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Basics: flavour physics with 
quarks



Flavours of quarks

Quarks are those elementary particles in the Standard Model that 
have spin 1/2 and strong interactions.

They come in 3 colours and six different mass eigenstates, called 
flavours: up, down, strange, charm, bottom, top in order of 
increasing mass. (The historical origin is ice-cream, which also 
carries colour and flavour, as observed by Fritzsch & Gell-Mann.)

3 of the quarks have charge +2/3 e, called “up-type” quarks

3 have charge -1/3 e, called “down-type” quarks

Only the left-chiral parts of the quark fields have SU(2) gauge 
interactions and couple to the W bosons

Standard Model
All matter is composed of twelve “flavors” of spin-1/2 fermion,
including three neutrinos, each with different mass.
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Almost all interaction is due to gauge forces. Colored fermions feel
the strong interactions due to the gluon field Gµ. They and the
charged leptons also interact with the electromagnetic field Aµ.

Weak interactions, due to W+ and Z0 boson exchange, are chiral:
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dR uR
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What B-mesons tell us about the Standard Model and “New Physics” – p.3



Flavour symmetry

In modern parlance, the flavour symmetry group of a gauge 
theory is the largest global symmetry group (that commutes with 
the gauge group) of a gauge theory.

Gauge theory part of the SM Lagrangian

3 parameters only, no masses

invariant under transformations (3x3 matrices)

nb - anomalies reduce the 4 U(1) factors to U(1)B-L

Lgauge =

∑

f

ψ̄fγµDµψf −
∑

i,a

1

4
giF

ia
µνF iaµν

f = QLj , uRj , dRj , LLj , eRj j = 1, 2, 3

QL → ei(b/3+a)VQL
QL, uR → ei(b/3−a)VuR

uR, dR → ei(b/3−a)VdR
dR

Gflavor = SU(3)5 × U(1)B × U(1)A × U(1)L × U(1)E

[Chivukula & Georgi 1987]



broken by Yukawa couplings to Higgs field

to

(ignoring anomalies)

To go to mass eigenstates, need to diagonalise the Yukawa 
matrices. Achieved by simultaneous U(3) transformations:

If VuL and VdL are different, this is not a flavour symmetry 
transformation. W couplings become non-diagonal:

LY = −ūRYUφc†QL − d̄RYDφ†DL − ēRYEφ†EL

U(1)B × U(1)e × U(1)µ × U(1)τ

B → K∗µ+µ−: Standard Model or Beyond?

12 January 2014

1 Introduction

When Daniel Maitre asked me to talk about SM flavour theory, my response
was something like “That will take at least four hours.” The response was
“You have only one.” As my childhood hero Scottie would have said, “I’ll see
what I can do.” I’ll stay for dinner though, and perhaps a beer afterwards
(if we survive), in case of questions.

2 The flavour of quarks

2.1 History, Lagrangian and flavour group

2.2 Flavour basis and CKM matrix

QLj =

�
uLj

dLj

�

uL → VuLuL

dL → VdLdL

uR → VuRuR

dR → VdRdR
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weak interactions violate flavour



Quiz

1) Why do the Z couplings remain generation diagonal?

2) What would happen if there were only one quark SU(2) doublet 
and one further left-handed down-type singlet s’L ? (Plus right-
handed singlets)



                                                  unitary matrix

phase changes

change CKM (eg can use to make some CKM elements real+)

          9             independent parameters in a unitary matrix
- (6 - 1)             rephasings (1 universal rephasing is symmetry)
       = 4             physical CKM parameters (3 angles, 1 phase)

SM flavour: CKM matrixWeak interactions

W+ violates flavor (mixes generations), Z0 does not.

W+

VussL uL

Z0

fi fj
δij

“charged current”
no tree-level flavor-changing

neutral currents (FCNC)

Gauge invariance⇒ V is unitary matrix: CKM matrix

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 ≈




1 − 1

2λ2 λ Aλ3(ρ − iη)
−λ 1 − 1

2λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1





Symmetries of Lagrangian ⇒ only four independent parameters λ,

A, ρ, η. Only one of them (η) complex. Breaks CP -invariance.
What B-mesons tell us about the Standard Model and “New Physics” – p.4
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all flavour violation
in charged current

(tree) neutral current
conserves flavor Aa

γ

uLi → eiαiuLi, uRi → eiαiuRi

dLi → eiβidLi, dRi → eiβidRi

2.3 Unitarity triangle fit

2.4 Beyond the unitarity triangle

3 Observables and QCD

3.1 Without QCD

Mixing and decays. How the unitarity triangle is determined.

3.2 The QCD anatomy of a hadronic amplitude

Weak and strong interactions, factorisation and nonperturbative corrections.
How UT angles are affected. Use mixing as main example.

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group
equation.

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-
body final states with lattice as below inelastic threshold. D or B decays:
need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-
energy collider processes do. Original example: BBNS. BFS. Mention SCET.
Mention some LCSR work, “pQCD”.

4 Hot topics

3

weak interactions violate CP
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Quiz

3) Why can the work of Kobayashi and Maskawa (1972) be 
viewed as a prediction of a third SM generation?
(CP violation was first observed in 1964.)



Parameterisations
Standard parameterisation in terms of three angles θ12,θ13,θ23 
similarly to Euler angles, and a phase δ (Particle data group)

empirically,                                      , VCKM not far from diagonal

Wolfenstein parameters (phase convention independent)

One can expand the CKM matrix in these:

11. CKM quark-mixing matrix 1

11. THE CKM QUARK-MIXING MATRIX

Revised March 2012 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ε φ∗uI

Rj + h.c., (11.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ε is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, 〈φ〉 = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM




dL
sL
bL



 + h.c., VCKM ≡ V u
L V d

L
† =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



.

(11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13



 , (11.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ( s23 ( s12 ( 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4) . (11.5)

J. Beringer et al.(PDG), PR D86, 010001 (2012) and 2013 update for the 2014 edition (http://pdg.lbl.gov)
December 18, 2013 11:58
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uLi → eiαiuLi, uRi → eiαiuRi

dLi → eiβidLi, dRi → eiβidRi

λ =
|Vus|�

|Vud|2 + |Vus|2
(2)

A =
1

λ

|Vcb|
|Vus|

(3)

ρ̄+ iη̄ = −VudV ∗
ub

VcdV ∗
cb

2.3 Unitarity triangle fit

2.4 Beyond the unitarity triangle

3 Observables and QCD

3.1 Without QCD

Mixing and decays. How the unitarity triangle is determined.

3.2 The QCD anatomy of a hadronic amplitude

Weak and strong interactions, factorisation and nonperturbative corrections.
How UT angles are affected. Use mixing as main example.

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group
equation.

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-
body final states with lattice as below inelastic threshold. D or B decays:
need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-
energy collider processes do. Original example: BBNS. BFS. Mention SCET.
Mention some LCSR work, “pQCD”.
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(At higher orders in λ, higher-order dependence on A,ρ̄, η̄ appears.)
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Unitary triangle

Unitarity implies orthogonality of any two rows or columns of CKM

Each such relation can be viewed as a closed triangle in the 
complex plane

The form with one side normalised to 1 is most common and 
justified as the rescaling factor is quite precisely known (and 
largely insensitive to beyond-SM physics)
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Figure 5: Unitarity Triangle.
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• The angles β and γ of the unitarity triangle are related directly to the complex phases

of the CKM-elements Vtd and Vub, respectively, through

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ . (2.49)

• The angle α can be obtained through the relation

α + β + γ = 180◦ (2.50)

expressing the unitarity of the CKM-matrix.

20

uLi → eiαiuLi, uRi → eiαiuRi

dLi → eiβidLi, dRi → eiβidRi

λ =
|Vus|�

|Vud|
2 + |Vus|

2
(2)

A =
1

λ

|Vcb|

|Vus|
(3)

ρ̄+ iη̄ = −VudV ∗
ub

VcdV ∗
cb

VCKM =




1− 1

2λ
2 λ Aλ3

(ρ̄− iη̄)
−λ 1− 1

2λ
2 Aλ2

Aλ3
(1− ρ̄− iη̄) −Aλ2

1



+O(λ4
)

(At higher orders in λ, higher-order dependence on A,ρ̄, η̄ appears.)

CKM fitter FPCP13:

λ = 0.22457+0.00186
−0.00014, A = 0.823+0.012

−0.033, ρ̄ = 0.1289+0.0176
−0.0094, η̄ = 0.348+0.012

−0.012

2.3 Unitarity triangle fit

VudV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (4)

−VudV ∗
ub

VcsV ∗
cb

− VtsV ∗
tb

VcsV ∗
cb

= 1 (5)

ρ̄+ iη̄ + (1− ρ̄− iη̄) = 1 (6)

2.4 Beyond the unitarity triangle

3 Observables and QCD

3.1 Without QCD

Mixing and decays. How the unitarity triangle is determined.

3.2 The QCD anatomy of a hadronic amplitude

Weak and strong interactions, factorisation and nonperturbative corrections.

How UT angles are affected. Use mixing as main example.

3



Unitarity triangle determinationUnitarity triangle

Unitarity of V ⇒
V ∗

ubVud + V ∗
cbVcd + V ∗

tbVtd = 0

Aλ3(ρ + iη) − Aλ3 + Aλ3(1 − ρ − iη) = 0

Graphically,

γ

α

β

|Vub| |Vtd|

( , )ρ η

λVcb λVcb

1 (1, 0)(0, 0)

Vub = |Vub|e−iγ

Vtd = |Vtd|e−iβ

What B-mesons tell us about the Standard Model and “New Physics” – p.6

b ➞u l ν 
b ➞u q q
(tree-level 
Weak int.)            

requires top loop       

suppression of FCNC by loops and CKM hierarchy

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

oben

unten

rechts
s

b
g

s

b
γ

s

b
Z

s

b
H

s

b

g

u, c, t

W

d

d

s̄ d̄

s

t

t
W W

This makes them sensitive to new physics!



