
)

FIG. 4: Ratio m0h/mηh divided by m0c/mηc (which we ap-
proximate by w(mηc , a)/2 from our fit) as a function of mηh .
The solid line shows the a=0 extrapolation obtained from our
fit. This is compared with simulation results for our 4 small-
est lattice spacings, together with the best fits (dashed lines)
corresponding to those lattice spacings. The point marked by
an “x” is for the largest mass we tried (last line in Table II);
this was not included in the fit because amηh is too large.

VI. αMS FROM WILSON LOOPS

In a recent paper [26], we presented a very accurate
determination of the QCD coupling from simulation re-
sults for Wilson loops. Here we want to compare those
results to the value we obtain from heavy-quark corre-
lators. First, however, we must update our earlier anal-
ysis to take account of the new value for r1 [10] given
in Eq. (10) and improved values for r1/a [13] given in Ta-
ble I. (The Wilson-loop paper uses some additional con-
figuration sets: from Table II in that paper, sets 1, 6, 9,
and 11 whose new r1/as are 1.813(8), 2.644(3), 5.281(8)
and 5.283(8), respectively.) We have rerun our earlier
analysis, updating r1, r1/a, and the c and b masses. The
results are shown in Figure 5. Combining results as in the
earlier paper we obtain a final value from the Wilson-loop
quantities of

αMS(MZ , nf = 5) = 0.1184(6), (46)

with χ2/22 = 0.3 for the 22 quantities in the figure.
This agrees very well with the result in the earlier pa-
per, αMS(MZ) = 0.1183(8), but has a slightly smaller
error, as expected given the smaller error in r1. This
new value also agrees well with our very different de-
termination from heavy-quark correlators (Eq. (38)). A
breakdown of the error into its different sources can be
found in Table IV of [26] (reduce the r1 and r1/a errors
in that table by half to account for the improved values
used here).

mb/mc

mb

mc
= 4.51(4)
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Can also extract charm piece of: 

from experiment,Re+e−(s) =
σ(e+e− → hadrons)

4πα2/(3s)

e.g. Kuhn et al, 
hep-ph/0702103

Mk ≡
�

ds

sk+1
Re+e−(s)

J J vector coupling 
to photon

J/! ! ,
!  BES (2001)
"  MD-1
#  CLEO
$  BES (2006)pQCD
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Figure 3: R(s) for different energy intervals around the charm threshold region. The
solid line corresponds to the theoretical prediction, the uncertainties obtained from the
variation of the input parameters and of µ are indicated by the dashed curves. The inner
and outer error bars give the statistical and systematical uncertainty, respectively.

bottom case are obvious.
Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition

6

7

Set mca
�

GV
4

Z2a2

�1/2 �
GV

6
Z2a4

�1/4 �
GV

8
Z2a6

�1/6 �
GV

10
Z2a8

�1/8

1 0.622 0.5399(1) 1.2162(1) 1.7732(1) 2.2780(1)
2 0.63 0.5339(1) 1.2054(1) 1.7581(1) 2.2584(1)
2 0.66 0.5135(1) 1.1692(1) 1.7081(1) 2.1941(1)
3 0.617 0.5434(1) 1.2223(1) 1.7817(1) 2.2888(1)
4 0.413 0.7586(1) 1.6351(1) 2.3887(2) 3.0952(2)
5 0.273 1.0681(1) 2.2705(2) 3.3454(3) 4.3601(4)
6 0.193 1.4323(3) 3.0397(5) 4.4990(7) 5.8738(8)

TABLE IV: Results in lattice units for time moments of the
J/ψ correlator as defined in eq. (10). We give results for n=4,
6, 8 and 10.

(GV
4 )1/2 (GV

6 )1/4 (GV
8 )1/6 (GV

10)
1/8

(amc)
2 extrapolation 0.18 0.18 0.16 0.16

statistics 0.05 0.04 0.03 0.03
lattice spacing 0.32 0.51 0.43 0.30
sea quark extrapolation 0.14 0.13 0.12 0.12
Mηc tuning 0.15 0.18 0.17 0.16
Z 1.23 0.61 0.41 0.31
electromagnetism 0.3 0.2 0.1 0.05
Total (%) 1.3 0.9 0.7 0.5

TABLE V: Complete error budget for the time moments of
the J/ψ correlator as a percentage of the final answer.

