

Neutrinoless double-beta decay

YETI 2014, IPPP, Durham

Simon JM Peeters

University of Sussex

During this short hour ...

- Introduction
- Experimental aspects
- Current status
- Future experiments
- Further future
- Conclusions

Beta decay $(A, Z) \rightarrow (A, Z + 1) + e^{-}$

(view early last century)

Beta decay $(A, Z) \rightarrow (A, Z + 1) + e^{-}$

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014

Beta decay $(A, Z) \rightarrow (A, Z + 1) + e^- + \overline{\nu}_e$

Chadwick 1914:

Beta decay has continuous spectrum (and spin ½ missing)

Missing particle vs Energy conservation is

Pauli vs Bohr:

violated on quantum scale

Pauli 1930: neutron (Fermi: neutrino)

Scanned at the American Institute of Physics

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014

Pauli vs Bohr: **Missing particle** VS Energy conservation is violated on quantum scale

Pauli 1930: neutron (Fermi: neutrino)

Institute of Physics

Chadwick 1914: Beta decay has continuous spectrum (and spin $\frac{1}{2}$ missing)

11S University of Sussex Physics & Astronomy

Double beta decay

Maria Goeppert-Mayer 1935

Neutrinoless double-beta decay

University of Sussex Physics & Astronomy

Some (basic) nuclear physics (1/11)

SEMF: Semi Empirical Mass formula

(Bethe-Weizsaecker mass formula)

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A - 2Z)^2}{A} - \delta(A, Z)$$

$$\delta(A, Z) = \begin{cases} -\delta_0 & \text{if } (A, Z) \text{ even } (A \text{ even}) \\ 0 & \text{if } A \text{ odd} \\ +\delta_0 & \text{if } (A, Z) \text{ odd } (A \text{ even}) \end{cases}, \text{ where } \delta_0 = \frac{a_P}{A^{1/2}}$$

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014

Some (basic) nuclear physics (II/II)

For constant and even A, the SEMF can be written in the form:

$$E_b = aZ^2 - bZ - c \pm \delta_0$$

University of Sussex Physics & Astronomy

Some (basic) nuclear physics (II/II)

For constant and even A, the SEMF can be written in the form:

$$E_b = aZ^2 - bZ - c \pm \delta_0$$

Some (basic) nuclear physics (II/II)

For constant and even A, the SEMF can be written in the form:

$$E_b = aZ^2 - bZ - c \pm \delta_0$$

University of Sussex Physics & Astronomy

Observing decays: sketch

$$T_{1/2} = \frac{\ln 2 \cdot a \cdot N_A \cdot M \cdot t}{N_{\beta\beta}}$$

- Assuming $T_{1/2} >> t$
- To measure a half life of 10²⁶⁻²⁷ years, you would want to see at least 1 event/yr

This corresponds to (roughly) 1000 moles, implying order 100 kg

Bringing in realism (nat. ab., eff., backgrounds) makes this only worse ...

NB: common exposure unit used = M t [kg yr]

Neutrinoless double-beta decay, Simon JM Peeters 14 Jan 2014 14

Double-beta decay isotopes (Q>2 MeV)

isotope	Q-value [MeV]	natural abundance	
⁴⁸ Ca	4.27	0.19%	
¹⁵⁰ Nd	3.37	5.6%	CANDLES, AMORE
⁹⁶ Zr	3.35	2.8%	SNO+, DCBA
¹⁰⁰ Mo	3.03	9.6%	
⁸² Se	3.00	9.2%	MOON, AMORE
¹¹⁶ Cd	2.80	7.5%	COBRA, SuperNEMO, LUCIFEF
¹³⁰ Te	2.53	34.5%	COBRA, CUORE, SNO+
¹³⁶ Xe	2.48	8.9%	KamLAND-Zen, EXO, NEXT
¹²⁴ Sn	2.29	5.6%	Sn-loaded scintillator
⁷⁶ Ge	2.04	7.8%	GERDA, MAJORANA
¹¹⁰ Pd	2.01	11.8%	

35 naturally occurring double β decay isotopes – 11 are practical (rate μ Q⁵!!) 34 naturally occurring EC/EC, EC/ β^+ , β^+/β^+ isotopes (but only six have enough energy to go $\beta^+\beta^+$)

Neutrinoless double-beta decay, Simon JM Peeters

15

Double-beta decay isotopes

Neutrinoless...