Global fits to the CKM matrix by two expert groups
   

dm

K

K
sm & dm

SLubV

sin 2
(excl. at CL > 0.95)

 < 0sol. w/ cos 2

 ubV

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
cl

ud
ed

 a
re

a 
ha

s 
C

L 
> 

0.
95

FPCP 13

CKM
f i t t e r

B0  ➔ D+ π-

B± ➔ D0 K± 

B ➔ ππ,πρ,ρρ

B ➔ J/ψ KS

CKMfitter   http://ckmfitter.in2p3.fr/
UTfit         http://utfit.org/

Each observable constrains                   to lie on a one-dimensional 
set (one or more lines). Bands due to uncertainties (theory & expt) 

uLi → eiαiuLi, uRi → eiαiuRi

dLi → eiβidLi, dRi → eiβidRi

λ =
|Vus|�

|Vud|
2 + |Vus|

2
(2)

A =
1

λ

|Vcb|

|Vus|
(3)

ρ̄+ iη̄ = −VudV ∗
ub

VcdV ∗
cb

VCKM =




1− 1

2λ
2 λ Aλ3

(ρ̄− iη̄)
−λ 1− 1

2λ
2 Aλ2

Aλ3
(1− ρ̄− iη̄) −Aλ2

1



+O(λ4
)

(At higher orders in λ, higher-order dependence on A,ρ̄, η̄ appears.)

2.3 Unitarity triangle fit

CKM fitter FPCP13:

λ = 0.22457+0.00186
−0.00014, A = 0.823+0.012

−0.033, ρ̄ = 0.1289+0.0176
−0.0094, η̄ = 0.348+0.012

−0.012

2.4 Beyond the unitarity triangle

3 Observables and QCD

3.1 Without QCD

Mixing and decays. How the unitarity triangle is determined.

3.2 The QCD anatomy of a hadronic amplitude

Weak and strong interactions, factorisation and nonperturbative corrections.

How UT angles are affected. Use mixing as main example.

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

3

No apparent inconsistencies, CKM paradigm appears to work 



Global fits to the CKM matrix by two expert groups
   

dm

K

K
sm & dm

SLubV

sin 2
(excl. at CL > 0.95)

 < 0sol. w/ cos 2

 ubV

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
cl

ud
ed

 a
re

a 
ha

s 
C

L 
> 

0.
95

FPCP 13

CKM
f i t t e r

B0  ➔ D+ π-

B± ➔ D0 K± 

B ➔ ππ,πρ,ρρ

B ➔ J/ψ KS

Of all constraints, only the
γ and |Vub| determinations are robust against new physics as they 
do not involve loops.

CKMfitter   http://ckmfitter.in2p3.fr/
UTfit         http://utfit.org/

Each observable constrains                   to lie on a one-dimensional 
set (one or more lines). Bands due to uncertainties (theory & expt) 

uLi → eiαiuLi, uRi → eiαiuRi

dLi → eiβidLi, dRi → eiβidRi

λ =
|Vus|�

|Vud|
2 + |Vus|

2
(2)

A =
1

λ

|Vcb|

|Vus|
(3)

ρ̄+ iη̄ = −VudV ∗
ub

VcdV ∗
cb

VCKM =




1− 1

2λ
2 λ Aλ3

(ρ̄− iη̄)
−λ 1− 1

2λ
2 Aλ2

Aλ3
(1− ρ̄− iη̄) −Aλ2

1



+O(λ4
)

(At higher orders in λ, higher-order dependence on A,ρ̄, η̄ appears.)

2.3 Unitarity triangle fit

CKM fitter FPCP13:

λ = 0.22457+0.00186
−0.00014, A = 0.823+0.012

−0.033, ρ̄ = 0.1289+0.0176
−0.0094, η̄ = 0.348+0.012

−0.012

2.4 Beyond the unitarity triangle

3 Observables and QCD

3.1 Without QCD

Mixing and decays. How the unitarity triangle is determined.

3.2 The QCD anatomy of a hadronic amplitude

Weak and strong interactions, factorisation and nonperturbative corrections.

How UT angles are affected. Use mixing as main example.

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

3

No apparent inconsistencies, CKM paradigm appears to work 



Global fits to the CKM matrix by two expert groups
   

dm

K

K
sm & dm

SLubV

sin 2
(excl. at CL > 0.95)

 < 0sol. w/ cos 2

 ubV

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
cl

ud
ed

 a
re

a 
ha

s 
C

L 
> 

0.
95

FPCP 13

CKM
f i t t e r

It is possible that the TRUE           lies here  (for example)

B0  ➔ D+ π-

B± ➔ D0 K± 

B ➔ ππ,πρ,ρρ

B ➔ J/ψ KS

Of all constraints, only the
γ and |Vub| determinations are robust against new physics as they 
do not involve loops.

(ρ̄, η̄)

CKMfitter   http://ckmfitter.in2p3.fr/
UTfit         http://utfit.org/

Each observable constrains                   to lie on a one-dimensional 
set (one or more lines). Bands due to uncertainties (theory & expt) 

uLi → eiαiuLi, uRi → eiαiuRi

dLi → eiβidLi, dRi → eiβidRi

λ =
|Vus|�

|Vud|
2 + |Vus|

2
(2)

A =
1

λ

|Vcb|

|Vus|
(3)

ρ̄+ iη̄ = −VudV ∗
ub

VcdV ∗
cb

VCKM =




1− 1

2λ
2 λ Aλ3

(ρ̄− iη̄)
−λ 1− 1

2λ
2 Aλ2

Aλ3
(1− ρ̄− iη̄) −Aλ2

1



+O(λ4
)

(At higher orders in λ, higher-order dependence on A,ρ̄, η̄ appears.)

2.3 Unitarity triangle fit

CKM fitter FPCP13:

λ = 0.22457+0.00186
−0.00014, A = 0.823+0.012

−0.033, ρ̄ = 0.1289+0.0176
−0.0094, η̄ = 0.348+0.012

−0.012

2.4 Beyond the unitarity triangle

3 Observables and QCD

3.1 Without QCD

Mixing and decays. How the unitarity triangle is determined.

3.2 The QCD anatomy of a hadronic amplitude

Weak and strong interactions, factorisation and nonperturbative corrections.

How UT angles are affected. Use mixing as main example.

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

3

No apparent inconsistencies, CKM paradigm appears to work 



)(

ubV

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
cl

ud
ed

 a
re

a 
ha

s 
C

L 
> 

0.
95

FPCP 13

CKM
f i t t e r

“Tree” determinations

B0  ➔ D+ π-

B± ➔ D0 K± 

Plot showing only “NP-robust” measurements of γ and |Vub| .
Note: the γ(α) constraint shown depends on assumptions (absence of 
BSM ΔI=3/2 contributions in B->ππ); the “pure tree-level” γ 
determination (grey band) is more robust. Such determinations will be 
greatly improved by LHCb.



)(

ubV

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
cl

ud
ed

 a
re

a 
ha

s 
C

L 
> 

0.
95

FPCP 13

CKM
f i t t e r

“Tree” determinations

B0  ➔ D+ π-

B± ➔ D0 K± 

Certainly there is room for O(10%) NP in loop processes as far as 
UT fits are concerned, moreover UT fit mainly constrains b->d

Plot showing only “NP-robust” measurements of γ and |Vub| .
Note: the γ(α) constraint shown depends on assumptions (absence of 
BSM ΔI=3/2 contributions in B->ππ); the “pure tree-level” γ 
determination (grey band) is more robust. Such determinations will be 
greatly improved by LHCb.



Reality: flavour physics with 
hadrons

using mixing as example

observables
short and long distances
effective Hamiltonian



Meson mixing
flavour violation implies particle-antiparticle mixing: 

if we view a B meson as a quark-antiquark two-particle state:

similarly for K0, D0 mixing

The diagram is easy to calculate.

However, mesons are complicated QCD bound states,
so QCD corrections must be understood 
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Mixing: observables

Three physical parameters (for each neutral meson system)

give rise to three independent observables

afs can be measured from the CP asymmetry in any “flavour-
specific” decay, ie one which vanishes in the absence of mixing.

Often f=Xµ+ - self-tagging. Hence “semileptonic CP as.” asl = afs

A(M̄0 → M
0) ∝ M12 −

i

2
Γ12 $= 0

3.2.1 Mixing

3 physical parameters:

|M12|, |Γ12|,φ ≡ arg
−M12

Γ12

∆M ≈ 2|M12|, ∆Γ ≈ 2|Γ12| cosφ, afs =
∆Γ

∆M
tanφ

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-

body final states with lattice as below inelastic threshold. D or B decays:

need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-

energy collider processes do. Original example: BBNS. BFS. Mention SCET.

Mention some LCSR work, “pQCD”.

4 Hot topics

4

3.2.1 Mixing

3 physical parameters:

|M12|, |Γ12|,φ ≡ arg
−M12

Γ12

∆M ≈ 2|M12|, ∆Γ ≈ 2|Γ12| cosφ, afs =
∆Γ

∆M
tanφ

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-

body final states with lattice as below inelastic threshold. D or B decays:

need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-

energy collider processes do. Original example: BBNS. BFS. Mention SCET.

Mention some LCSR work, “pQCD”.

