YETI 2014 – IPPP Durham

NU FLAVOURS

12-15 January 2014

BSM neutrino physics

Christoph Luhn

pedagogical review Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340]

Outline

- ► massive neutrinos require physics beyond the Standard Model
- ▶ neutrino mass
 - \cdot nature and origin
 - \cdot seesaw mechanisms
- ▶ neutrino mixing
 - \cdot simple patterns
 - \cdot family symmetries
- ► some finite group theory
- ► family symmetries in model building
 - spontaneous breaking via Higgs-type fields (flavons)
 - $\cdot \,$ direct and indirect implementation
 - \cdot deviations from tri-bimaximal mixing

$Standard\ Model\ ({\rm of\ particle\ physics})$

- \cdot highly successful theory
- · based on gauge symmetry $SU(3)_C \times SU(2)_W \times U(1)_Y$
- $\cdot \,$ broken by Higgs vacuum

open questions/problems

- $\cdot \,$ stability of electroweak scale
- \cdot baryon asymmetry of universe
- $\cdot\,$ nature of dark matter & dark energy
- \cdot origin of three families of quarks & leptons
- \cdot neutrino masses and mixing

Elusive neutrinos

Standard Model picture

- belong to $SU(2)_W$ doublet
- · three flavour states $\nu_e \quad \nu_\mu \quad \nu_\tau$
- \cdot couple only weakly
- \cdot massless
- · individual lepton numbers L_e, L_{μ}, L_{τ} are conserved

in reality

- oscillate from one flavour to another (Teppei Katori's lecture)
 - \rightarrow neutrino mass differences
 - \rightarrow neutrino mixing
- $\cdot \;$ extremely light ($\lesssim \, {\rm eV})$
- · individual lepton numbers L_e, L_{μ}, L_{τ} are violated

Fermion mixings

▶ mismatch of flavour (weak) and mass eigenstates

$$\Psi_{\text{flavour}} = V^{\dagger} \Psi_{\text{mass}}$$

• quark sector: V_L^u and V_L^d

$$U_{\rm CKM} = V_L^u V_L^{d^{\dagger}} \approx \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix} \qquad \lambda \sim 0.22$$

• lepton sector: V_L^e and V_L^{ν}

$$U_{\rm PMNS} = V_L^e V_L^{\nu \dagger} \approx \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

Gonzalez-Garcia et al. (2012)

mixing \iff each family knows of the existence of the others!

Three neutrino flavour mixing

(in diagonal charged lepton basis)

flavour

PMNS mixing mass

$$\begin{aligned} \text{atmospheric} & \text{reactor} + \text{Dirac} & \text{solar} & \text{Majorana} \\ U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & e^{\frac{\alpha_3}{2}} \end{pmatrix} \\ \theta_{23} \approx 45^{\circ} & \theta_{13} \approx 9^{\circ} & \theta_{12} \approx 33^{\circ} \end{aligned}$$

Known unknowns

massive neutrinos \rightarrow 7 (9) new parameters

3 masses $-m_1 m_2 m_3$ 3 mixing angles $-\theta_{23} \theta_{12} \theta_{13}$ 1 Dirac CP phase $-\delta$ (2 Majorana CP phases $-\alpha_2 \alpha_3$)

Dirac

Majorana

 $\frac{\text{measured}}{\Delta m_{21}^2} |\Delta m_{32}^2|$ $\theta_{23} \ \theta_{12} \ \theta_{13}$

unmeasured

sign of Δm_{32}^2 (mass ordering) m_{lightest} (absolute mass scale)

> Dirac CP phase (Majorana CP phases)

Dirac / Majorana masses

(cf. lectures by Pilar Hernandez & Frank Deppisch)