Neutrinoless...

University of Sussex Physics & Astronomy

```
Introduction
```


University of Sussex Physics & Astronomy

C

0νββ

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014 19

```
Introduction
```


University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014

Consequences of observing $0\nu\beta\beta$

Observation of this process would imply:

- Violation of lepton number (by 2!)
- Majorana nature of light neutrinos (different than quarks and leptons, Schlechter and Valle, 1982)

Consequences of observing $0\nu\beta\beta$

Observation of this process would imply:

- Violation of lepton number (by 2!)
- Majorana nature of light neutrinos (different than quarks and leptons, Schlechter and Valle, 1982)

It would tell us something about:

The seesaw model and why neutrinos are so much lighter than other particles

See-saw model

$$\mathcal{L} = -m_D \left(\bar{N}_R \nu_L + \bar{\nu}_L N_R \right) - \frac{1}{2} m_M \bar{N}_R N_R + h.c.$$

In matrix form:

$$\mathcal{L} = \frac{1}{2} \left(\bar{\nu}_L, \bar{N}_R \right) \begin{pmatrix} 0 & m_D \\ m_D^T & m_M \end{pmatrix} \begin{pmatrix} \nu_L \\ N_R \end{pmatrix} + h.c.$$

If $m_{M} >> m_{D}$, then diagonalising this matrix gives the following eigenvalues:

(Nearly) right-handed neutrino with mass $\sim m_M$ (Nearly) left-handed neutrino with mass $\sim m_D^2/m_M$

See-saw: The heavier $m_{_{M}}$ is, the lighter the left-handed neutrino is

See Fundamentals of Neutrino Physics, Guinti & Kim, Oxford University Press, 2007 (ISBN 978-0-19-850871-7)

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters 14 Jan 2014 23

University of Physics & Astrono

Consequences of observing $0\nu\beta\beta$

Observation of this process would imply:

- Violation of lepton number (by 2!)
- Neutrinos have Majorana masses (different than quarks and leptons, Schlechter and Valle, 1982)
- Neutrinos are their own anti-particles

It would tell us something about:

- The seesaw model and why neutrinos are so much lighter than other particles
- Leptogenesis, a possible origin of the baryon-antibaryon assymmetry in the Universe
- Neutrino absolute mass scale

Neutrino mass hierarchy

24

$0\nu\beta\beta$ decay rate

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \frac{\langle m_{\beta\beta}\rangle^2}{m_e^2}$$

Phase factor Matrix element Effective neutrino mass $\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$ (more in current status)

Neutrino oscillation (PMNS) matrix element

$0\nu\beta\beta$ decay rate

Neutrino oscillation (PMNS) matrix element

NormalInverted $v_{e}[|U_{ei}|^2]$ $v_{u}[|U_{ui}|^2]$ $v_{\tau}[|U_{\tau i}|^2]$

or

 Δm^2_{sol}

 Δm^2_{atm}

 $\sin^2\theta_{13}$

$0\nu\beta\beta$ decay rate

$0\nu\beta\beta$: electron neutrino component

$$m_{\beta\beta} = \cos^2 \theta_{12} \cos^2 \theta_{13} m_1 + \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i\alpha_1} m_2 + \sin^2 \theta_{13} e^{i\alpha_2} m_3$$

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014 27

Neutrino mass

- Cosmological:
 - Planck (95% CL), assuming:
 - ΛCDM
 - 3 massive neutrinos
 - Planck, combined with BAO (baryon acoustic oscillations) (note: taking $m_j = 0.5 \text{ eV}$, $m_j/m_{l,q} < 10^{-6}$)

See PDG, Review of Neutrino Mixing Neutrinoless double-beta decay, Simon JM Peeters

