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Motivation



QCD: Asymptotic freedom & confinement

q-q-g coupling becomes 
weaker at high energies 
!
High-E: expand in number 
of gluon exchanges 
(Feynman diagrams)

q-q-g coupling diverges 
around 300-500 MeV 
!
Nonperturbative interactions 
!
Only colourless states seen in 
nature

Gross, Politzer, Wilczek
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Discretization

✤ QCD Lagrangian 

!

!

!

✤ Break spacetime up into a grid 

✤ Maintains gauge invariance 

✤ Regulates the QFT nonperturbatively 

✤ Breaking of Lorentz and translational symmetries 

L = −
1

4
F a

µν
F a,µν −

∑

q
ψq

[

γµ(∂µ − igAa

µ
ta) + mq

]

ψq

= Lg − ψQψ



Quarks on sites

Glue on links
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The Lattice



Ken Wilson

✤ 1936-2013 

✤ Renormalization group 

✤ Operator product 
expansion 

✤ Lattice gauge theory

Remembrances: Kronfeld (arXiv:1312.6861), Jackiw (arXiv:1312.6634)



Scalar field

h�f |e�iĤt|�ii =

ZZZ �(t,~x)=�f
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D� ei
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0 dt̃ d3x̃LM
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(@t�)
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(@i�)(@

i�) � V (�)

Transition amplitude in path integral representation

with Lagrangian

Integrand is a complex phase. Does the integral exist?

If V(φ) is small, one Taylor-expands the exponential in a perturbative 
expansions, represented by Feynman diagrams



Imaginary time

LE =
1

2
(@⌧�)

2 +
1

2
(@i�)(@

i�) + V (�)

Analytic continuation back to Minkowski straightforward for 0-1 
particles in initial/final states; difficult otherwise.

Wick rotation: let t = −i τ

h�f |e�Ĥ⌧ |�ii =

ZZZ �(⌧,~x)=�f

�(0,~x)=�i

D� e�
R ⌧
0 d⌧̃ d3x̃LE

with

Integrand is now real and sharply peaked



Discretization

(r+
µ�)(x) =

1

a

[�(x+ aeµ)� �(x)]

x = a(n1, n2, n3, n4), nµ 2 Z

L =
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f
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"
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x̃

d�(x̃)

#
e

�a4 P
x̃

L

Define scalar field only on lattice points

Replace derivative by finite difference

Path integral now ordinary integral



Classical continuum limit

(r�
µ�)(x) =

1
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[�(x)� �(x� aeµ)]
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µ +r�
µ )�

⇡ @µ�(x) +
a

2
@

2
µ�(x) +

a

2

6
@

3
µ�(x)

⇡ @µ�(x) �
a

2
@

2
µ�(x) +

a

2

6
@

3
µ�(x)

⇡ @µ� +
a2

6
@3
µ�

(r+
µ�)(x) =

1

a

[�(x+ aeµ)� �(x)]

Expanding about a=0

Equally good difference operator

Combine to “improve” convergence to continuum limit

In practice, quantum corrections limit the precision of improvement



Link (Wilson line)

Gauge field

Aµ(x) = A

a
µ(x)T

a
, a = 1, . . . ,N2 � 1

Aµ(x) 7! ⇤�1(x)Aµ(x)⇤(x)�
i

g

⇤�1(x)@µ⇤(x)

U

µ

(x) = exp


igP

ZZZ
x+aeµ

x

dyA

a

µ

(y)T

a

�

Uµ(x) 7! ⇤�1(x+ aeµ)Uµ(x)⇤(x)

x

x+ aeµ

SU(N) gauge field

Under a gauge transformation

Under a gauge transformation



Plaquette, aka Wilson action (integral of Lagrangian)

Gauge invariant action

W⇤(x,µ,⌫) = U

†
⌫(x)U

†
µ(x+ ae⌫)U⌫(x+ aeµ)Uµ(x)

S⇤[U ] = �

XXX

x,µ,⌫>µ


1 �

1

2N
Tr [W⇤(x,µ,⌫) + W

†
⇤⇤⇤(x,µ,⌫)]

�

Traces of closed loops yield gauge invariant objects.  E.g. the plaquette:

In the classical continuum limit, with

S⇤⇤⇤ ⇡
a4

4

XXX

x

TrF
µ⌫

Fµ⌫

U

µ

(x) = e

igaAµ(x+ 1
2aeµ)

� =
2N

g2

x

x+ aeµ

x+ ae⌫ x+ aeµ + ae⌫

Continuum action at LO.  Rotationally & 
translationally invariant!