4 Hot topics

4

mass difference      width difference
(lifetime difference)   

flavour-specific 
CP asymmetry      

3.2.1 Mixing

3 physical parameters:

|M12|, |Γ12|,φ ≡ arg
−M12

Γ12

∆M ≈ 2|M12|, ∆Γ ≈ 2|Γ12| cosφ, afs =
∆Γ

∆M
tanφ

aqfs =
Γ(B̄0

q (t) → f)− Γ(B0
q (t) → f̄)

Γ(B̄0
q (t) → f) + Γ(B0

q (t) → f̄)

aqsl =
Γ(B̄0

q (t) → D−
q µ

+)− Γ(B0
q (t) → D+

q µ
−)

Γ(B̄0
q (t) → D−

q µ
+) + Γ(B0

q (t) → D+
q µ

−)
= aqfs

B → B̄ → f

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-

body final states with lattice as below inelastic threshold. D or B decays:

need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-

energy collider processes do. Original example: BBNS. BFS. Mention SCET.

Mention some LCSR work, “pQCD”.

4 Hot topics

4

3.2.1 Mixing

3 physical parameters:

|M12|, |Γ12|,φ ≡ arg
−M12

Γ12

∆M ≈ 2|M12|, ∆Γ ≈ 2|Γ12| cosφ, afs =
∆Γ

∆M
tanφ

aqfs =
Γ(B̄0

q (t) → f)− Γ(B0
q (t) → f̄)

Γ(B̄0
q (t) → f) + Γ(B0

q (t) → f̄)

aqsl =
Γ(B̄0

q (t) → D−
q µ

+)− Γ(B0
q (t) → D+

q µ
−)

Γ(B̄0
q (t) → D−

q µ
+) + Γ(B0

q (t) → D+
q µ

−)
= aqfs

B → B̄ → f

f = D−
q µ

+

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-

body final states with lattice as below inelastic threshold. D or B decays:

need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-

energy collider processes do. Original example: BBNS. BFS. Mention SCET.

Mention some LCSR work, “pQCD”.

4 Hot topics

4

(nb - time dependence cancels 
between numerator and denominator)



              short distance   

vs

long distance     



              short distance   

vs

long distance     

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

t (c, u)

Digression:              mixingK
0
− K̄

0

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

hi

hj
b s

hi

hj hk

b s

hi
hj

.

W 1/mW ~ 
  0.002 fm

1/ΛQCD ~ 1fm           

s̄

d

d̄

s

s̄

d

d̄

s

perturbation theory applies            

non-perturbative QCD essential



              short distance   

vs

long distance     

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

u? or K, K^*, ...?

t (c, u)

Digression:              mixingK
0
− K̄

0

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

hi

hj
b s

hi

hj hk

b s

hi
hj

.

W 1/mW ~ 
  0.002 fm

1/ΛQCD ~ 1fm           

s̄

d

d̄

s

s̄

d

d̄

s

perturbation theory applies            

non-perturbative QCD essential



              short distance   

vs

long distance     

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

u? or K, K^*, ...?

t (c, u)

Digression:              mixingK
0
− K̄

0

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

hi

hj
b s

hi

hj hk

b s

hi
hj

.

W 1/mW ~ 
  0.002 fm

1/ΛQCD ~ 1fm           

s̄

d

d̄

s

s̄

d

d̄

s

perturbation theory applies            

non-perturbative QCD essential

hadrons/strong 
coupling   



              short distance   

vs

long distance     

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

u? or K, K^*, ...?

t (c, u)

Digression:              mixingK
0
− K̄

0

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

hi

hj
b s

hi

hj hk

b s

hi
hj

.

W 1/mW ~ 
  0.002 fm

1/ΛQCD ~ 1fm           

s̄

d

d̄

s

s̄

d

d̄

s

perturbation theory applies            

non-perturbative QCD essential

⟨qq⟩
QCD condensates        

hadrons/strong 
coupling   



              short distance   

vs

long distance     

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

u? or K, K^*, ...?

t (c, u)

Digression:              mixingK
0
− K̄

0

which dominates ?            

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

hi

hj
b s

hi

hj hk

b s

hi
hj

.

W 1/mW ~ 
  0.002 fm

1/ΛQCD ~ 1fm           

s̄

d

d̄

s

s̄

d

d̄

s

perturbation theory applies            

non-perturbative QCD essential

⟨qq⟩
QCD condensates        

hadrons/strong 
coupling   



        mixing

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

hi

hj
b s

hi

hj hk

b s

hi
hj

.

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

q b

b q

W W

u, c, t

u, c, t

q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

∝ (VtsV
∗

td)
2

1

16π2

1

M2

W

(

m2
t

M2

W

+ . . .

)

∝ (VusV
∗

ud)
2

1

16π2

1

M2

W

× const

∝ (VusV
∗

ud)
2

1

M4
W

∝ (VusV
∗

ud)
2
Λ2

QCD

M4
W

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

| | = O(∆m
exp

K
) mc

<
∼ GeV

(VusV
∗

ud)
2 + 2 (VusV

∗

ud)(VcsV
∗

cd) + (VcsV
∗

cd)
2 = (VtsV

∗

td)
2

t

if

t

u long-distance
power-suppressed
but CKM-enhanced

Im

light quark loop 
CKM-enhanced

top quark loop 
CKM-suppressed

q b

b q

W W

u, c, t

u, c, t
q b

b q

W W

u, c, t

u, c, t

b

b

s

s b

hi

hj

(c)

b s

s b

hi

hj hk

hl

(d)

b s

s b

hi
hj

hk

.

(e)

t

t
εK = O(10−3)=> constraint on Vtd

∼

10−6

M2
W

∼

10−4

M2
W

k
2
∼ M

2

W

k
2
∼ Λ

2
QCD

unitarity / GIM 
cancellation

u

u

u

u

u

c

c

c
+ +

s̄

d

d̄

s

K
0
− K̄

0

ΔmK long-distance dominated

CPV in mixing short-distance dominated

CPV vanishes for 2 generations, so must involve top in the loop

currently incalculable



Higher-order corrections
We can draw QCD (gluon) corrections to the top loop diagram

As before, we should be wary of the loop integration region 
where k ~ Λ and perturbation theory doesn’t apply. However, it 
turns out that these configurations can all be mimicked by 
diagrams with a local 4-quark vertex (“operator”)

    C(αs,µ)

multiplied by a Wilson coefficient which mimics the contributions 
from k~mW~mt. This works to all orders in perturbation theory and 
is presumed to still apply when quarks are replaced by hadrons
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3.2.1 Mixing

3 physical parameters:

|M12|, |Γ12|,φ ≡ arg
−M12

Γ12

∆M ≈ 2|M12|, ∆Γ ≈ 2|Γ12| cosφ, afs =
∆Γ

∆M
tanφ

aqfs =
Γ(B̄0

q (t) → f)− Γ(B0
q (t) → f̄)

Γ(B̄0
q (t) → f) + Γ(B0

q (t) → f̄)

aqsl =
Γ(B̄0

q (t) → D−
q µ

+)− Γ(B0
q (t) → D+

q µ
−)

Γ(B̄0
q (t) → D−

q µ
+) + Γ(B0

q (t) → D+
q µ

−)
= aqfs

B → B̄ → f

f = D−
q µ

+

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

Q ≡ Q1(µ) = (s̄γµPLd)(s̄γµPLd)

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-

body final states with lattice as below inelastic threshold. D or B decays:

need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-

energy collider processes do. Original example: BBNS. BFS. Mention SCET.

Mention some LCSR work, “pQCD”.

4 Hot topics
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Renormalisation group & 
hadronic matrix elements

The Wilson coefficients depend on a renormalisation scale µ 
which enters in the course of renormalising divergences 
appearing from two loops. It has a physical, Wilsonian, 
interpretation as a cut-off on a low-energy effective theory, 
wherein a new coupling constant C(µ) contains the physics from 
quantum fluctuations with k>µ. We can lower µ changing C(µ) in 
a calculable manner (analogous to the running gauge couplings)

       C(αs,µ)

At µ~2 GeV, you can now ask your lattice theory friend to 
calculate the matrix element

and subsequently you can calculate the local part of the mixing 
amplitude as

This largely carries over to leptonic and semileptonic decays.
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CP violation in              mixing
For CP violation in Kaon mixing,

2

for the mixing-induced CP asymmetry SψKs gen-
eralizes to

SψKs = sin(2β + 2φd) = 0.681± 0.025 , (1)

where φd is the new phase. The information men-
tioned above points toward a small negative value
of φd. On the other hand, the mixing-induced CP
asymmetry Sψφ is given by [7]

Sψφ = sin(2|βs|− 2φs) , (2)

where the SM phases β,βs are defined from the
CKM matrix entries Vtd, Vts through

Vtd = |Vtd|e
−iβ , Vts = −|Vts|e

−iβs , (3)

with βs ≈ −1◦. From eq. (2) one finds that a
negative φs is also required to explain the claim of
[2]. It is then tempting to investigate whether, at
least to first approximation, the same new phase
φd ≈ φs ≈ φB could fit in both Bd and Bs systems,
being a small correction in the former case – where
the SM phase is large – and the bulk of the effect
in the latter.2

The rest of this paper is an attempt to explore
the above possibilities in more detail. For the sake
of clarity, we introduce here some notation details.
The amplitudes for Bq (q = d, s) meson mixings
are parameterized as follows

�Bq|H
full
∆F=2|Bq� ≡ Afull

q e2iβfull
q , (4)

where, to make contact with the conventions on
the SM phases β,βs, one has

βfull
d = β + φd ,

βfull
s = βs + φs . (5)

The magnitudes Afull
q can be written as

Afull
q = ASM

q Cq ,

with ASM
q ≡ |�Bq|H

SM
∆F=2|Bq�| = ∆MSM

q /2 . (6)

Concerning Cq, with present theoretical errors on
the Bq system mass differences ∆Mq, it is im-
possible to draw conclusions on the presence of
NP. Therefore, one typically considers the ratio
∆Md/∆Ms, where the theoretical error is smaller,
and is dominated by the uncertainty in the lattice
parameter ξs, defined as

ξs ≡
FBs

�
B̂s

FBd

�
B̂d

. (7)

2 This simple correlation is unrelated to more involved cor-
relations that invoked ∆F = 1 transitions, as in [15] and
references therein.