Re+e− = σ(e+e− → hadrons)/σpt [22, 23]. The values,
extracted from experiment by [22] and appropriately nor-
malised for the comparison to ours, are:

(M exp
1 4!/(12π2e2c))

1/2 = 0.3142(22)GeV−1

(M exp
2 6!/(12π2e2c))

1/4 = 0.6727(30)GeV−1

(M exp
3 8!/(12π2e2c))

1/6 = 1.0008(34)GeV−1

(M exp
4 10!/(12π2e2c))

1/8 = 1.3088(35)GeV−1. (12)

Our results from lattice QCD have approximately double
the error of the experimental values but together these
results provide a further test of QCD to better than 1.5%.

C. Γ(J/ψ → γηc)

The radiative decay of the J/ψ meson to the ηc re-
quires the emission of a photon from either the charm
quark or antiquark and a spin-flip, so it is an M1 transi-
tion. Because it is sensitive to relativistic corrections this
rate is hard to predict in nonrelativistic effective theories
and potential models (see, for example, [24, 25]) Here
we use a fully relativistic method in lattice QCD with
a nonperturbatively determined current renormalisation
and so none of these issues apply. In addition, of course,
the lattice QCD result is free from model-dependence.
The quantity that parameterises the nonperturbative

QCD information (akin to the decay constant of the pre-
vious section) is the vector form factor, V (q2), where q2

is the square of the 4-momentum transfer from J/ψ to
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FIG. 4: Results for the 4th, 6th, 8th and 10th time moments
of the charmonium vector correlator shown as blue points and
plotted as a function of lattice spacing. The errors shown (the
same size or smaller than the points) include (and are domi-
nated by) uncertainties from the determination of the current
renormalization factor, Z, that are correlated between the
points. The data points have been corrected for c quark mass
mistuning and sea quark mass effects, but the corrections are
smaller than the error bars (the value for the deliberately
mistuned c mass on set 2 is not shown). The blue dashed
line with grey error band displays our continuum/chiral fit.
Experimental results determined from Re+e− (eq. (12)) are
plotted as the black points at the origin offset slightly from
the y-axis for clarity.

ηc. The form factor is related to the matrix element of
the vector current between the two mesons by:

�ηc(p�)|cγµc|J/ψ(p)� = 2V (q2)

(MJ/ψ +Mηc)
εµαβγp�αpβ�J/ψ,γ

(13)
Note that the right-hand-side vanishes unless all the vec-
tors are in different directions. Here we use a normalisa-
tion for V (q2) appropriate to a lattice QCD calculation
in which the vector current is inserted in one c quark line
only and the quark electric charge (2e/3) is taken as a
separate factor. The decay rate is then given by [8]:

Γ(J/ψ → ηcγ) = αQED
64|�q|3

27(Mηc +MJ/ψ)2
|V (0)|2, (14)

where it is the form factor at q2 = 0 that contributes be-
cause the real photon is massless. |�q| is the corresponding
momentum of the ηc in the J/ψ rest-frame.

G. Donald et al, HPQCD, 1208.2855 

lattice and expt errors both ~1%

and compare moments

to lattice QCD for vector case
good agreement!
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Vud Vus Vub
π→ lν K→ lν B→ πlν

K→ πlν
Vcd Vcs Vcb

D→ lν Ds→ lν B→ Dlν
D→ πlνD→ Klν
Vtd Vts Vtb

�Bd|Bd� �Bs|Bs�





Weak decays probe meson structure and quark couplings

Precision lattice QCD + expt needed 
for accurate CKM elements.

ν

Expt = CKM x theory(QCD)

If  Vab known, compare 
lattice to expt to test QCD 

Br(M → µν) ∝ V 2
abf

2
M

µ

Ds

Vcs

K
D

Br(M → M �µν) ∝ V 2
abf

2
+(q

2)

CKM Vcs

ν
µ
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Constraining new physics with lattice QCD: 

MILC (Lattice2013):  

agrees well with previous 
HPQCD with 2+1 sea quarks:

New results using HISQ quarks on MILC 2+1+1 configs with

fDs = 248.0(2.5)MeV

HPQCD:1008.4018
fDs Comparison

Average of CLEO-c [PRD80,112004(2009)], BaBar [PRD82,091103(2010)] and Belle Preliminary.
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Average of experimental determinations is consistent within 1.8σ with most

precise lattice QCD calculation by HPQCD.