$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \text{ in basis with } \qquad \left[\begin{array}{c} \gamma^{\mu} = \begin{pmatrix} \sigma^{\mu} \\ \bar{\sigma}^{\mu} \end{array} \right] \qquad \begin{array}{c} \sigma^{\mu} = (1, \vec{\sigma}) \\ \bar{\sigma}^{\mu} = (1, -\vec{\sigma}) \end{array} \right]$$
$$P_L = \frac{1 - \gamma^5}{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad P_R = \frac{1 + \gamma^5}{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3$$
$$P_L \Psi = \begin{pmatrix} \psi_L \\ 0 \end{pmatrix} \qquad P_R \Psi = \begin{pmatrix} 0 \\ \psi_R \end{pmatrix}$$

mass terms in Weyl spinor notation

$$m_{\rm D}\overline{\Psi}\Psi = m_{\rm D}\Psi^{\dagger}\gamma^{0}\Psi = m_{\rm D}(\psi_{L}^{\dagger}\psi_{R} + \psi_{R}^{\dagger}\psi_{L})$$

couple left- & right-chiral degrees of freedom

$$\psi_R = \text{charge conjugate of } \psi_L$$

$$(P_L \Psi)^c = C \overline{(P_L \Psi)}^T = \begin{pmatrix} 0 \\ -i\sigma^2 \psi_L^* \end{pmatrix} \qquad \qquad C = i\gamma^2 \gamma^0$$

$$m_{\mathrm{M}}\left(\psi_{L}^{\dagger}\left[-i\sigma^{2}\right]\psi_{L}^{*}+\psi_{L}^{T}\left[i\sigma^{2}\right]\psi_{L}\right) = m_{\mathrm{M}}\sum_{\alpha}(\psi_{L})^{\alpha}\left(\psi_{L}\right)_{\alpha}+h.c.$$

Origin of neutrino mass

Standard Model predicts massless neutrinos because

- 1. there are no right-chiral neutrinos ν_R
- 2. Higgs H transforms as a doublet of $SU(2)_W$
- 3. there are only renormalisable terms

remedy

- 1. introduce right-chiral neutrinos ν_R
 - \rightarrow Dirac mass term $\langle H^0 \rangle \nu_L^{\dagger} \nu_R \qquad [\nu_R \text{ completely neutral}]$
 - $\rightarrow~$ Majorana mass term $M_R\,\nu_R\,\nu_R$
- 2. introduce Higgs triplet Δ

$$\rightarrow ~ \left< \Delta^0 \right> \nu_L \, \nu_L$$

3. effective dimension-five operator (Weinberg operator)

 $\rightarrow \frac{1}{\Lambda} \langle H^0 \rangle^2 \ \nu_L \ \nu_L \qquad [\Lambda \sim 10^{14} \, \text{GeV}]$

Seesaw mechanism – type I

• neutral under SM gauge symmetry $\langle H^0 \rangle \, \nu_L^\dagger \, \nu_R \quad \rightarrow \quad m_{LR}$ Dirac heavy Majorana $M_R \nu_R \nu_R \rightarrow M_{RR}$ \cap \mathbf{N} 1 · diagrammatic generation of Weinberg operator

· add right-chiral neutrinos ν_R

 M_R

 u_R

 ν_L

 u_R

diagonalise mass matrix
$$\begin{pmatrix} 0 & m_{LR} \\ m_{LR}^T & M_{RR} \end{pmatrix}$$
 for $m_{LR} \ll M_{RR}$
seesaw formula $\rightarrow \begin{cases} m_{\text{light}} = -m_{LR} M_{RR}^{-1} m_{LR}^T \\ M_{\text{heavy}} = M_{RR} \end{cases}$

 u_L

Seesaw mechanism – type III

- · add right-chiral $U(1)_Y$ neutral fields ρ_R
- · $SU(2)_W$ triplet $(\rho_R^-, \rho_R^0, \rho_R^+)$
 - Dirac $\langle H^0 \rangle \nu_L^{\dagger} \rho_R^0 \rightarrow m_{LR}$ heavy Majorana $M_{\rho} \rho_R^0 \rho_R^0 \rightarrow M_{RR}$

$$\begin{pmatrix} 0 & m_{LR} \\ m_{LR}^T & M_{RR} \end{pmatrix} \quad \text{for} \quad m_{LR} \ll M_{RR}$$

seesaw formula
$$\rightarrow \begin{cases} m_{\text{light}} = -m_{LR} M_{RR}^{-1} m_{LR}^{T} \\ M_{\text{heavy}} = M_{RR} \end{cases}$$