The resulting SM prediction for ∆Md/∆Ms is in
good agreement with the experimentally measured
ratio3. Hence it is plausible, at least to first ap-
proximation, to assume ∆Md/∆Ms as unaffected
by NP, i.e., recalling eq. (6), that

Cd = Cs = CB . (8)

We will comment on this assumption later on in
the analysis.

2. �K and sin 2β

We start our discussion by looking more closely
at the �K parameter. For the latter, we use the
following theoretical formula [16]

�K = eiφ� sin φ�

�
Im(MK

12)
∆MK

+ ξ

�
,

ξ =
ImA0

ReA0
, (9)

with A0 the 0-isospin amplitude in K → ππ de-
cays, MK

12 = �K|Hfull
∆F=2|K� and ∆MK the K −K

system mass difference. The phase φ� is measured
to be [17]

φ� = (43.51± 0.05)◦ . (10)

Formula (9) can for instance be derived from any
general discussion of the K−K system formalism,
like [18, 19], and can be shown to be equivalent
to eq. (1.171) of [20], where all the residual un-
certainties are explicitly indicated and found to
be well below 1%. In contrast with the �K for-
mula used in basically all phenomenological appli-
cations, eq. (9) takes into account φ� �= π/4 and
ξ �= 0. Specifically, the second term in the paren-
thesis of eq. (9) constitutes an O(5%) correction to
�K and in view of other uncertainties was neglected
until now in the standard analyses of the UT, with
the notable exception of [21, 22]. Most interest-
ingly for the discussion to follow, both ξ �= 0 and
φ� < π/4 imply suppression effects in �K relative
to the approximate formula. In order to make the
impact of these two corrections transparent, we
will parameterize them through an overall factor
κ� in �K :

κ� =
√

2 sinφ�κ� , (11)

with κ� parameterizing the effect of ξ �= 0. The
calculation by Nierste in [20] (page 58), the anal-
yses in [21, 22] and our very rough estimate at

3 Variations of the SM formula due to different CKM in-
put are much smaller than the relative theoretical error,
which is roughly 2×σξs .

3

the end of the paper show that κ� � 0.96, with
0.94± 0.02 being a plausible figure. Consequently
we find

κ� = 0.92 ± 0.02 . (12)

In view of the improvements in the input param-
eters entering �K , the correction (12) may start
having a non-negligible impact in UT analyses.
Therefore, a better evaluation of this factor would
certainly be welcome.

One can now identify the main parametric de-
pendencies of �K within the SM through the for-
mula

|�SM
K | = κ�C�B̂K |Vcb|2λ2η ×�
|Vcb|2(1− ρ)ηttS0(xt) + ηctS0(xc, xt)− ηccxc

�
,

with C� =
G2

F F 2
KmK0M2

W

6
√

2π2∆MK

, (13)

and where notation largely follows ref. [18], in par-
ticular xi = m2

i (mi)/M2
W , i = c, t. As far as CKM

parameters are concerned, eq. (13) reproduces the
‘exact’ SM result, where no expansion in λ is per-
formed, to 0.5% accuracy. Now, 1 − ρ = Rt cos β
and η = Rt sin β, where the UT side Rt is given
by

Rt ≈
1
λ

|Vtd|
|Vts|

=
ξs

λ

�
MBs

MBd

�
∆Md

∆Ms

�
Cs

Cd
. (14)

with Cd = Cs assumed here (see eq. (8)) and ξs

introduced in eq. (7). Therefore, for the leading
contribution to �K , due to top exchange, one can
write

|�K | ∝ κ�F
2
KB̂K |Vcb|4ξ2

s
Cs

Cd
sin 2β , (15)

showing that the prediction for �K is very sensitive
to the value of |Vcb| but also to ξs and FK . All the
input needed in eqs. (13)-(15) and in the rest of
our paper is reported in table I.

3. Three new-physics scenarios

Next we note that the most updated values for
all the parameters on the r.h.s. of eq. (15), with
exception of sin 2β, are lower with respect to pre-
vious determinations. Notably, the central value
of the most recent estimate of B̂K [9] is lower by
roughly 9%, with a similar effect due to the κ�

factor (see eq. (12)). One can then investigate
whether the value of sin 2β required to accommo-
date |�K | within the SM may be too high with re-
spect to the sin 2β determination from Bd physics,

GF = 1.16637 · 10−5 GeV−2 λ = 0.2255(7) [23]
MW = 80.403(29) GeV |Vcb| = 41.2(1.1) · 10−3 [24]

MZ = 91.1876(21) GeV ηcc = 1.43(23) [25]
αs(MZ) = 0.1176(20) ηct = 0.47(4) [25]
mc(mc) = 1.25(9) GeV ηtt = 0.5765(65) [26]
Mt = 172.6(1.4) GeVa [28] FK = 0.1561(8) GeV [23]

MBd
= 5.2795(5) GeV MK0 = 0.49765 GeV

MBs = 5.3661(6) GeV ∆MK = 0.5292(9) · 10−2/ps
∆Md = 0.507(5)/ps |�K | = 2.232(7) · 10−3

∆Ms = 17.77(12)/ps [29] κ� = 0.92(2)
ξs = 1.21(6) [30–33] φ� = 43.51(5)◦

aThe MS mass value mt(mt) = 162.7(1.3) is derived using
[27].

TABLE I: Input parameters. Quantities lacking a ref-
erence are taken from [17].

as already investigated in [5] for κ� = 1. Here
we would like to emphasize that, more generally,
this could entail the presence of a new phase either
dominantly in the Bd system or respectively in the
K system, or, alternatively, of two smaller phases
in both systems, defining in turn three NP scenar-
ios. Addressing the significance of either scenario
crucially depends on the errors associated with the
theoretical input entering the �SM

K formula. We
will come back to this point quantitatively in the
discussion to follow, where all the present uncer-
tainties are taken into account.

However, since these uncertainties in the input
do not yet allow clear-cut conclusions, we would
like to first illustrate the three just mentioned NP
scenarios by setting all input parameters except
B̂K at their central values. This would correspond
to the hypothetical situation in which all the input,
including the CKM parameters, were controlled
with higher accuracy than B̂K , for which we as-
sume a 3% uncertainty. In fig. 1 (left panel)
we then show |�SM

K | as a function of sin 2β for
B̂K ∈ {0.65, 0.70, 0.75, 0.80} ± 3%. The verti-
cal ranges centered at sin 2β ∈ {0.681, 0.75, 0.88},
with a relative error chosen at 3.7% as in the
sin 2βψKs case, define the scenarios in question.
The horizontal range, representing the experimen-
tal result for �K , shows that sin 2β ≈ sin 2βψKs

would require NP in �K in order to fit the data,
unless B̂K � 0.85. Conversely, in the last sce-
nario, as considered in [5], no NP is required to
fit the data on �K , even for B̂K ≈ 0.65. In this
case, however, the discrepancy with respect to the
sin 2βψKs determination reveals the need for a NP
phase in the Bd system around −9◦. In table II
we report indicative values for various quantities
of interest obtained from the scenarios shown in
fig. 1 (left panel). In particular, values for |�SM

K |
are shown for B̂K = {0.7, 0.8}. In giving the result
for Sψφ we set φd = φs (see discussion below). We
observe that values of B̂K in the ballpark of 0.7
would imply a NP correction to |�SM

K | exceeding
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K
0
− K̄

0

3.2.1 Mixing

3 physical parameters:

|M12|, |Γ12|,φ ≡ arg
−M12

Γ12

∆M ≈ 2|M12|, ∆Γ ≈ 2|Γ12| cosφ, afs =
∆Γ

∆M
tanφ

aqfs =
Γ(B̄0

q (t) → f)− Γ(B0
q (t) → f̄)

Γ(B̄0
q (t) → f) + Γ(B0

q (t) → f̄)

aqsl =
Γ(B̄0

q (t) → D−
q µ

+)− Γ(B0
q (t) → D+

q µ
−)

Γ(B̄0
q (t) → D−

q µ
+) + Γ(B0

q (t) → D+
q µ

−)
= aqfs

B → B̄ → f

f = D−
q µ

+

3.3 Wilson coefficients and renormalisation group

Matching, scale dependence, Wilsonian picture and renormalisation group

equation.

Q ≡ Q1(µ) = (s̄γµPLd)(s̄γµPLd)

A(M̄ → M) = C(µ)�M |Q(µ)|M̄�

�M |Q(µ)|M̄� ≡ 2

3
f 2
Mm2

MBM(µ)

Buras, Guadagnoli, Isidori κ� = 0.94± 0.02

3.4 Hadronic matrix elements

Mixing, Semileptonic decays: form factors. Lattice, LCSR. K decays: 2-

body final states with lattice as below inelastic threshold. D or B decays:

need other methods.

3.5 QCD factorisation

In heavy-quark limit, some B decays factorise in the same way as many high-

energy collider processes do. Original example: BBNS. BFS. Mention SCET.

Mention some LCSR work, “pQCD”.

4 Hot topics

4

correction factor from non-local 
contributions

short-distance “local” contributions
including higher-order perturbative 
QCD corrections



B physics

In Bd  physics the CKM hierarchy is mild, and in Bs physics it is 
reversed. Hence, the nonlocal contributions are small enough to 
allow for a calculation of the mass differences.