Need further lattice QCD results with comparable precision to confirm the

calculation by HPQCD.

A. Zupanc (KIT) Ds → �ν and fDs CHARM2012, May 2012 29 / 30

experimental update: new Belle results
fDs = 257.2(4.5)MeV

Zupanc:charm2012

World av: 
2σ above theory

fDs = 248.9± 0.2stat
+0.5
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withNm ¼ Na ¼ 4 [15]. We choose c0000 ¼ 1. This expan-
sion is in powers of quark masses and the QCD scale
parameter !QCD " 0:5 GeV divided by the ultraviolet cut-
off for the lattice theory: !UV " !=a. The fit parameters
are the coefficients cijkl for each of which we use a prior of
0# 1:5, which is conservative [16]. The lattice spacing
effects are dominated by the amh terms. We include both
ams and a!QCD for completeness, but they have a very
small effect because a is small for most of our data. Leaving
out either or both makes no difference to our results.

Our data for five different lattice spacings and a wide
range of masses mHs

are presented with our fit results in
Fig. 1. The reach in mHs

grows as the lattice spacing
decreases (since we restrict amh < 1), and deviations
from the continuum curve get smaller. The fit is excellent,
with a "2 per degree of freedom of 0.36 while fitting all 17
measurements. The small "2 results from our conservative
priors (we get excellent fits and smaller errors with priors
that are half the width).

Having determined the parameters in Eq. (1), the
second step in our analysis is to set MHs

¼ MBs
, a ¼ 0,

andm#s
¼ m#s;phys in that formula to obtain our final value

for fBs
,

fBs
¼ 0:225ð4Þ GeV; (3)

which agrees well with the previous best NRQCD result of
0.231(15) GeV [17] but is almost 4 times more accurate.
Our result also agrees with the recent result of 0.232
(10) GeV from the ETM collaboration, although that
analysis includes only two of the three light quarks in the
quark sea [18]7 (see [8]).

Our total error is split into its component parts following
the procedure described in [19] to give the error budget in
Table III. It shows that the dominant errors come from
statistical uncertainties in the simulations, the mHs

! mBs

extrapolation, the a2 ! 0 extrapolation, and uncertainties
in the scale-setting parameter r1. Our analysis of fDs

in [6]
indicates that finite volume errors, errors due to mistuned
sea-quark masses, errors from the lack of electromagnetic
corrections, and errors due to lack of c quarks in the sea are
all significantly less than 1%, and so negligible compared
with our other uncertainties. Our final result is also insen-
sitive to the detailed form of the fit function; for example,
doubling the number of terms has negligible effect (0:03$)
on the errors and value.
We have also included in Fig. 1 (right) a plot of

ffiffiffiffiffiffiffiffiffi
mHs

p
fHs

for different values of mHs
. This shows that there are large

nonleading terms in fHs
, beyond the leading 1=

ffiffiffiffiffiffiffiffiffi
mHs

p
behavior predicted by HQET. Our simulation nevertheless
provides evidence for the leading term. Treating exponent
b in Eq. (1) as a fit parameter, rather than setting it equal to
&0:5, we find a best-fit value of b ¼ &0:51ð13Þ, in ex-
cellent agreement with the HQET prediction. This is the
first empirical evidence for this behavior.

FIG. 1 (color online). The leptonic decay constant fHs
for pseudoscalar h"s mesons Hs, plotted on the left versus the Hs mass

as the h-quark’s mass is varied. The solid line and gray band show our best-fit estimates for the decay constants extrapolated
to zero lattice spacing. Best-fit results (dashed lines) and simulation data are also shown for five different lattice spacings, with
results for smaller lattice spacings extending to higher masses (since we restrict amh < 1). The simulation data points have
been corrected for small mistunings of the s quark’s mass. On the right the same simulation data and fits are plotted for

ffiffiffiffiffiffiffiffiffi
mHs

p
fHs

versus 1=mHs
.