 \cdot diagrammatic generation of Weinberg operator

Seesaw mechanism – type II

- $\cdot \,$ add scalar $U(1)_Y$ charged field Δ
- · $SU(2)_W$ triplet $(\Delta^0, \Delta^+, \Delta^{++})$

light Majorana $\langle \Delta^0 \rangle \nu_L \nu_L \rightarrow m_{LL}$

$$m_{LL} \sim \frac{\mu_{\Delta} \langle H^0 \rangle^2}{M_{\Delta}^2}$$

Seesaw mechanisms with extra singlets S

$$\begin{pmatrix} 0 & m_{LR} & M_{LS} \\ m_{LR}^T & 0 & M_{RS} \\ M_{LS}^T & M_{RS}^T & M_{SS} \end{pmatrix}$$

<u>inverse seesaw</u> $M_{LS} = 0$ $M_{SS} \ll M_{RS}$ $m_{LL} = m_{LR} M_{RS}^{T-1} M_{SS} M_{RS}^{-1} m_{LR}^{T}$

BSM neutrino physics

Neutrino mixing

Global neutrino fits

normal mass ordering

inverted mass ordering

Simple mixing patterns – tri-bimaximal

Harrison Perkins Scott

$$U_{\rm PMNS} \approx U_{\rm TB} \equiv \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\theta_{12} \approx 35.3^{\circ} \qquad \theta_{23} = 45^{\circ} \qquad \theta_{13} = 0^{\circ}$$

Simple mixing patterns – golden ratio

$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$$

 $\tan \theta_{12} = \frac{1}{\varphi}$

$$U_{\rm PMNS} \approx U_{\rm GR} \equiv \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0\\ -\frac{\sin\theta_{12}}{\sqrt{2}} & \frac{\cos\theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ -\frac{\sin\theta_{12}}{\sqrt{2}} & \frac{\cos\theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\theta_{12} \approx 31.7^{\circ} \qquad \theta_{23} = 45^{\circ} \qquad \theta_{13} = 0^{\circ}$$

Family symmetries

- \cdot horizontal unification
- symmetry group must be non-Abelian
- \cdot underlying group should have two- or <u>three-dimensional</u> representations

Group theory with finite groups, e.g. S_3

group multiplication table

	1	a_1	a_2	b_1	b_2	b_3
1	1	a_1	a_2	b_1	b_2	b_3
a_1	a_1	a_2	1	b_2	b_3	b_1
a_2	a_2	1	a_1	b_3	b_1	b_2
b_1	b_1	b_3	b_2	1	a_2	a_1
b_2	b_2	b_1	b_3	a_1	1	a_2
b_3	b_3	b_2	b_1	a_2	a_1	1

generators and the presentation

choose generators $T \equiv a_1$ and $U \equiv b_1 \implies a_2 = T^2$, $b_2 = TU$, $b_3 = UT$ $< T, U \mid T^3 = U^2 = (TU)^2 = 1 >$ defines the group uniquely

Classes and representations

conjugacy classes

$$1C_{1}(1) = \{g \, 1 \, g^{-1} \, | \, g \in S_{3}\} = \{1\}$$

$$2C_{2}(a) = \{g \, T \, g^{-1} \, | \, g \in S_{3}\} = \{T, \, T^{2}\}$$

$$3C_{3}(b) = \{g \, U \, g^{-1} \, | \, g \in S_{3}\} = \{U, \, TU, \, UT\}$$

irreducible representations

1:
$$T = 1$$
, $U = 1$
1': $T = 1$, $U = -1$
2: $T = \begin{pmatrix} e^{2\pi i/3} & 0\\ 0 & e^{-2\pi i/3} \end{pmatrix}$, $U = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$ depend
on basis

number of classes = number of irreps

Character table

character χ = trace of the matrix representation of element gall elements within one conjugacy class have the same character