Moreover, the b quark mass is large enough for an expansion in 
Λ/mb

This allows theoretical access to the lifetime difference, and is 
applicable to certain types of B decays with one or two hadrons in 
the final state.



            mixing
• flavour violation:                                               A(M̄0 → M

0) ∝ M12 −
i

2
Γ12 $= 010 S. Jäger: Supersymmetry beyond minimal flavour violation

3.1.3 Lower scales

In a purely leptonic decay such as τ → µγ, the matrix
element of the weak hamiltonian can be simply calculated
in perturbation theory. (In fact, in this case the use of the
weak Hamiltonian is not very essential due to the absence
of large radiative corrections.) For the large amount of
data that involve hadrons, one has only

A(i → f) =
∑

k

Ck(µ)〈f |Qk(µ)|i〉 ≡
∑

k

Ck(µ)Bk(i, f),

(49)
where µ is optimally chosen of order of the mass of i. The
hadronic matrix elements 〈f |Qk(µ)|i〉 are usually nonper-
turbative and only calculable in some cases. The latter in-
clude matrix elements for meson-antimeson mixing, which
can be obtained using numerical lattice QCD methods.
Other methods include QCD sum rules based on the op-
erator product expansions (for inclusive and some exclu-
sive B, as well as hadronic τ decays) and collinear expan-
sions (for some exclusive B decays), chiral perturbation
theory in K decays, and the use of approximate flavour
symmetries of QCD to reduce the number of independent
hadronic matrix elements; all of these have systematics
controlling which is a theoretical challenge.

3.2 K0 − K̄0, B0 − B̄0, Bs − B̄s, and D0 − D̄0 mixing

Meson mixings are ∆F = 2 processes. At one loop, the
effective ∆F = 2 hamiltonian to meson-antimeson oscil-
lations is solely due to box diagrams. Complete operator
bases have been given in [1,47]. For ∆B = ∆S = 2 tran-
sitions (Bs − B̄s mixing), one choice consists of the five
operators

Q1 = (s̄a
Lγµba

L)(s̄b
Lγµbb

L), (50)

Q2 = (s̄a
Rba

L)(s̄b
Rbb

L), (51)

Q3 = (s̄a
Rbb

L)(s̄b
Rba

L), (52)

Q4 = (s̄a
Rba

L)(s̄b
Lbb

R), (53)

Q5 = (s̄a
Rbb

L)(s̄b
Lba

R) (54)

(a, b colour indices), plus operators Q̃1,2,3 obtained by flip-
ping the chiralities of all fermions in Q̃1,2,3. The operator
basis for Bd− B̄d, D0− D̄0, and K0−K̄0 mixing are iden-
tical up to obvious substitutions of quark flavours (in the
case of K0−K̄0 and D0−D̄0 mixing, there are also sizable
“long-distance” contributions which cannot be written in
terms of local four-quark operators at the weak scale).

Only Q1 is generated in the SM (to excellent approxi-
mation), following from W − t boxes (Fig. 2.) This results
in

CSM
1 =

G2
F M2

W

16π2
(VtbV

∗
ts)

24 S(xt), (55)

where S [48] is listed in appendix A. SM NLO QCD cor-
rections are reviewed in [46].

Supersymmetric contributions have been computed in
[1,49,50,51,52,53,54,55,56]. Since each δ changes flavour

dLi dLj

dLidLj

u, c, t

u, c, t

W W

Fig. 2. SM diagram for neutral meson-antimeson mixing. (Di-
agrams including Goldstone bosons in Rξ gauge not shown.)

by one unit, the leading contributions are of second or-
der in these parameters. The simplest way to obtain the
second-order terms is to work in the “mass-insertion ap-
proximation”, where the off-diagonal sfermion-mass-matrix
elements are treated as perturbations (Fig. 3). For in-
stance, for two LL mass insertions, diagram 3 (a) (to ze-
roth order in external momenta, and neglecting mass dif-
ferences between the squarks in the loop) is proportional
to

∫

d4k
k2(M2

d̃LL
)2sb

(k2 − m2
g̃)

2(k2 − m2
q̃)

4

=
(δd̃

sb)
2
LL

6

(m2
q̃)

2d2

(dm2
q̃)

2

∫

d4k
k2

(k2 − m2
g̃)

2(k2 − m2
q̃)

2
.(56)

The full result for the gluino-squark contributions reads [1]

C1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
LL, (57)

C̃1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
RR, (58)

C2 = −ε 204xf6(x) (δd̃
sb)

2
RL, (59)

C̃2 = −ε 204xf6(x) (δd̃
sb)

2
LR, (60)

C3 = ε 36xf6(x) (δd̃
sb)

2
RL, (61)

C̃3 = ε 36xf6(x) (δd̃
sb)

2
LR, (62)

C4 = −ε[504xf6(x) − 72f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 132f̃6(x) (δd
sb)LR(δd̃

sb)RL, (63)

C5 = −ε[24xf6(x) + 120f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 180f̃6(x) (δd̃
sb)LR(δd̃

sb)RL. (64)

Here (δd̃
ij)RL ≡ (δd̃

ji)
∗
LR, ε = α2

s/(216 m2
q̃) , x = m2

g̃/m2
q̃,

and f6(x), f̃6(x) are dimensionless loop functions (ap-
pendix A)

There are also chargino-up-squark contributions. These
can be competitive with the gluino-squark contributions
if the charginos are lighter than the gluinos, as tends to
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Qi

only operator present in SM              

+ 3 more

b

b̄s̄

s ∑
ci

M12

Γ12
c, u

no NP contribution to Γ12 unless NP lighter than mB or NP 
significantly affects b->c decays (which are tree-level size in the SM)         

∆M = 2|M12|

∆Γ

Im

B(s) − B̄(s)
mixing-
induced 

CP violation

?



Time-dependent CP asymmetry

CP-violation 
parameterB

B̄

f
Af = 〈f |B〉

Āf = 〈f |B̄〉

ACP
f (t) =

Γ(B̄0(t) → f) − Γ(B0(t) → f)

Γ(B̄0(t) → f) + Γ(B0(t) → f)
= Sf sin(∆Mt) − Cf cos(∆Mt)

Sf =
2 Im λf

1 + |λf |2
Cf =

1 − |λf |2

1 + |λf |2

decay into CP eigenstate:

 can be generalized to non-CP final states

γ

Beyond SM               

M
q
12

= |Mq
12
|e−iφBq

λf = eiφBq
〈f |B̄0

q 〉

〈f |B0
q 〉

φBd
!= 2β

if only one decay amplitude:

Af = Ae
iθ

Āf = Ae
−iθ

Cf = 0 −ηCP(f)Sf = sin(φBq
+ 2θ)

B0

d → ψKS

B0

d → ππ, πρ, ρρ

B0

s
→ J/ψ φ ±S = sinφBs

≈ 0

S = sin(φBd
) = sin(2β)

S = sin(φBd
+ 2γ) = − sin(2α)

φBd,s
+ γ B

0
(s) → D(s)Kfrom

Beyond SM              φBs
!= 0

Note: The phase ϕBq on this slide is the phase of M12 in the standard 
parameterisation. For Bs, this is very close to ϕ entering afs (also beyond SM)



[LHCb, arXiv:1304.2600v3]

 [rad]
s
!

-0.4 -0.2 0 0.2 0.4

]
-1

 [p
s

s
"

#

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

68 % CL
90 % CL
95 % CL
Standard Model

LHCb

Figure 13: Two-dimensional profile likelihood in the (∆Γs, φs) plane for the B0
s → J/ψK+K−

dataset. Only the statistical uncertainty is included. The SM expectation of

∆Γs = 0.087± 0.021 ps−1 and φs = −0.036 ± 0.002 rad is shown as the black point with er-

ror bar [2, 41].

Table 8: Results of the maximum likelihood fit for the S-wave parameters, with asymmetric sta-

tistical and symmetric systematic uncertainties. The evaluation of the systematic uncertainties

is described in Sect. 10.

m(K+K−) bin [MeV/c2 ] Parameter Value σstat (asymmetric) σsyst

990− 1008 FS 0.227 +0.081,−0.073 0.020
δS − δ⊥ [rad] 1.31 +0.78,−0.49 0.09

1008− 1016 FS 0.067 +0.030,−0.027 0.009
δS − δ⊥ [rad] 0.77 +0.38,−0.23 0.08

1016− 1020 FS 0.008 +0.014,−0.007 0.005
δS − δ⊥ [rad] 0.51 +1.40,−0.30 0.20

1020− 1024 FS 0.016 +0.012,−0.009 0.006
δS − δ⊥ [rad] −0.51 +0.21,−0.35 0.15

1024− 1032 FS 0.055 +0.027,−0.025 0.008
δS − δ⊥ [rad] −0.46 +0.18,−0.26 0.05

1032− 1050 FS 0.167 +0.043,−0.042 0.021
δS − δ⊥ [rad] −0.65 +0.18,−0.22 0.06
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Figure 3: Ameas as a function of muon momentum for (a) magnet up, (b) magnet down, and (c) the average.
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Outlook
This was but a brief introduction to a huge and active field.

On the technical side:

- BSM effects in Wilson coefficients (see David Straub’s lecture)
- Factorisation methods (based on Λ/mB expansions)
- Flavour symmetry (SU(3)F) methods

Key observables include
- many B decays accessible at LHCb,
eg exclusive leptonic & semileptonic (e.g. B -> K* µ+ µ-, which 
shows interesting features in exp. data - sadly no time to cover)
- CP violation in K decays, D decays

Another area that has seen (and is seeing) enormous theoretical 
activity are inclusive B decays such as B -> Xsγ. Accessible at 
lepton colliders (Babar, Belle, future Belle2)

These, as mixing, provide powerful constraints on, and vehicles 
to discovery of BSM physics (see David Straub’s lecture)



Reading
Here are a few examples out of many useful resources
Conventions and data:

  PDG review “The CKM quark mixing matrix”, http://pdg.lbl.gov/ (go to
             Reviews,Tables,Plots -> Standard Model and Related Topics)
  CKM fitter site: http://ckmfitter.in2p3.fr/
  UTfit web site: http://utfit.org/
  Heavy flavour averaging group: http://www.slac.stanford.edu/xorg/hfag/

Technicalities of weak Hamiltonian, RGE, etc

  A Buras, Les Houches lectures “Weak Hamiltonian, CP violation and Rare  
  decays”, arXiv:hep-ph/984071, very detailed and pedagogical

  G Buchalla, A Buras,  M Lautenbacher, Rev Mod Phys 68 (1996) 1125

More recent, with more of a new-physics focus

  Y Nir, lectures at the 2007 CERN summer school, arXiv:0708.1872

  G Isidori, lectures at the 2011 CERN summer school, arXiv:1302.0661



Backup



 final state             strong dynamics       #obs    NP enters through    

Leptonic
              

semileptonic,
radiative

charmless hadronic

All non-radiative modes are also sensitive to NP via
four-fermion operators
Decay constants and form factors are essential. Accessible by 
QCD sum rules and, increasingly, by lattice QCD.