TABLE III. Dominant sources of uncertainty in our determi-
nations of the Bs decay constant and the Bs & #b mass differ-
ence. Contributions are shown from the extrapolations inmHs

, a2

and ms, as well as statistical errors in the simulation data and
errors associated with the scale-setting parameter r1. Other
errors are negligible.

fBs
mBs

&m#b
=2

Monte Carlo statistics 1.30% 1.49%
mHs

! mBs
extrapolation 0.81 0.05

r1 uncertainty 0.74 0.33
a2 ! 0 extrapolation 0.63 0.76
m#s

! m#s;phys extrapolation 0.13 0.18
r1=a uncertainties 0.12 0.17
Total 1.82% 1.73%

HIGH-PRECISION fBs
AND HEAVY QUARK . . . PHYSICAL REVIEW D 00

RAPID COMMUNICATIONS

3

Mapping out dependence on heavy quark mass ...

fBs < fDs

fBs = 225(4)MeV

uses HISQ and multiple m and a. Finest: a=0.045fm

but only by 10%:
fBs/fDs = 0.906(14)

HPQCD: 
C McNeile 
et al,
1110.4510. 

Tests
HQET

gives:
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Current status: fD

180 190 200 210 220 230 240

FLAG averages

ETMC ’11
Alpha ’13

HPQCD/UKQCD ’07
PACS-CS ’11
FNAL/MILC ’11
HPQCD ’12

ETMC ’13
FNAL/MILC ’13

MeV

nf=2+1

nf=2+1+1

nf=2

nf=2

nf=2+1

prelim.

prelim.

fD = 212.5± 0.5stat
+0.6
−1.5|syst MeV

Jonna Koponen, Charm2013

CLEO-c result fD = 207(9) MeV assuming Vcd known
Thursday, 14 November 2013



Semileptonic form factors for charmed mesons:

Shape agrees well with expt. 

c→ s
HPQCD, 
1305.1462 

4-mom transfer

c s
W
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Figure 8: Ratio of experimental to lattice results in each q2 bin for D → K�ν, i.e.
|Vcs|2 extracted from that bin directly. The experimental results are from [7, 8, 9, 10].
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Convert to decay rate in q2 bins to compare to experiment: 
D → K HPQCD 

1305.1462

uses all 
exptl data 
in  model-
indpt way

CLEO-c
D0→ K−e+ν
(D0→ K+π−)

K-

π-

e+

K+

ν

Vcs = 0.963(5)expt(14)lattice

errors of 
lattice best 
at large q2; 
expt best at 
small q2
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Ds → φlν
Vector final state has additional 
angular information + there are 
both vector and axial form factors

Ds to φ and other transitions from lattice QCD Gordon Donald

W
l+

νl

θl φ

Ds

K+

K−

θK

χ

Figure 3: A diagram of the angles which appear in the decay rate.

−4sinθ�(1− cosθ�)sinθK cosθK cos χH−(q
2)H0(q

2)

−2sin2 θ� sin2 θK cos2χH+(q
2)H−(q

2)
�
.

The decay angles are defined for a D
+
s

decay as: θ�(K) the angle between the momentum of the
�(K+) and the centre of mass momentum of the �ν(K+

K
−) pair, and χ is the angle between the

two planes defined by the �ν and K
+

K
− pairs. For a D

−
s

, the K
− is used in place of the K

+ in the
definition of θK and χ →−χ . The decay angles are shown in Figure 3.

The decay distribution is written in terms of helicity amplitudes (as the Ds is a pseudoscalar,
the W and φ helicities are constrained to be the same), which are related to the form factors as

H±(q
2) = (MDs

+Mφ )A1(q
2)∓

2MDs
pφ

MDs
+Mφ

V (q2). (1.12)

and

H0(q
2) =

1
2Mφ

�
q2

[(M2
Ds
−M

2
φ −q

2)(MDs
+Mφ )A1(q

2)−4
M

2
Ds

p
2
φ

MDs
+Mφ

A2(q
2)]. (1.13)

We construct these helicity amplitudes from the continuum extrapolated form factors. In Fig-
ure 4, we plot the the combination pφ q

2|Hi(q2)|2, which is how they appear in decay rate. After
integrating over the angular distributions, each helicity amplitude has the same overall factor in the
decay rate, so the relative contribution of each one to the distribution in q

2 is as shown in Figure 4.
We can reconstruct the decay distributions as functions of all four of the kinematic variables

by integrating over the other three. The angular integrals are straightforward and we do the q
2

integration numerically. These are plotted in Figure 5, where the red points (with error bars) are
the decay rate for each bin calculated from our lattice form factors. The blue histograms are the
experimental decay rates, which have been measured by BaBar [9].