28

Neutrino mass

- Cosmological:
 - Planck (95% CL), assuming:
 - **ЛС**DМ
 - 3 massive neutrinos
 - Planck, combined with BAO (baryon acoustic oscillations) (note: taking $m_j = 0.5 \text{ eV}$, $m_j/m_{l,q} < 10^{-6}$)
- Tritium beta decay endpoint
 - Troitzk (95% CL)
 - Mainz (95% CL)
 - KATRIN expected

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters

See PDG, Review of Neutrino Mixing

 $m_{\nu_e} < 2.05 \text{ eV}$ $m_{\nu_e} < 2.3 \text{ eV}$ $m_{\nu_e} < 0.2 \text{ eV}$

14 Jan 2014

29

Neutrino mass and $0\nu\beta\beta$

 $m_{\beta\beta} = \cos^2 \theta_{12} \cos^2 \theta_{13} m_1 + \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i\alpha_1} m_2 + \sin^2 \theta_{13} e^{i\alpha_2} m_3$

University of Sussex Physics & Astronomy

Neutrino mass and $0\nu\beta\beta$

Neutrino mass and $0\nu\beta\beta$

Neutrino mass and $0\nu\beta\beta$

The solar mixing angle presents the largest uncertainty (factor 2), equal to the matrix element uncertainties (arXiv:1011.4942) (RENO50 and JUNO could really improve this)

University of Sussex Physics & Astronomy

Elliott, Hahn & Moe 1988 (⁸²Se)

Experimental aspects

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014 34

Experimental aspects

Experimental uncertainties

• We measure an inverse half-life by observing a nr of decays:

$$T_{1/2}^{-1} = \frac{\lambda}{\ln 2} \propto \Delta N \qquad \left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left<\frac{m_{\beta\beta}}{m_e^2}\right>^2$$

Experimental aspects

Experimental uncertainties

We measure an inverse half-life by observing a nr of decays:

$$T_{1/2}^{-1} = \frac{\lambda}{\ln 2} \propto \Delta N \qquad \left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left<\frac{m_{\beta\beta}}{m_e^2}\right>^2$$

 The uncertainty on the number of decays observed can be expressed as:

$$\sigma_{\Delta N} = \frac{S}{\sqrt{B}} \propto \frac{aMT}{\sqrt{B\Delta E}} = \frac{aMT}{\sqrt{MT\Delta E}} = a\sqrt{\frac{MT}{\Delta E}}$$

Uncertainties

• We measure an inverse half-life by observing a nr of decays:

$$T_{1/2}^{-1} = \frac{\lambda}{\ln 2} \propto \Delta N \qquad \left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left<\frac{m_{\beta\beta}}{m_e^2}\right>^2$$

 The uncertainty on the number of decays observed can be expressed as:

$$\sigma_{\Delta N} = \frac{S}{\sqrt{B}} \propto \frac{aMT}{\sqrt{B\Delta E}} = \frac{aMT}{\sqrt{MT\Delta E}} = a\sqrt{\frac{MT}{\Delta E}}$$

• With the relation to $m_{\beta\beta}$ this gives:

$$\sigma_{m_{\beta\beta}} \propto \sqrt{a} \left(\frac{MT}{\Delta E}\right)^{1/4}$$

NOTE: this assumes that the backgrounds scale with mass

115

University of Sussex Physics & Astronomy

Uncertainties

• We measure an inverse half-life by observing a nr of decays:

$$T_{1/2}^{-1} = \frac{\lambda}{\ln 2} \propto \Delta N \qquad \left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left<\frac{m_{\beta\beta}}{m_e^2}\right>^2$$

 The uncertainty on the number of decays observed can be expressed as:

$$\sigma_{\Delta N} = \frac{S}{\sqrt{B}} \propto \frac{aMT}{\sqrt{B\Delta E}} = \frac{aMT}{\sqrt{MT\Delta E}} = a\sqrt{\frac{MT}{\Delta E}}$$

• With the relation to $m_{\beta\beta}$ this gives:

$$\sigma_{m_{\beta\beta}} \propto \sqrt{a} \left(\frac{MT}{\Delta E}\right)^{1/4}$$

University of Sussex Physics & Astronomy $\sigma_{m_{\beta\beta}} \propto \sqrt{aMT}$