O(1)                         

O(10)                         

O(100)                         

decay constant                     

form factors

matrix element              

B➔l+ l-

B➔ K*l+ l-, K*γ

B➔ππ, πK, ρρ, ...

⟨π|jµ|B⟩ ∝ fBπ(q2)

⟨0|jµ|B⟩ ∝ fB

⟨ππ|Qi|B⟩

Exclusive decays at LHCb
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weak  ΔB=ΔS=1 Hamiltonian

The operators Pi are given in [], the Qi are defined as

O7 =
e

16π2
m̂b s̄σµνPRF

µν
b ,

OV =
αem

4π
(s̄γµPLb)(l̄γ

µ
l) ,

OS =
αem

4π
m̂b(s̄PRb)(l̄l) ,

OT =
αem

4π
m̂b(s̄σµνPRb)(l̄σ

µν
PRs) ,

O8 =
gs

16π2
m̂b s̄σµνPRG

µν
b ,

OA =
αem

4π
(s̄γµPLb)(l̄γ

µγ5
l)A ,

OP =
αem

4π
m̂b(s̄PRb)(l̄γ

5
l) ,

(5)

and the primed operators O�
i are obtained from these by PR → PL, PL → PR in

the quark bilinears. gs (e) denotes the strong (electromagnetic) coupling constant

coming from the covariant derivative Dµ = ∂µ+ ieQfAµ+ igsT
A
A

A
µ (Qf = −1 for

the leptons), αem = e
2
/(4π) and m̂b the b-quark mass defined in the MS scheme.

The contribution of the semileptonic Hamiltonian Hsl
eff to the decay amplitude

factorizes (in the “naive” sense) into a sum of products of hadronic and leptonic

currents,

Asl
= L

µ
V aV µ + L

µ
A aAµ + LS aS + LP aP + L

µ
TL aTL,µ + L

µ
TR aTR,µ, (6)

where

L
µ
V = ��+�−|l̄γµ

l|0�,
LS = ��+�−|l̄l|0�,

L
µ
TL =

i�
q2
��+�−|qν l̄σµν

PLl|0�,

L
µ
A = ��+�−|l̄γµγ5

l|0�,
LP = ��+�−|l̄γ5

l|0�,
L
µ
TR = i��+�−|qν l̄σµν

PRl|0�,
(7)

and we have made use of the relation

(s̄σµνPR(L)b)(l̄σ
µν
PR(L)s) =

4

q2
(s̄qνσ

µν
PR(L)b)(l̄qρσ

µρ
PR(L)l), (8)

where q = p − k is the dilepton four-momentum.
1

The hadronic amplitude

coefficients a... are sums of products of form factors and Wilson coefficients and

will be given below.

The hadronic Hamiltonian Heff requires in addition two insertions of the elec-

tromagnetic current (one hadronic and one leptonic) to mediate the semileptonic

decay,

A(had)
=

e
2

q2

�
d
4
xe

−iq·x��+�−|jem,lept
µ (x)|0�

�
d
4
ye

iq·y�M |jem,had,µ
(y)H

had
(0)|B̄�

≡ e
2

q2
L
µ
V a

had
µ .

(9)

1Equation (8) holds for arbitrary time-like four-vector qµ.
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with

H
had
eff =

4GF√
2

�

p=u,c

λp

�
C1Q

p
1 + C2Q

p
2 +

�

i=3...6

CiPi + C8gQ8g

�
, (5)

H
sl
eff = −4GF√

2
λt

�
C7Q7γ + C �

7Q
�
7γ + C9Q9V + C �

9Q
�
9V + C10Q10A + C �

10Q
�
10A

+CSQS + C �
SQ

�
S + CPQP + C �

PQ
�
P + CTQT + C �

TQ
�
T

�
.
(6)

The operators Pi are given in [65], the Qi are defined as

Q7γ =
e

16π2
m̂b s̄σµνPRF

µνb ,

Q9V =
αem

4π
(s̄γµPLb)(l̄γ

µl) ,

QS =
αem

4π

m̂b

mW
(s̄PRb)(l̄l) ,

QT =
αem

4π

m̂b

mW
(s̄σµνPRb)(l̄σ

µνPRl) ,

Q8g =
gs

16π2
m̂b s̄σµνPRG

µνb ,

Q10A =
αem

4π
(s̄γµPLb)(l̄γ

µγ5l)A ,

QP =
αem

4π

m̂b

mW
(s̄PRb)(l̄γ

5l) ,

(7)

and the primed operators Q�
i are obtained from these by PR → PL, PL → PR in

the quark bilinears. gs (e) denotes the strong (electromagnetic) coupling constant

coming from the covariant derivative Dµ = ∂µ+ ieQfAµ+ igsTAAA
µ (Qf = −1 for

the leptons), αem = e2/(4π) and m̂b the b-quark mass defined in the MS scheme.

The contribution of the semileptonic Hamiltonian Hsl
eff to the decay amplitude

factorizes (in the “naive” sense) into a sum of products of hadronic and leptonic

currents,

A
sl
= �M�+�−|Hsl

eff |B̄� = Lµ
V aV µ+Lµ

A aAµ+LS aS+LP aP+Lµ
TL aTL,µ+Lµ

TR aTR,µ,
(8)

where

Lµ
V = ��+�−|l̄γµl|0�,

LS = ��+�−|l̄l|0�,

Lµ
TL =

i�
q2
��+�−|qν l̄σµνPLl|0�,

Lµ
A = ��+�−|l̄γµγ5l|0�,

LP = ��+�−|l̄γ5l|0�,

Lµ
TR =

i�
q2
��+�−|qν l̄σµνPRl|0�,

(9)

and we have made use of the relation

(s̄σµνPR(L)b)(l̄σ
µνPR(L)s) =

4

q2
(s̄qνσ

µνPR(L)b)(l̄qρσ
µρPR(L)l), (10)

where q = p−k is the dilepton four-momentum.
1
The hadronic currents aV µ, . . .

are expressed in terms of form factors and Wilson coefficients, and enter the

helicity amplitudes given below.

1Equation (10) holds for arbitrary time-like four-vector qµ.
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5

= EFT for ΔB=ΔS=1 transitions (up to dimension six)

look for observables sensitive to Ci’s, specifically 
those that are suppressed in the SM

Ci ∼ gNP

m2
W

M2
NP



Semileptonic decay

• kinematics described by dilepton invariant mass q2 and 
three angles

• Systematic theoretical description based on heavy-quark 
expansion (Λ/mb) for q2 << m2(J/ψ)  (SCET)
also for q2 >> m2(J/ψ) (OPE)
Theoretical uncertainties on form factors, power corrections
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q2 dependence (qualitative)
photon pole

[C7/q2]^2branching 
fraction

q2 = (mB-mV)2q2 = 4ml2

↑

interference of
C7, C9, C10

narrow charm
resonances

open charm region

C9, C10 dominate

resonant structure

“low q2 /
large recoil”

“high q2 /
low recoil”

Note - artist’s impression only.
LHCb has not yet published sufficiently fine binning to show the resonant features
[open charm resonances are however visible in published B->K l l data]



three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ → K̄ ∗�+�− amplitude up to α2
em . . .

A(B̄ → V �−�+) =
�

i

Ci��−�+ |̄lΓi l |0��V |s̄Γ�i b|B̄�

+
e2

q2
��−�+ |̄lγµl |0�F .T .�V |T (jhad

µ,em(x)H
had
W (0))|B̄�

We have 2 types of uncertainties

Hadronic parameters (form factors)

� QCDf + estimated power-corrections BFS’01, Egede et al.’08

� Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

� Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10

� Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2
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form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)→ P(pP) + �̄(p�̄) + �(p�)

1) q2 = m2

�̄�
= (p�̄ + p� )2 = (pB − pP)2 4m2

� � q2 � (MB −MP)2

2) cos θ� with θ�∠(�pB ,�p�̄) in �̄�-c.m. system −1 � cos θ� � 1

general problem in b → {d , s}+ �̄� due to Op’s: [s̄Γq][q̄Γ�b] and [s̄Γb][q̄Γ�q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B → P + �̄�] = A[B → P + �̄�]SD−FCNC

+A[B → P + (q̄q)→ P + �̄�]LD

b s

qq

l

l

for B → K + �̄� (q2
max ≈ 22.9 GeV

2
):

q = u, d , s light resonances below q2 � 1 GeV
2

suppr. by small QCD-peng. Wilson coeff. or CKM λ̂u

q = c start @ q2 ∼ (MJ/ψ)2 ≈ 9.6 GeV
2
, (Mψ�)2 ≈ 13.6 GeV

2

⇒ usually A[B → P + �̄�]SD−FCNC = “non-resonant part”
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7 (14) helicity amplitudes in SM (BSM)



three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ → K̄ ∗�+�− amplitude up to α2
em . . .