Fermion field

S

f

[ ,  ̄,U ] = a

4
XXX

x

 ̄(x)[(m + � ·r±) ](x)

Naive discretization of Dirac action

+
1
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h
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4
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x

 ̄(x)

(
m (x)

 (x) 7! ⇤�1(x) (x)

Gauge invariant under

Uµ(x) 7! ⇤�1(x+ aeµ)Uµ(x)⇤(x)



Free lattice propagators

� (p) =
m � i
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,
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(Brillouin zone)Momentum space, with lattice cutoff:

Scalar Fermion

with with



Lattice momenta

✤ Poles in 
propagators 
correspond to 
physical states 

✤ Naive fermion 
has extra poles: 
doublers
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pa (continuum)
p̂a (scalar)
p̄a (fermion)
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Lattice momenta

✤ Poles in 
propagators 
correspond to 
physical states 

✤ Naive fermion 
has extra poles: 
doublers

�4 �3 �2 �1 0 1 2 3 4
pµa

�4

�3

�2

�1

0

1

2

3

4
pa (continuum)
p̂a (scalar)
p̄a (fermion)

Good! Bad!



Dealing with doubling

✤ Wilson fermions 

✦ Give doublers a mass, break chiral symmetry 

✤ Staggered fermions 

✦ Reduce number of doublers to 4 

✤ Overlap or domain wall fermions 

✦ Preserve a lattice version of chiral symmetry 

✤ Others (twisted mass, minimally doubled, …) 

✦ Might break flavour symmetries 

✦ Might break a discrete symmetry



Numerical Methods



Treat as statistical system

⟨J(z′)J(z)⟩ =

1

Z

∫
[dψ][dψ̄][dU ] J(z′)J(z) e−SE

⟨J(z′)J(z)⟩ =

1

Z
Tr

[

J(z′)J(z) e−βH
]

Quantum FT : Imaginary-time path integral

Statistical FT : Sum over all microstates

Use the same numerical methods!
Monte Carlo Calculation : Find and use field 
configurations which dominate the integral/sum
Markov chain : Initial configuration, algorithm for 
suggesting updates, accept/reject step



Lattice QCD in a nutshell

=

1

Z

∫
[dU ] Θ[U ] det Q[U ] e−Sg[U ]

Gluonic expectation values

⟨Θ⟩ =

1

Z

∫
[dψ][dψ̄][dU ]Θ[U ] e−Sg[U ]−ψ̄Q[U ]ψ

Fermionic expectation values

⟨ψ̄Γψ⟩ =

∫

[dU ]
δ

δζ̄
Γ

δ

δζ
e−ζ̄Q−1[U ]ζ det Q[U ]e−Sg[U ]

∣

∣

∣

∣

ζ, ζ̄ → 0



Lattice QCD in a nutshell

Probability weight

=

1

Z

∫
[dU ] Θ[U ] det Q[U ] e−Sg[U ]

Gluonic expectation values

⟨Θ⟩ =

1

Z

∫
[dψ][dψ̄][dU ]Θ[U ] e−Sg[U ]−ψ̄Q[U ]ψ

Fermionic expectation values

⟨ψ̄Γψ⟩ =

∫

[dU ]
δ

δζ̄
Γ

δ

δζ
e−ζ̄Q−1[U ]ζ det Q[U ]e−Sg[U ]

∣

∣

∣

∣

ζ, ζ̄ → 0



Lattice QCD in a nutshell

Probability weight

=

1

Z

∫
[dU ] Θ[U ] det Q[U ] e−Sg[U ]