\mathcal{S}_3	$1C_1(1)$	$2C_2(T)$	$3C_3(U)$
$\chi^{[1]}$	1	1	1
$\chi^{[\mathbf{1'}]}$	1	1	-1
$\chi^{[2]}$	2	-1	0

$$\Rightarrow \text{ Kronecker products } \mathbf{r} \otimes \mathbf{s} = \sum_{\mathbf{t}} \underbrace{d(\mathbf{r}, \mathbf{s}, \mathbf{t})}_{\mathbf{t}} \mathbf{t} \\ \mathbf{1}' \otimes \mathbf{1}' = \mathbf{1} \\ \mathbf{1}' \otimes \mathbf{2} = \mathbf{2} \\ \mathbf{2} \otimes \mathbf{2} = \mathbf{1} + \mathbf{1}' + \mathbf{2} \end{cases} \overset{\mathbf{k} \otimes \mathbf{s}}_{\mathbf{t}} = \sum_{\mathbf{t}} \underbrace{d(\mathbf{r}, \mathbf{s}, \mathbf{t})}_{\mathbf{t}} = \frac{1}{N} \sum_{i} N_{i} \cdot \chi_{i}^{[\mathbf{r}]} \chi_{i}^{[\mathbf{s}]} \chi_{i}^{[\mathbf{t}]^{*}} \\ i \text{ denotes class with } N_{i} \text{ elements} \\ N \text{ is number of group elements} \end{cases}$$

Clebsch-Gordan coefficients

consider product $\ \alpha \otimes oldsymbol{eta} \ o \ oldsymbol{\gamma}$

$$\gamma_k = \sum_{i,j} c_{ij}^k \ \alpha_i \ \beta_j$$

basis dependent!!!

$$egin{aligned} \mathbf{1}'\otimes\mathbf{1}'&
ightarrow \mathbf{1}&lphaeta\ \mathbf{1}'\otimes\mathbf{2}&
ightarrow \mathbf{2}&lpha&etaeta_1\ -eta_2\end{pmatrix}\ \mathbf{2}\otimes\mathbf{2}&
ightarrow \mathbf{1}&lpha\ \mathbf{1}'\otimes\mathbf{2}&
ightarrow \mathbf{2}&
ightarrow \mathbf{1}&\ \mathbf{1}$$

\mathcal{S}_4 symmetry

presentation

$$S^{2} = T^{3} = U^{2} = 1$$

 $(ST)^{3} = (SU)^{2} = (TU)^{2} = (STU)^{4} = 1$

irreducible representations

\mathcal{A}_4 symmetry

presentation

$$S^{2} = T^{3} = 1$$
$$(ST)^{3} = 1$$

irreducible representations

	S	T	
1	1	1	
$\begin{array}{c} \begin{pmatrix} 1' \\ 1'' \end{pmatrix} \end{array}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(egin{array}{cc} \omega & 0 \ 0 & \omega^{-1} \end{array} ight)$	
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Symmetries of the mass matrices (in flavour basis)

charged lepton

ns
$$M_{\ell} = \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)$$

symmetric under diagonal phase transformation T

$$(M_{\ell}M_{\ell}^{\dagger}) = T^T(M_{\ell}M_{\ell}^{\dagger})T^* \quad \text{e.g.} \quad T = \text{diag}\left(1, e^{\frac{4\pi i}{3}}, e^{\frac{2\pi i}{3}}\right)$$

neutrinos

$$M_{\nu} = U_{\text{PMNS}} \operatorname{diag}(m_{\nu_{1}}, m_{\nu_{2}}, m_{\nu_{3}}) U_{\text{PMNS}}^{T}$$
symmetry of M_{ν} depends on U_{PMNS}

$$\boxed{M_{\nu} = k^{T} M_{\nu} k} \qquad k = U_{\text{PMNS}}^{*} \operatorname{diag}(+1, -1, -1) U_{\text{PMN}}^{T}$$

$$M_{\nu} k \qquad k = U_{\text{PMNS}}^* \operatorname{diag}(+1, -1, -1) U_{\text{PMNS}}^T$$

four different $k \rightarrow \text{generate } \mathcal{Z}_2 \times \mathcal{Z}_2 \text{ symmetry group}$ Klein symmetry: $\mathcal{K} = \{1, S, U, SU\}$

for $U_{\rm PMNS} = U_{\rm TB}$:

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}, \quad U = - \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

Family symmetry breaking

- \cdot different symmetries in charged lepton and neutrino sector
- $\cdot~$ family symmetry broken spontaneously by so-called flavon fields ϕ

Origin of the Klein symmetry \mathcal{K}

direct models

- · Klein symmetry $\mathcal{K} \subset$ family symmetry \mathcal{G}
- flavons ϕ are multiplets of \mathcal{G}
- · their VEVs $\langle \phi \rangle$ break \mathcal{G} down to \mathcal{K} in neutrino sector
- for TB mixing (S, U, T) generate permutation group S_4

▶ indirect models

- · Klein symmetry $\mathcal{K} \not\subset$ family symmetry \mathcal{G}
- · \mathcal{G} responsible for generating particular flavon VEV configurations $\langle \phi \rangle$
- for TB mixing from e.g. $\Delta(27)$, $\mathcal{Z}_7 \rtimes \mathcal{Z}_3$

$$\langle \phi_1 \rangle \propto \begin{pmatrix} -2\\ 1\\ 1 \end{pmatrix} \qquad \langle \phi_2 \rangle \propto \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} \qquad \langle \phi_3 \rangle \propto \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix}$$

 $\Rightarrow \quad \mathcal{L}_{\nu} \quad \sim \quad \nu \left(\phi_1 \phi_1^T + \phi_2 \phi_2^T + \phi_3 \phi_3^T \right) \nu \ H H$

Two model building approaches

(indirect models)

Building a direct model with tri-bimaximal mixing

- · choose family symmetry group S_4
- $\cdot\,$ identify suitable flavon VEV configurations

$$S\langle\phi^{\nu}\rangle = U\langle\phi^{\nu}\rangle = \langle\phi^{\nu}\rangle \qquad T\langle\phi^{\ell}\rangle = \langle\phi^{\ell}\rangle$$

\mathcal{S}_4	S	U	T	$\langle \phi^{ u} angle$	$\langle \phi^\ell angle$
$1,\mathbf{1'}$	1	± 1	1	1	1 , 1 '
2	$ \left(\begin{array}{rrr} 1 & 0\\ 0 & 1 \end{array}\right) $	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\left(egin{array}{cc} \omega & 0 \\ 0 & \omega^2 \end{array} ight)$	$2 \propto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	_
3 , 3 '	$ \left \begin{array}{cccc} \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \\ \end{array}\right) $	$\mp \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}$	$\left \begin{array}{c} 3' \propto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right $	$egin{array}{c} {f 3},{f 3}'\propto egin{pmatrix} 1\ 0\ 0 \end{pmatrix} \end{array}$

· control coupling of flavons to fermions by extra \mathcal{Z}_N or U(1) symmetry

$$\frac{\phi^{\nu}}{\Lambda^2} L H_u L H_u \qquad \qquad \frac{\phi^{\ell}}{\Lambda} L \,\ell^c H_d$$

 \cdot with type I seesaw

$$\mathcal{L}_{\nu} \sim L H_u \nu^c + \phi^{\nu} \nu^c \nu^c$$

Building an indirect model with tri-bimaximal mixing

- family symmetry $\mathcal{G} \subset SU(3)$
- \cdot diagonal charged leptons
- · type I seesaw with 2 or 3 ν_a^c in singlet representation of \mathcal{G}
- · diagonal right-handed neutrino mass matrix (e.g. due to \mathcal{Z}_2 symmetry)

$$\mathcal{L}_{\nu} \sim \sum_{a} \frac{\phi_{a}^{\nu}}{\Lambda} L H_{u} \nu_{a}^{c} + M_{a} \nu_{a}^{c} \nu_{a}^{c}$$

$$\cdot \phi_a^{\nu} \sim \overline{\mathbf{3}} \text{ and } L \sim \mathbf{3} \text{ of } \mathcal{G}$$

 $\cdot \mathcal{G} \text{ or } SU(3) \text{ invariant } \rightarrow \phi_{a_1}^{\nu} L_1 + \phi_{a_2}^{\nu} L_2 + \phi_{a_3}^{\nu} L_3 = \phi_a^{\nu T} L$