We can extract a value for Vcs, the CKM matrix element which appears in the charm to strange
decay. By integrating over all the kinematic variables, we can obtain a lattice determiation of the to-
tal decay rate and compare to BaBar’s measurement of the Ds → φ�ν branching fraction. The lattice
and experimental decay rates differ by a factor of V

2
cs

. This comparison gives us Vcs = 1.017(60),
which is in agreement with values of Vcs extracted from lattice calculations of pseudoscalar to pseu-
doscalar semilpetonic decays [10] and the Ds leptonic decay rate [11]. It also agrees with Vcs from
unitarity.
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Figure 4: Each of the Ds → φ�ν helcities amplitudes as a function of q
2. The helicity amplitudes Hi(q2) are

plotted as pφ q
2|Hi(q2)|2. At q

2
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, pφ = 0 so all the helicity amplitudes vanish.
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Figure 5: The decay distributions as a function of each of the kinematic variables. The red points are
obtained by integrating the lattice form factors and including the value of Vcs from unitarity and the blue
bins are from BaBar.
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G. Donald, 
HPQCD, in prep

lattice QCD

BaBar

Vcs = 1.017(60)

From total rate
can determine:
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Test with electromagnetic decays of charmonium  
no CKM uncertainties! 6

Our results for fJ/ψ/Z are given in Table II. The

final column of that table gives the values of Z deter-

mined from current-current correlators as described in

Appendix B. This method uses continuum perturbation

theory through O(α3
s) to normalise the lattice QCD cor-

relators at small times. Z then results from a combina-

tion of non-perturbative lattice QCD calculations with

continuum perturbation theory in a similar approach to

that of the RI-MOM scheme3 used to renormalise the cur-

rents for the same calculation using twisted mass quarks

in [10]. The current-current correlator method has the

advantage that we can use the same correlators from

which we also extract, at large times, the nonpertur-

bative information on the ground-state mass and decay

constant. Indeed this allows some cancellation of dis-

cretisation errors apparent in the unrenormalized decay

constant.

Multiplying fJ/ψ/Z by Z and then by a−1 in GeV

gives the physical results for the decay constant plotted

in Figure 3. We fit these to the same function of lat-

tice spacing and sea quark mass used for the hyperfine

splitting, eq. (3). The only differences are that the prior

on f0 is taken as 0.5(5) in this case and the priors on

the slope of the variation of fJ/ψ with Mηc are taken as:

d0, 0.065(5) and d1, 0.00(25). These are informed by the

variation we see for the deliberately mistuned c mass on

set 2 and also by our extensive study of the behaviour of

fηc with Mηc in [2]. There we find a strong a-dependence
in the slope of the decay constant with mass and so we

allow for that here.

The physical result that we obtain in the continuum

limit is:

fJ/ψ = 405(6)(2)MeV. (9)

The first error is from the fit and is dominated by the

error from the Z factor. The second error is an estimate

of systematic effects from missing electromagnetism in

our lattice QCD calculation [2]. The effect of missing

c-in-the-sea is negligible in this case. A complete error

budget is given in Table III.

The leptonic width is determined by the amplitude of

the ground-state that dominates the correlator at large

times. We can also determine the charm contribution

to Re+e− through the time moments of the J/ψ correla-

tor which depend on the behaviour at short times. The

moments are defined by:

GV
n = Z2CV

n = Z2
�

t̃

t̃nCJ/ψ(t̃) (10)

where t̃ is lattice time symmetrised around the centre of

the lattice (see Appendix B). Results for (GV
n /Z

2)1/(n−2)

in lattice units on each of our ensembles are given in Ta-

ble IV for n = 4, 6, 8 and 10. The power 1/(n − 2) is

3 This method is often called ‘nonperturbative’ in the lattice QCD
literature.

0.0 0.1 0.2 0.3 0.4 0.5
(amc)2
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0.40
0.42
0.44
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0.48
0.50

f J
/ψ

(G
eV

)

FIG. 3: Results for the charmonium vector decay constant
plotted as a function of lattice spacing. For the x-axis we use
(mca)

2 to allow the a-dependence of our fit function (eq. (3))
(blue dashed line with grey error band) to be displayed sim-
ply. The data points have been corrected for c quark mass
mistuning and sea quark mass effects, but the corrections are
smaller than the error bars. We do not include on the plot the
deliberately mistuned c mass but it is included in the fit to
constrain the c mass dependence. The errors shown include
(and are dominated by) uncertainties from the determination
of the current renormalization factor, Z, that are correlated
between the points. The experimental average is plotted as
the black point at the origin, offset slightly from the y-axis
for clarity.

taken to reduce all the moments to the same dimension.