A(B̄ → V �−�+) =
�

i

Ci��−�+ |̄lΓi l |0��V |s̄Γ�i b|B̄�

+
e2

q2
��−�+ |̄lγµl |0�F .T .�V |T (jhad

µ,em(x)H
had
W (0))|B̄�

We have 2 types of uncertainties

Hadronic parameters (form factors)

� QCDf + estimated power-corrections BFS’01, Egede et al.’08

� Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

� Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10

� Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B → K∗�+�− at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)→ P(pP) + �̄(p�̄) + �(p�)

1) q2 = m2

�̄�
= (p�̄ + p� )2 = (pB − pP)2 4m2

� � q2 � (MB −MP)2

2) cos θ� with θ�∠(�pB ,�p�̄) in �̄�-c.m. system −1 � cos θ� � 1

general problem in b → {d , s}+ �̄� due to Op’s: [s̄Γq][q̄Γ�b] and [s̄Γb][q̄Γ�q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B → P + �̄�] = A[B → P + �̄�]SD−FCNC

+A[B → P + (q̄q)→ P + �̄�]LD

b s

qq

l

l

for B → K + �̄� (q2
max ≈ 22.9 GeV

2
):

q = u, d , s light resonances below q2 � 1 GeV
2

suppr. by small QCD-peng. Wilson coeff. or CKM λ̂u

q = c start @ q2 ∼ (MJ/ψ)2 ≈ 9.6 GeV
2
, (Mψ�)2 ≈ 13.6 GeV

2

⇒ usually A[B → P + �̄�]SD−FCNC = “non-resonant part”
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three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ → K̄ ∗�+�− amplitude up to α2
em . . .

A(B̄ → V �−�+) =
�

i

Ci��−�+ |̄lΓi l |0��V |s̄Γ�i b|B̄�

+
e2

q2
��−�+ |̄lγµl |0�F .T .�V |T (jhad

µ,em(x)H
had
W (0))|B̄�

We have 2 types of uncertainties

Hadronic parameters (form factors)

� QCDf + estimated power-corrections BFS’01, Egede et al.’08

� Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

� Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10

� Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2

J. Martin Camalich (Brighton) B → K∗�+�− at the low-q2 endpoint September 10, 2012 4 / 15

form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)→ P(pP) + �̄(p�̄) + �(p�)

1) q2 = m2

�̄�
= (p�̄ + p� )2 = (pB − pP)2 4m2

� � q2 � (MB −MP)2

2) cos θ� with θ�∠(�pB ,�p�̄) in �̄�-c.m. system −1 � cos θ� � 1

general problem in b → {d , s}+ �̄� due to Op’s: [s̄Γq][q̄Γ�b] and [s̄Γb][q̄Γ�q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B → P + �̄�] = A[B → P + �̄�]SD−FCNC

+A[B → P + (q̄q)→ P + �̄�]LD

b s

qq

l

l

for B → K + �̄� (q2
max ≈ 22.9 GeV

2
):

q = u, d , s light resonances below q2 � 1 GeV
2

suppr. by small QCD-peng. Wilson coeff. or CKM λ̂u

q = c start @ q2 ∼ (MJ/ψ)2 ≈ 9.6 GeV
2
, (Mψ�)2 ≈ 13.6 GeV

2

⇒ usually A[B → P + �̄�]SD−FCNC = “non-resonant part”
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three helicity states for V=K*
dilepton can have J=0 or J=1
several leptonic currents
photon couples only to vector leptonic current. At q2 = 0 photon pole

B̄ → K̄ ∗�+�− amplitude up to α2
em . . .

A(B̄ → V �−�+) =
�

i

Ci��−�+ |̄lΓi l |0��V |s̄Γ�i b|B̄�

+
e2

q2
��−�+ |̄lγµl |0�F .T .�V |T (jhad

µ,em(x)H
had
W (0))|B̄�

We have 2 types of uncertainties

Hadronic parameters (form factors)

� QCDf + estimated power-corrections BFS’01, Egede et al.’08

� Theoretical prediction (LCSRs) Altmannshofer et al.’09

Non-local contribution from Hhad
W in QCDf

� Non-factorizable charm-loop effects BFS’01, Khodjamiran et al.’10

� Non-factorizable light-quark effects BFS’01

Re-asses uncertainties at low-q2
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form factor                     

nonlocal “quark loops”                  

matrix elements of semileptonic/radiative 
Hamiltonian factorize “naively”                   

lepton current                     

KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)→ P(pP) + �̄(p�̄) + �(p�)

1) q2 = m2

�̄�
= (p�̄ + p� )2 = (pB − pP)2 4m2

� � q2 � (MB −MP)2

2) cos θ� with θ�∠(�pB ,�p�̄) in �̄�-c.m. system −1 � cos θ� � 1

general problem in b → {d , s}+ �̄� due to Op’s: [s̄Γq][q̄Γ�b] and [s̄Γb][q̄Γ�q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B → P + �̄�] = A[B → P + �̄�]SD−FCNC

+A[B → P + (q̄q)→ P + �̄�]LD

b s

qq

l

l

for B → K + �̄� (q2
max ≈ 22.9 GeV

2
):

q = u, d , s light resonances below q2 � 1 GeV
2

suppr. by small QCD-peng. Wilson coeff. or CKM λ̂u

q = c start @ q2 ∼ (MJ/ψ)2 ≈ 9.6 GeV
2
, (Mψ�)2 ≈ 13.6 GeV

2

⇒ usually A[B → P + �̄�]SD−FCNC = “non-resonant part”
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7 (14) helicity amplitudes in SM (BSM)



In the news
•

Measurement of Form-Factor-Independent Observables in the Decay B0 ! K!0!þ!"

R. Aaij et al.*

(LHCb Collaboration)
(Received 9 August 2013; published 4 November 2013)

We present a measurement of form-factor-independent angular observables in the decay

B0 ! K!ð892Þ0!þ!%. The analysis is based on a data sample corresponding to an integrated luminosity

of 1:0 fb%1, collected by the LHCb experiment in pp collisions at a center-of-mass energy of 7 TeV.

Four observables are measured in six bins of the dimuon invariant mass squared q2 in the range

0:1< q2 < 19:0 GeV2=c4. Agreement with recent theoretical predictions of the standard model is found

for 23 of the 24 measurements. A local discrepancy, corresponding to 3.7 Gaussian standard deviations is

observed in one q2 bin for one of the observables. Considering the 24 measurements as independent, the

probability to observe such a discrepancy, or larger, in one is 0.5%.

DOI: 10.1103/PhysRevLett.111.191801 PACS numbers: 13.20.He, 11.30.Rd, 12.60.%i

The rare decay B0 ! K!0!þ!%, where K!0 indicates
the K!ð892Þ0 ! Kþ"% decay, is a flavor-changing neu-
tral current process that proceeds via loop and box ampli-
tudes in the standard model (SM). In extensions of the
SM, contributions from new particles can enter in com-
peting amplitudes and modify the angular distributions of
the decay products. This decay has been widely studied
from both theoretical [1–4] and experimental [5–8] per-
spectives. Its angular distribution is described by three
angles (#‘, #K, and $) and the dimuon invariant mass

squared q2, #‘ is the angle between the flight direction of
the !þ (!%) and the B0 ( !B0) meson in the dimuon rest
frame, #K is the angle between the flight direction of the
charged kaon and the B0 ( !B0) meson in the K!0 ( !K!0)
rest frame, and $ is the angle between the decay planes of
the K!0 ( !K!0) and the dimuon system in the B0 ( !B0)
meson rest frame. A formal definition of the angles can
be found in Ref. [8]. Using the definitions of Ref. [2] and
summing over B0 and !B0 mesons, the differential angular
distribution can be written as

1

d"=dq2
d4"

d cos#‘d cos#Kd$dq2
¼ 9

32"

!
3

4
ð1% FLÞsin2#K þ FLcos

2#K þ 1

4
ð1% FLÞsin2#K cos2#‘

% FLcos
2#K cos2#‘ þ S3sin

2#Ksin
2#‘ cos2$þ S4 sin2#K sin2#‘ cos$

þ S5 sin2#K sin#‘ cos$þ S6sin
2#K cos#‘ þ S7 sin2#K sin#‘ sin$

þ S8 sin2#K sin2#‘ sin$þ S9sin
2#Ksin

2#‘ sin2$
"
; (1)

where the q2 dependent observables FL and Si are bilinear
combinations of the K!0 decay amplitudes. These in turn
are functions of the Wilson coefficients, which contain
information about short distance effects and are sensitive
to physics beyond the SM, and form factors, which depend
on long distance effects. Combinations of FL and Si with
reduced form-factor uncertainties have been proposed
independently by several authors [3,4,9–11]. In particular,
in the large recoil limit (low-q2) the observables denoted as
P0
4, P

0
5, P

0
6, and P0

8 [12] are largely free from form-factor
uncertainties. These observables are defined as

P0
i¼4;5;6;8 ¼

Sj¼4;5;7;8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FLð1% FLÞ

p : (2)

This Letter presents the measurement of the observables
Sj¼4;5;7;8 and the respective observables P0

i¼4;5;6;8. This is

the first measurement of these quantities by any experi-
ment. Moreover, these observables provide complemen-
tary information about physics beyond the SMwith respect
to the angular observables previously measured in this
decay [5–8]. The data sample analyzed corresponds to an
integrated luminosity of 1:0 fb%1 of pp collisions at a
center-of-mass energy of 7 TeV collected by the LHCb
experiment in 2011. Charge conjugation is implied
throughout this Letter, unless otherwise stated.
The LHCb detector [13] is a single-arm forward spec-

trometer covering the pseudorapidity range 2< %< 5,
designed for the study of particles containing b or c quarks.