· integrate out ν_a^c (seesaw formula)

$$\mathcal{L}_{\nu} \sim L^T \sum_{a=1} \left(\frac{\langle \phi_a^{\nu} \rangle}{\Lambda} \cdot \frac{1}{M_a} \cdot \frac{\langle \phi_a^{\nu} \rangle^T}{\Lambda} \right) L H_u H_u$$

• tri-bimaximal if $\left[\langle \phi_1^{\nu} \rangle \propto \begin{pmatrix} -2\\1\\1 \end{pmatrix} \right] = \langle \phi_2^{\nu} \rangle \propto \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \langle \phi_3^{\nu} \rangle \propto \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$

Aligning triplet flavons in $\Delta(27)$, $\mathcal{Z}_7 \rtimes \mathcal{Z}_3$, \mathcal{A}_4

$$V(\phi) = -m^2 \sum_i \phi_i^{\dagger} \phi_i + \lambda \left(\sum_i \phi_i^{\dagger} \phi_i \right)^2 + \Delta V$$

central terms in ΔV

(*ii*) $\tilde{\kappa} \sum_{i,j} (\phi_i^{\dagger} \tilde{\phi}_i) (\tilde{\phi}_j^{\dagger} \phi_j) \qquad \tilde{\kappa} > 0 \quad \rightarrow \quad \text{orthogonality condition } \langle \phi \rangle \perp \langle \tilde{\phi} \rangle$

e.g.
$$\langle \tilde{\phi} \rangle \propto \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

... $\langle \tilde{\phi} \rangle \propto \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$

Flavon alignment in supersymmetry

- $\cdot\,$ SUSY unbroken at scale of family symmetry breaking
- · introduce so-called driving fields X which couple to flavons
- · flavon superpotential W^{flavon} linear in X due to $U(1)_R$ symmetry
- $\cdot~$ F-terms of driving fields need to vanish

$$F_{X_i}^* = -\frac{\partial W^{\text{flavon}}}{\partial X_i} = 0$$

· two examples in \mathcal{S}_4

$$W^{\text{flavon}} \sim X_{\mathbf{1}} \phi_{\mathbf{2}} \phi_{\mathbf{2}} = X_{\mathbf{1}} (\phi_{\mathbf{2},1} \phi_{\mathbf{2},2} + \phi_{\mathbf{2},2} \phi_{\mathbf{2},1}) = 2X_{\mathbf{1}} \phi_{\mathbf{2},1} \phi_{\mathbf{2},2}$$
$$\longrightarrow \langle \phi_{\mathbf{2}} \rangle \propto \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ or } \langle \phi_{\mathbf{2}} \rangle \propto \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$W^{\text{flavon}} = g_0 X_{\mathbf{3}} \phi_{\mathbf{3}'}^{\nu} \phi_{\mathbf{2}}^{\nu} + X_{\mathbf{3}'} \left(g_1 \phi_{\mathbf{3}'}^{\nu} \phi_{\mathbf{3}'}^{\nu} + g_2 \phi_{\mathbf{3}'}^{\nu} \phi_{\mathbf{2}}^{\nu} + g_3 \phi_{\mathbf{3}'}^{\nu} \phi_{\mathbf{1}}^{\nu} \right)$$
$$\longrightarrow \langle \phi_{\mathbf{3}'}^{\nu} \rangle = \varphi_{\mathbf{3}'}^{\nu} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \qquad \langle \phi_{\mathbf{2}}^{\nu} \rangle = \varphi_{\mathbf{2}}^{\nu} \begin{pmatrix} 1\\1 \end{pmatrix} \qquad \varphi_{\mathbf{2}}^{\nu} = -\frac{g_3}{2g_2} \varphi_{\mathbf{1}}^{\nu}$$

- flavon alignments independent of g_i

(exact) Tri-bimaximal mixing is ruled out!

T2K [arXiv:1106.2822]

- · $\theta_{13} = 0$ disfavoured at ~ 2.5σ
- · $5^{\circ} \lesssim \theta_{13} \lesssim 18^{\circ}$ at 90% C.L.