We take the Z factor for the vector current to be the

same one used for the leptonic width above, determined

in Appendix B. Figure 4 then shows the physical results

for the moments as a function of lattice spacing. The

gray bands show our fits which use the same function of

lattice spacing and sea quark masses as given in eq. (3).

We reduce the prior width on the lattice spacing depen-

dent terms by a factor of 4 because the moments are not

as sensitive to short distances as the leptonic width or

hyperfine splitting.

The physical results that we obtain for each moment

in the continuum limit are given by:

(GV
4 )

1/2
= 0.3152(41)(9)GeV

−1

(GV
6 )

1/4
= 0.6695(57)(13)GeV

−1

(GV
8 )

1/6
= 0.9967(65)(10)GeV

−1

(GV
10)

1/8
= 1.3050(65)(6)GeV

−1. (11)

The first error comes from the fit and the second allows

for electromagnetism (e.g. photons in the final state)

missing from our calculation but present in experiment.

The error is estimated by substituting αQED for αs in

the perturbative QCD analysis of the moments [22]. A

complete error budget for our results is given in Table V.

The results agree well with the values extracted for the

q2 derivative moments, Mk (n = 2k + 2), of the charm

quark vacuum polarization using experimental values for

J/ψ → e+e−

experiment

J/ψ → γηc

Lattice QCD is only 
method that can give 
O(1%) precision

G. Donald et al, 
HPQCD,1208.2855

decay constant for 

form factor for 
13

 1.2  1.4  1.6  1.8  2  2.2
Vector form factor V(0)

HISQ 
this paper

Twisted mass
1206.1445

CLEO
0805.0252

u, d, s sea
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FIG. 10: A comparison of results for the vector form factor,

V (0) for J/ψ → ηcγ from lattice QCD with experiment. We

include only results that include sea quarks and make use of

multiple lattice spacings to derive a continuum value. The

experimental result [26] is given at the top, followed by the

result for HISQ quarks from this paper. The twisted mass [10]

results follow.

The value of V (0) extracted from the experimental
branching fraction [26] is 1.7σ lower than the lattice num-
bers where σ is dominated by the 8% uncertainty from
experiment. This situation is an improvement over that
before the CLEO measurement [8]. However, it is clear
that a more stringent test of QCD would be possible with
a smaller experimental error for the J/ψ → ηcγ branch-
ing fraction and this may become possible with BES III
although it is a challenging mode [34, 35].

Our value for V (0) corresponds to a width for J/ψ →
γηc of 2.49(18)(7) keV using eq. (14). The first error is
from our result and the second from the experimental er-
ror in |�q|. Note that in using eq. (14) we put in the exper-
imental masses for the J/ψ and ηc. This is appropriate
because these factors are kinematic ones and therefore
should be taken to match the experiment. What we cal-
culate in lattice QCD is V (0). In fact, as discussed above,
we have good agreement between our results and experi-
ment for MJ/ψ−Mηc and so the kinematic factors would
also be correct from lattice QCD. However, extra uncer-
tainty would be introduced by using the lattice QCD re-
sults and that is not necessary or appropriate. Our result
for the decay width corresponds to a branching fraction
for J/ψ → ηc of 2.68(19)(11)%, where the first error is
from our calculation and the second from experiment,
including the experimental width of the J/ψ.

Figures 2, 3 and 7, which show our results as a function
of lattice spacing, confirm that discretisation errors are
small (although visible) for the HISQ formalism and that

the approach to the continuum limit is well-controlled.
This is discussed further in Appendix C where we com-
pare the dependence on lattice spacing to that for twisted
mass quarks [10].