Gluonic expectation values

⟨Θ⟩ =

1

Z

∫
[dψ][dψ̄][dU ]Θ[U ] e−Sg[U ]−ψ̄Q[U ]ψ

Fermionic expectation values

⟨ψ̄Γψ⟩ =

∫

[dU ]
δ

δζ̄
Γ

δ

δζ
e−ζ̄Q−1[U ]ζ det Q[U ]e−Sg[U ]

∣

∣

∣

∣

ζ, ζ̄ → 0

Determinant in probability weight difficult
1) Requires nonlocal updating;  2) Matrix becomes singular



Lattice QCD in a nutshell

Partial quenching =	
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Set

Quenched approximation

detQ = 1
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operator, can be extracted from the combination of the Euclidean 3-point function

CFJB(p⇤, p, x0, y0, z0) =
⌦

y

⌦

z

⌥
�F (x) J(y) �†

B(z)
�

e�ip�·(x�y)e�ip·(y�z) (8.22)

with the Euclidean two-point functions

CBB(p, x0, y0) =
⌦

x

⌥
�B(x) �†

B(y)
�

e�ip·(x�y), (8.23)

CFF (p⇤, x0, y0) =
⌦

x

⌥
�F (x) �†

F (y)
�

e�ip�·(x�y). (8.24)

Here, �B ⇥ q̄⇤�̂5b and �F ⇥ q̄⇤�̂5q (F = P ), �F ⇥ q̄⇤�̂jq (F = V ).

In the following we write ⇥ = |x0� y0| and T = |x0� z0|. As in Sec. 2.2, one can show

by inserting complete sets of states that at large ⇥ , T , and T � ⇥ , the correlation functions

become

CFJB(p⇤, p, ⇥, T ) ⇤ A(FJB)e�EF � e�EB(T��), (8.25)

CFF (p, ⇥) ⇤ A(FF ) e�EF � , (8.26)

CBB(p, ⇥) ⇤ A(BB) e�EB� , (8.27)

where

A(FJB) =

⇤
⌃⌃⇧

⌃⌃⌅

⌃
ZV

2EV

⌃
ZB

2EB

⌦

s

⇤j(p⇤, s) ⌅V
�
p⇤, ⇤(p⇤, s)

⇥
| J |B(p)⇧, F = V,

⌃
ZP

2EP

⌃
ZB

2EB
⌅P
�
p⇤
⇥

| J |B(p)⇧, F = P

(8.28)

A(BB) =
ZB

2EB
, (8.29)

A(FF ) =

⇤
⌃⌃⇧

⌃⌃⌅

⌦

s

ZV

2EV
⇤⇥j (p

⇤, s)⇤j(p⇤, s), F = V (no sum over j),

ZP

2EP
, F = P.

(8.30)

Thus, the matrix elements ⌅P (p⇤)|J |B(p)⇧ and
 

s ⇤j(p⇤, s) ⌅V (p⇤, ⇤(p⇤, s)) |J |B(p)⇧ can be

extracted from (8.28), once the factors ZB, ZF have been extracted from the two-point

functions (the energies EB, EF can be obtained from either the two-point or three-point

functions). Note that in Eqs. (8.28) and (8.29), EB denotes the full, physical energy of the

B meson; this is not equal to the energy obtained from the exponential decay in (8.25) or

(8.27) when an e⇥ective theory like mNRQCD is used for the b quark.

In the next sections I discuss briefly how the form factors can be extracted from the

matrix elements. I will only consider the case where all momenta point in x1-direction.
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3-point function

2-point functions
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Figure 8.23: Contractions for the three-point functions with point sources.

8.8.3 Heavy-light meson three-point functions

In terms of the standard Dirac propagators, the point-source three-point function at ⇥ =

|x0 � y0|, T = |x0 � z0| is given by

CFJB(⇥, T, p, p⇥) =
⌥

y,z

e�ip�·xe�i(p�p�)·yeip·z Tr
�
�F Gq(x, y) �J Gb(y, z) �̂5 Gq�(z, x)

⇥
,

(8.72)

where �F = �̂5 for F = P and �F = �̂j for F = V . See Fig. 8.23 for a diagram showing

the contractions. In (8.72) we used the simple form of the heavy-light current J = q̄ �Jb.