Double Chooz [arXiv:1207.6632]

- · $\theta_{13} = 0$ disfavoured at ~ 2.9σ
- · $6^{\circ} \lesssim \theta_{13} \lesssim 12^{\circ}$ at 90% C.L.

RENO [arXiv:1204.0626]

- · $\theta_{13} = 0$ disfavoured at ~ 4.9σ
- $8.0^{\circ} \lesssim \theta_{13} \lesssim 11.4^{\circ}$ at 90% C.L.

Daya Bay [arXiv:1210.6327]

- · $\theta_{13} = 0$ disfavoured at ~ 7.7 σ
- · $7.7^{\circ} \lesssim \theta_{13} \lesssim 9.6^{\circ}$ at 90% C.L.

Requires new model building strategies

direct models

indirect models

TB plus corrections

TB plus corrections

other family symmetries with non-standard \mathcal{K}

non-standard flavon VEV configurations

Direct models after Daya Bay and RENO

mixing patterns:

	$ heta_{13}$	θ_{23}	θ_{12}
TB	0°	45°	35.3°
BM	0°	45°	45°
GR	0°	45°	31.7°
BT	12.2°	36.2°	36.2°
TM	$\neq 0^{\circ}$	$\neq 45^{\circ}$	35.3°

- TB = tri-bimaximalBM = bimaximal
- DM = DIIIaxIIIaI
- GR = golden ratio
- BT = bi-trimaximal
- TM = trimaximal

Charged lepton corrections to TB mixing

- \cdot charged lepton mass matrix might not be diagonal (GUTs)
- $\cdot \quad U_{\rm PMNS} = V_{\ell_L} V_{\nu_L}^{\dagger} \quad \text{and} \quad V_{\nu_L}^{\dagger} = U_{\rm TB}$

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & \hat{s}_{23} \\ 0 & -\hat{s}_{23}^* & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & \hat{s}_{13} \\ 0 & 1 & 0 \\ -\hat{s}_{13}^* & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & \hat{s}_{12} & 0 \\ -\hat{s}_{12}^* & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{12} e^{i\delta_{12}} \approx \frac{1}{\sqrt{3}} \left(e^{i\delta_{12}^{\nu}} - \theta_{12}^{\ell} e^{i\delta_{12}^{\ell}} + \theta_{13}^{\ell} e^{i(\delta_{13}^{\ell} - \delta_{23}^{\nu})} \right)$$

$$s_{23} e^{i\delta_{23}} \approx \frac{1}{\sqrt{2}} \left(e^{i\delta_{23}^{\nu}} - \theta_{23}^{\ell} e^{i\delta_{23}^{\ell}} \right)$$

$$s_{13} e^{i\delta_{13}} \approx \frac{1}{\sqrt{2}} \left(-\theta_{12}^{\ell} e^{i(\delta_{12}^{\ell} + \delta_{23}^{\nu})} - \theta_{13}^{\ell} e^{i\delta_{13}^{\ell}} \right)$$

$$c_{ij} = \cos \theta_{ij}$$

 $\hat{s}_{ij} = \sin \theta_{ij} e^{-i\delta_{ij}}$

$$\cdot \ \theta_{12}^{\ell} \sim \theta_C \sim 0.22 \quad \rightarrow \quad \theta_{13} \sim 9^{\circ}$$

 $\cdot \text{ solar sum rule} \rightarrow \theta_{12} \approx 35.3^{\circ} + \theta_{13} \cos \delta$

Breakdown of the TB Klein symmetry

· add higher order term which breaks U generator of \mathcal{S}_4

$$\mathcal{L}_{\nu} \sim LH_{u}\nu^{c} + (\phi_{\mathbf{3}'}^{\nu} + \phi_{\mathbf{2}}^{\nu} + \phi_{\mathbf{1}}^{\nu})\nu^{c}\nu^{c} + \frac{1}{M}\widetilde{\phi}_{\mathbf{1}'}^{\nu}\phi_{\mathbf{2}}^{\nu}\nu^{c}\nu^{c}$$