*Full author list given at end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 111, 191801 (2013) P HY S I CA L R EV I EW LE T T E R S
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0031-9007=13=111(19)=191801(8) 191801-1 ! 2013 CERN, for the LHCb collaboration

Descotes-Genon, Matias, Virto e PRD 88,074002 claim 3.9 global

interpretation in NP models: Gauld,Goertz,Haisch; Buras&Girrbach; Buras, DeFazio, Girrbach

further model-independent fits: Altmannshofer&Straub; Beaujean, Bobeth, van Dyk
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P5’ “anomaly”

nonfactorizable QCD affects only 3, not 6 amplitudes. On the other hand, the fact that C9

always appears in linear combination with hλ makes clear that particular care is needed in

attributing the data to a BSM value of this coefficient, as was done in [? ].

The q
2-dependent angular distribution (summed over lepton spins) is quadratic in the

helicity amplitudes and has been given in [1]. In practice, certain ratios of angular coefficients

are favoured because of their reduced sensitity to form factors. Our main purpose is to

critically reexamine the residual uncertainties on those observables, and how they are affected

by different assumptions made. To illustrate our point, we will focus on two observables,

called P1 and P
�
5 in [12, 13]. In terms of the helicity amplitudes, they read:

�P1� = −2
�Re(H+

V H
−∗
V +H

+
AH

−∗
A )�

�β2(|H+
V |2 + |H−

V |2 + |H+
A |2 + |H−

A |2)�
, (3)

�P �
5� =

�β(Re[(H−
V −H

+
V )H

0∗
A + (H−

A −H
+
A )H

0∗
V )�

�
�β2|H0

V |2 + |H0
A|2)��β2(|H+

V |2 + |H−
V |2 + |H+

A |2 + |H−
A |2)�

(4)

where the notation �· · ·� denotes CP -averaging and binning over some q
2 range, and β =

�
1− 4m2

µ/q
2 is the speed of the muon in the dilepton centre-of-mass frame.

In certain approximations P1 and P
�
5 become free of nonperturbative uncertainties. First,

in the heavy-quark limit and neglecting αs(mb) as well as the contributions hλ from the

hadronic weak Hamiltonian, the λ = + helicity amplitudes vanish and Vλ(q2) = Tλ(q2). As

a result,

�P1� = 0, (5)

�P �
5� = 2C10

�βf1C̃9��
�β2f2(C̃2

9 + C
2
10)��β̃2f3(C̃2

9 + C
2
10)

, (6)

where C̃9 = C9 +
2mbmB

q2 C7, and

f1 = (1− q
2
/m

2
B)

−5
, f2 = (1− q

2
/m

2
B)

−6
, f3 = (1− q

2
/m

2
B)

−4 (7)

encapsulate the simple form factor q2-dependence in the heavy quark, αs → limit [3], become

independent of form factors. Second, if the requirement on the form factors is relaxed to

Vλ(q2) = Tλ(q2), without fixing the q
2-dependence to the heavy-quark limit, αs = 0 one,

equations (5) and (6) hold with the replacements

f1 → Ṽ−(q
2)Ṽ0(q

2), f2 → Ṽ
2
0 , f3 → Ṽ

2
− (8)

In this case, form factor uncertainties cancel out only for sufficiently small bin sizes, where

the q2-dependence of the form factors can be neglected. Taken together, this shows that the

4

CERN Courier, December 2013 

Descotes-Genon, Matias, Virto [DMV]

SJ, J Martin Camalich (4.3..8.68 bin actually 
a private update, not stated in paper)

P5’ has strong sensitivity to long-distance power corrections. 
Ongoing discussion.



Flavour:
the glorious past ...

template for the future?



A very brief history of flavour
1934   Fermi proposes Hamiltonian for beta decay

1956-57   Lee&Yang propose parity violation to explain “θ-τ
           paradox”.
           Wu et al show parity is violated in β decay
           Goldhaber et al show that the neutrinos produced in
           152Eu K-capture always have negative helicity

1957   Gell-Mann & Feynman, Marshak & Sudarshan

            V-A current-current structure of weak interactions.
            Conservation of vector current proposed
            Experiments give G = 0.96 GF (for the vector parts)

HW = −GF (p̄γµn)(ēγµν)

−G(p̄γµPLn)(ēγµPLνe) + . . .HW = −GF (ν̄µγµPLµ)(ēγµPLνe)



1960-63  To achieve a universal coupling, Gell-Mann&Levy
          and Cabibbo propose that a certain superposition of
          neutron and Λ particle enters the weak current.
          Flavour physics begins!

1964  Gell-Mann gives hadronic weak current
          in the quark model

1964  CP violation discovered in Kaon decays (Cronin&Fitch)

1960-1968 Jµ part of triplet of weak gauge
         currents. Neutral current interactions
         predicted and, later, observed at CERN.

However, the predicted flavour-changing
neutral current (FCNC) processes
such as KL ➔µ+µ- are not observed!

HW = −GF J
µ
J
†
µ

Jµ = ūγµPL(cos θcd + sin θcs) + ν̄eγ
µPLe + ν̄µγµPLµ

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6

d u

e ν

GF =
g2

4
√

2M2

W

4 S. Jäger: Supersymmetry beyond minimal flavour violation

uLi

dLj

W± i Vij g γµPL

uLi

d̃Lj

w̃+ i Vij

√
2g PR

ũLi

dLj

w̃− i Vij

√
2g PL

ui

dj

H± i Vij (cosβ yujPL+sinβ ydjPR)

uLi

d̃Rj

h̃+ i Vij sinβ ydjPR

ũRi

dLj

h̃− i Vij cosβ yuiPL

Fig. 1. Flavour-changing vertices involving fermions in the
super-CKM basis.

for small to moderate (< 30) values of tanβ but can give
rise to a distinctive pattern at larger values even for mini-
mal flavour violation. We will not discuss these effects; for
a recent review see [20]. Most of the constraints discussed
below still apply in that case, but there may be stronger
ones.

2.2 Origin of (new) flavour violation: supersymmetry
breaking

The superpotential (1) does not break supersymmetry spon-
taneously at tree level. Because of supersymmetric non-
renormalization theorems [21,22,23], this remains true to
all orders in perturbation theory. Neither is electroweak
symmetry broken, at any order.

Observations exclude the presence of mass-degenerate
superpartners for many of the SM particles, which tells
us that supersymmetry is broken. The standard picture
is that supersymmetry breaking occurs in a hidden sector
of SM gauge singlets, via the condensation of an auxiliary
(F or D) component of one or more superfields X . Gauge
symmetry then requires any superpotential couplings be-
tween the visible and hidden sectors to be nonrenormaliz-
able.5 In many cases of interest, all low-energy effects of
supersymmetry breaking can be represented by such effec-
tive nonrenormalizable superpotential, gauge-kinetic, and
Kähler terms, as in

Wbreak = AU
ij
〈X〉
M

UC
i Hu · Qj, (13)

fbreak = Ma
〈X〉
M

WA
a WA

a , (14)

and

Kbreak = KQ
ij

〈XX†〉
M2

Q†
ie

2gaVaQj . (15)

Here AU
ij , Ma, and KQ

ij are dimensionless coefficients. 〈X〉 =

θ2FX is the vacuum expectation value of a hidden-sector
superfield, and the SUSY-breaking terms in the Lagrangian
are found by replacing K → K + Kbreak and W → W +
Wbreak + fbreak in (2). This can be illustrated as follows.
The MSSM, by assumption, does not have any direct renor-
malizable couplings to the hidden sector. Assume then
that the lightest “messenger”, i.e., degree of freedom that
couples both to the field X and to the MSSM fields, has
mass M . Below its mass scale, it can be integrated out of
the theory, giving rise to operators as in (13)–(15). This is
what happens, for example, in models of gauge mediation
(see below).

The term Wbreak from above gives rise to an extra
contribution

∆LA = T U
ij q̃i · huũc

j + h.c.,

T U
ij =

FX

M
AU

ij (16)

5 The one exception is a possible coupling Hu ·HdX, without
imposing further global symmetries.
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1970  To explain the absence of KL ➔µ+µ- , Glashow,
          Iliopoulos & Maiani (GIM) couple a “charmed quark”
          to the formerly “sterile” linear combination
        
          The doublet structure eliminates the Zsd coupling!

1971  Weak interactions are renormalizable (‘t Hooft)

1972  Kobayashi & Maskawa show that CP violation requires
          extra particles, for example a third doublet. CKM matrix

1974  Gaillard & Lee estimate loop
          contributions to the KL-KS mass
          difference
          Bound mc < 5 GeV

1974  Charm quark discovered

− sin θcdL + cos θcsL
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1977  τ lepton and bottom quark discovered 

1983  W and Z bosons produced

1987  ARGUS measures Bd - Bd mass difference
         First indication of a heavy top

        The diagram depends quadratically on mt

1995 top quark discovered at CDF & D0

Precision measurements: masses, running coupling,
direct CP violation, B factories, determination of CKM 
elements, neutrino oscillations, search for electric dipole
moments, proton decay, ... 
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Standard Model
All matter is composed of twelve “flavors” of spin-1/2 fermion,
including three neutrinos, each with different mass.

(
uL

dL

)
uR

dR

(
cL

sL

)
cR

sR

(
tL
bL

)
tR
bR

Q = +2/3
Q = −1/3(

νeL

eL

) −
eR

(
νµL

µL

) −
µR

(
ντ L

τL

) −
τR

Q = 0
Q = −1

Almost all interaction is due to gauge forces. Colored fermions feel
the strong interactions due to the gluon field Gµ. They and the
charged leptons also interact with the electromagnetic field Aµ.

Weak interactions, due to W+ and Z0 boson exchange, are chiral:

W+

dL uL

but not
dR uR

W+

What B-mesons tell us about the Standard Model and “New Physics” – p.3