When replacing the b quark propagator by the lattice mNRQCD propagator, the current

has to be replaced by the lattice current derived in Sec. 8.5. It is convenient to compute

and fit the three-point functions for the various terms in the lattice current individually.

Inserting the lattice current, the three-point function becomes

CFJB(⇥, T, k, p⇥) =
1
�

⌥

y,z

e�ip�·xe�i(k�p�)·yeik·z Tr

⇧
G†

�q
(y, x) F (x) ⇤†(y) �̂5

⇥ J

⇤
G⇥v(y, z) 0

0 0

⌅
S(⇥) �̂5 ⇤(z) G�q� (z, x)

⌃
(8.73)

(for x0 > y0 > z0). In (8.73), we have F (x) = 1 for a pseudoscalar meson in the final

state and F (x) = (�1)xj �̂j for a vector meson in the final state. The symbol J in (8.73)

denotes the gamma matrix / derivative operator content of the heavy-light current:

J ⇤
�

�S+(⇥), �S�(⇥), � (�i�̂0v + i�̂ ± iv/�) · �(±)S+(⇥)
 

. (8.74)

The three-point function (8.73) can be computed by using the spectator-quark (q⇥) prop-

agator as a source for the heavy-quark propagator, so that only the sum over y remains

�V = ū�js

Interpolating operators

�B = ū�5b



B ➙ π l ν on the lattice

νe

e
+

B0

π
−

W

time

sp
ac
e
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Large Euclidean-time behavior
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Lattice volume

Lattice spacing

Heavy quark mass

Light quark mass
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Flavour



Quark flavour in the SM

✤ Only charged weak interactions change quark 
flavour 

✤ Flavour mixing 

✤ V is the CKM matrix.  Unitarity + “rephasing” 
implies 4 free SM parameters (one of them a CP-
violating phase)
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Quark flavour at the weak scale

✤ Heavy particles (gauge bosons, top, new physics 
particles) “integrated out”, replaced by local 
operators (just as in Fermi’s weak theory) 

✤ Perturbative calculations in SM (or any other 
concrete theory) determine Wilson coefficients 

✤ LQCD needed to determine matrix of the local 
operators, between hadronic initial & final states



Table of quantities

quantity process LQCD matrix el.

εΚ Κ0 - Κ0-bar BK

Δmd(s) B(s)0 - B(s)0-bar fB(s)2 BB(s)

|Vub| B ➙ π l ν f+(q2)

|Vub| B ➙ τ ν fB

|Vcb| B ➙ D l ν F(w=1)
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CKM unitarity triangle “tensions”

Laiho, Lunghi, Van de Water



Vus and top row unitarity
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Figure 5: The plot compares the information for |Vud|, |Vus| obtained on the lattice with
the experimental result extracted from nuclear β transitions. The dotted arc indicates the
correlation between |Vud| and |Vus| that follows if the three-flavour CKM-matrix is unitary.

covers both results in equation (39). In our opinion, it represents a conservative estimate for
the range permitted by the presently available direct determinations of f+(0) in lattice QCD,
not only for Nf = 2, but also for Nf = 2 + 1.

For fK/fπ, Table 6 contains several simulations withNf = 2+1 dynamical quark flavours.
The latest update of the MILC program is reported in MILC 09A [51]. We use the results
quoted there when forming averages. Three further data sets meet the criteria formulated in
the introduction: BMW 10 [36] and HPQCD/UKQCD 07 [151] with Nf = 2 + 1 and ETM
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FIG. 1. Observables for the decays B0 ! K⇤0µ+µ� (upper two rows) and B0
s ! �µ+µ� (bottom row; untagged averages

over the B̄0
s and B0

s distributions). The solid curves show our theoretical results in the Standard Model; the shaded areas give
the corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 = CSM