V. CONCLUSIONS

We have given results for 3 key quantities associated
with the J/ψ meson from lattice QCD, for the first time
including the effect of all three u, d and s quarks in the
sea. The quantities are the mass difference with its pseu-
doscalar partner, the ηc meson, the decay constant and
the vector form factor at q2 = 0 for J/ψ → ηc decay.
Our first key result is for the J/ψ decay constant. We

obtain:

fJ/ψ = 405(6)MeV, (29)

leading to Γ(J/ψ → e+e−) = 5.48(16) keV. This is to be
compared to the experimental result of Γ(J/ψ → e+e−)
= 5.55(14) keV [7]. We have therefore achieved a 4% test
of lattice QCD from an electromagnetic decay rate (a 2%
test from the decay constant), that does not suffer from
CKM uncertainties. This is itself a stringent test of QCD
and one for which lattice QCD is absolutely necessary;
fJ/ψ could not be calculated this accurately with any
other method. At the same time we are able to verify
that the time-moments of the J/ψ correlator agree as
they should with results for the charm contribution to
σ(e+e− → hadrons) extracted from experiment. This is
a test of QCD to better than 1.5%.
Our fJ/ψ result is a critically important test for our

calculations that determine the decay constants of the
Ds [2, 36] and the D [36, 37] to a similar level of pre-
cision. In particular it tests the HISQ formalism for c
quarks [11] even more stringently than in the D and Ds

cases because the J/ψ contains two c quarks and is a
smaller meson, more sensitive to discretisation effects on
the lattice. Combined with our earlier work on using the
HISQ formalism for light quarks in fπ and fK [13, 36, 38],
our result for fJ/ψ provides compelling evidence that we
have the systematic errors in fDs and fD under control.

We can improve our result for fJ/ψ further in future
by using the vector form factor method of renormalisa-
tion rather than the current-current correlator method.
This will only be useful if improved experimental results
become available. This is expected from BESIII [35].

A further test of QCD/Lattice QCD comes from the
J/ψ mass. We find:

MJ/ψ −Mηc = 116.5± 3.2MeV (30)

giving MJ/ψ = 3.0975(32)(11)GeV where the second er-
ror comes from the experimental average for Mηc [7].
Experiment gives MJ/ψ = 3.0969GeV. This is another
strong test of lattice QCD, and indeed QCD, against ex-
periment to be compared to that of the determination
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Future
• sets of ‘2nd generation’ gluon configs now have 
            at physical value (so no extrapoln) or 
         down to 0.05fm (so b quarks are ‘light’) 
mu,d

a
• Aim for 1% errors for B and Bs physics building on D/Ds

Conclusion
•  Lattice QCD results for gold-plated hadron masses and 
decay constants now providing stringent tests of QCD/SM. 
• Gives QCD parameters and some CKM elements to 1%.
• BSM constraints and tests of sum rules/HQET etc. 

• Harder calculations (excited states, hybrids) will improve
In UK now have access to STFC’s DiRAC facility 
with computers in world’s top 100.  www.dirac.ac.uk
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Summary of latest/best Lattice results

fD = 212.5± 0.5stat
+0.6
−1.5|syst MeV

fDs = 248.9± 0.2stat
+0.5
−1.6|syst MeV

fDs/fD = 1.1717(20)stat(
+0.6
−1.5)syst

Vcd = 0.2184± 0.009expt
+0.0008
−0.0016|lattice (leptonic)

Vcs = 1.0169± 0.02expt
+0.002
−0.007|lattice (leptonic)

Vcd = 0.225(6)expt(10)lattice (semileptonic)

Vcs = 0.963(5)expt(14)lattice (semileptonic)

Decay constants from C. Bernard’s talk, Lattice 2013. 
CKM elements from semileptonic decays taken from 

PRD84(2011)114505 and  arXiv:1305.1462.

Preliminary!

Jonna Koponen, 
Charm2013
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Current status:fDs

220 230 240 250 260 270 280

FLAG averages

ETMC ’11
Alpha ’13

HPQCD/UKQCD ’07
HPQCD ’10
PACS-CS ’11
FNAL/MILC ’11

ETMC ’13
FNAL/MILC ’13

MeV

nf=2+1

nf=2+1+1

nf=2+1

nf=2

nf=2

prelim.

prelim.

fDs = 248.9± 0.2stat
+0.5
−1.6|syst MeV

Jonna Koponen, Charm2013
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Summary of results on decay constants - HPQCD
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