\mathcal{S}_4	S	U	VEV alignment
3'	$ \begin{array}{cccc} & -1 & 2 & 2 \\ \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \end{array} $	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$	$\langle \phi^{\nu}_{\mathbf{3'}} \rangle \propto \begin{pmatrix} 1\\1\\1 \end{pmatrix}$
2	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\langle \phi^{ u}_{2} angle \propto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
1	1	1	$\langle \phi^{ u}_{f 1} angle \propto 1$
$\mathbf{1'}$	1	-1	$\langle \widetilde{\phi}^{ u}_{m{1}'} angle \propto -1$

$$\cdot \text{ resulting mixing} \\ U_{\text{PMNS}} \approx \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} - \frac{1}{\sqrt{2}}\alpha & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix} \\ C_{\text{PMNS}} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix} \\ C_{\text{PMNS}} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix} \\ C_{\text{PMNS}} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}}\alpha & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix} \\ C_{\text{PMNS}} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix} \\ C_{\text{PMNS}} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix} \\ C_{\text{PMNS}} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}\alpha^* \end{pmatrix} \\ C_{\text{PMNS}} = \begin{pmatrix} -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}}\alpha^* \\ \frac{1}{\sqrt{$$

· <u>atmospheric sum rule</u> $\rightarrow \theta_{23} \approx 45^{\circ} - \frac{1}{\sqrt{2}} \theta_{13} \cos \delta$

Indirect models after Daya Bay and RENO

Variations of constrained sequential dominance (CSD)

$$m_{\nu} = m_2^0 \Phi_2 \Phi_2^T + m_3^0 \Phi_3 \Phi_3^T \qquad m_2^0 \ll m_3^0$$

tri-bimaximal

$$\frac{m_2^0}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_3^0}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \implies$$

$$\begin{array}{ccc} \theta_{13} = 0 & m_1^{\nu} = 0 \\ \theta_{23} = 45^{\circ} & m_2^{\nu} = m_2^0 \\ \theta_{12} = 35.3^{\circ} & m_3^{\nu} = m_3^0 \end{array}$$

trimaximal 1 (TM_1)		
$\theta_{13} \approx \frac{\sqrt{2}}{3} \frac{m_2^{\nu}}{m_3^{\nu}}$	$m_1^{\nu} = 0$	
$\theta_{23} \approx 45^\circ + \sqrt{2}\theta_{13}\cos\delta$	$m_2^{\nu} \approx rac{3}{5} m_2^0$	
$\theta_{12} \approx 35.3^{\circ}$	$m_3^\nu\approx m_3^0$	

► PCSD (partially CSD)

$$\frac{m_2^0}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_3^0}{2} \begin{pmatrix} \epsilon^2 & \epsilon & -\epsilon \\ \epsilon & 1 & -1 \\ -\epsilon & -1 & 1 \end{pmatrix}$$

 $\frac{m_2^0}{5} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \frac{m_3^0}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$

tri-bimaximal-reactor

$\theta_{13} \approx \frac{\epsilon}{\sqrt{2}}$	$m_1^\nu=0$
$\theta_{23} \approx 45^{\circ}$	$m_2^\nu\approx m_2^0$
$\theta_{12} \approx 35.3^{\circ}$	$m_3^\nu\approx m_3^0$

CSD

 \triangleright CSD2

Summary

- ▶ neutrinos have mass and they mix
- ► various seesaw mechanisms
- ► horizontal unification
- ► discrete family symmetries
 - \cdot origin of simple mixing patterns
 - \cdot direct vs indirect models
- ▶ non-zero reactor angle θ_{13}
 - \cdot deviations from tri-bimaximal mixing
 - \cdot mixing sum rules
 - \cdot predictions for CP violation
- ▶ precision neutrino experiments can/will test family symmetry models
- ► family symmetries can control flavour in BSM scenarios such as SUSY

Epilogue

The order that our mind imagines is like a net, or like a ladder, built to attain something. But afterward you must throw the ladder away, because you discover that, even if it was useful, it was meaningless.

William of Baskerville, The Name of the Rose