9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 39–41, 43] (note that S(LHCb)
4 = �S4 and P 0(LHCb)

4 = �P 0
4).
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FIG. 1. Observables for the decays B0 ! K⇤0µ+µ� (upper two rows) and B0
s ! �µ+µ� (bottom row; untagged averages

over the B̄0
s and B0

s distributions). The solid curves show our theoretical results in the Standard Model; the shaded areas give
the corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 = CSM

9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 39–41, 43] (note that S(LHCb)
4 = �S4 and P 0(LHCb)

4 = �P 0
4).
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FIG. 1. Observables for the decays B0 ! K⇤0µ+µ� (upper two rows) and B0
s ! �µ+µ� (bottom row; untagged averages

over the B̄0
s and B0

s distributions). The solid curves show our theoretical results in the Standard Model; the shaded areas give
the corresponding total uncertainties (with and without binning). The dashed curves correspond to the new-physics fit result
C9 = CSM

9 � 1.1, C0
9 = 1.1 (the uncertainties of the dashed curves are not shown for clarity). We also show our averages of

results from the CDF, LHCb, CMS, and ATLAS experiments [14, 39–41, 43] (note that S(LHCb)
4 = �S4 and P 0(LHCb)

4 = �P 0
4).

Acknowledgments: We gratefully acknowledge discus-
sions with Wolfgang Altmannshofer, William Detmold,
Gudrun Hiller, Alexander Lenz, Iain W. Stewart, Jesse
Thaler, and Michael Williams. SM is supported
by the U.S. Department of Energy under coopera-
tive research agreement Contract Number DE-FG02-
94ER40818. This work was supported in part by an
STFC Special Programme Grant (PP/E006957/1). RH
and MW are supported by an STFC Consolidated Grant.
ZL is partially supported by NSFC under the Project
11105153, the Youth Innovation Promotion Association
of CAS, and the Scientific Research Foundation for
ROCS, SEM.

⇤ smeinel@mit.edu
[1] B. Grinstein, M. J. Savage, and M. B. Wise, Nucl. Phys.

B 319, 271 (1989).
[2] B. Grinstein, R. P. Springer, and M. B. Wise, Nucl. Phys.

B 339, 269 (1990).
[3] M. Misiak, Nucl. Phys. B 393, 23 (1993) [Erratum-ibid.

B 439, 461 (1995)].
[4] A. J. Buras, M. Misiak, M. Münz, and S. Pokorski, Nucl.

Phys. B 424, 374 (1994) [arXiv:hep-ph/9311345].
[5] A. J. Buras and M. Münz, Phys. Rev. D 52, 186 (1995)

[arXiv:hep-ph/9501281].
[6] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev.

Mod. Phys. 68, 1125 (1996) [arXiv:hep-ph/9512380].

Expt: LHCb, CMS & CDF (K*) 
LHCb, CDF (φ)

Horgan, Liu, Meinel, Wingate, arXiv:1310.3887



Other applications



Hadron masses



More topics

✤ Excited state spectroscopy: exotics, hybrids, 
molecules 

✤ Hadron-hadron scattering 

✤ Hot QCD (& dense QCD) 

✤ Strongly coupled gauge theories with Nc ≠ 3, 
different fermion representations (BSM candidates, 
tests of theoretical ideas) 

✤ Chiral gauge theories 

✤ Sign problem



Annual conferences

Give me your up, your down, your strange 
Yearning to be bound. — R D Mawhinney



Summary
✤ Lattice field theory 

✦ Nonperturbative regularisation 
✦ Interesting theoretical questions, esp. regarding fermions 

✤ First-principles numerical calculations 
✦ Statistical uncertainties 
✦ Improvable systematic uncertainties 

✤ Hadron matrix elements contribute to quark flavour 
✦ Global CKM fits 
✦ Rare decays 
✦ Contribute to SM and BSM theories at the weak scale 

✤ Broadly applicable formulation 
✦ QCD applications 
✦ Other strongly interacting theories (technicolour, composite Higgs, 

theories with gravity duals