NOTE: that this assumes that the backgrounds DO NOT scale with mass

Backgrounds

- Internal
 - Clean detector: target and components
 Bulk material is relatively easier,
 surfaces (and contacts) are problematic
- Cosmogenic activation
 - Bulk material needs to be kept underground: no transport by air, go deep quickly and cool down
- External

University of Sussex Physics & Astronomy

- Use shielding and active veto
- Go deep (neutrons can still activate)

Internal/external backgrounds

Common radioactive backgrounds in materials

(http://anti-proton.com/?p=606)

40

Cosmogenic activation

- On surface: hardronix flux of neutrons (95%), protons (3%) and pions (2%)
- Underground:

neutrons: neutrons from (α, n) , muon spallation and thermal neutrons from the rock

- Fluxes and cross sections from standard tables, but large uncertainties
- DON'T transport materials via air (shipping over sea is slower, but better)
- Clean and quickly move underground
- Store as long as possible before using

University of Sussex Physics & Astronomy Lozza, Petzholt, Cosmogenic activation of a Tellurium target 2013(Arxiv) Neutrinoless double-beta decay, Simon JM Peeters 14 Jan 2014

Te example

Isotope	<i>R</i> (<i>\phi</i> from [10][11])	Events/t in 1 yr			
	[µBq/kg]	$t_{exp}=1$ yr	$PF = 10^{-4} + 5h$	t_{cool} =6 months	$t_{cool}=2$ yrs
²² Na	1.01	6.54E+3	4.90	4.29	3.84E+3
²⁶ Al	0.67	0.02	1.37E-5	1.37E-5	0.02
^{42}K	1.33 (0.24)	85.11+156.25	20.87+0.11	0.10	149.806
⁴⁴ Sc	1.19 (0.052)	24.54+19.02	14.29+0.01	0.01	18.58
⁴⁶ Sc	1.97	1.86E+4	35.56	7.85	44.21
⁵⁶ Co	0.13	1.12E+3	2.29	0.45	1.60
⁵⁸ Co	1.29	1.08E+4	23.62	3.96	8.51
⁶⁰ Co	0.81 (0.367)	2.95E+3	2.09	1.96	2.27E+3
⁶⁸ Ga	3.14 (1.28)	21.17+1.59E+4	17.55+15.58	9.77	2.46E+3
⁸² Rb	(2.44)	7.71E+3	44.58	0.30	1.63E-5
⁸⁴ Rb	1.29	5.06E+3	22.76	0.50	1.00E-3
⁸⁸ Y	3.14 (8.11)	1.67E+5	176.68	99.05	3.19E+3
⁹⁰ Y	2.69 (0.165)	229.22+122.35	12.10+0.08	0.08	116.63
¹⁰² Rh	11.77 (0.03)	1.18E+5	128.31	89.37	1.03E+4
102mRh	11.77	5.72E+4	41.46	37.88	3.95E+4
¹⁰⁶ Rh	(0.06)	655.58	0.58	0.41	167.948
^{110m} Ag	2.34	2.92E+4	29.38	17.70	3.84E+3
¹¹⁰ Ag	(0.03)	393.27	0.40	0.24	51.82
¹²⁴ Sb	182.0	1.33E+6	3.36E+3	409.77	294.741
126mSb	71.42 (7.91)	102.46	101.81	4.32E-4	0.64
¹²⁶ Sb	89.65 (126mSb)	1.53E+5	1.80E+3	0.06	0.10

Neutrinoless double-beta decay, Simon JM Peeters 14 Jan 2014

Experimental aspects supernemo Design **SNQ** ତ detector B detector source β1 detector β.

Calorimeter design (source = detector)

- Seminconductors
- Bolometers
- Scintillators

11S

University of Sussex Physics & Astronomy Tracker design (source ≠ detector)

- Tracker
- TPC

Neutrinoless double-beta decay, Simon JM Peeters 14 Jan 2014 44

Phase space factor

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left<\frac{m_{\beta\beta}}{m_e^2}\right>^2$$

- Calculable
- Thought to be . ic wasn't
 . iow probably is
 . ufficiently accurate
 . Dirac wavefunct
 . from sore

J. Kotila and F. lachello, Phys. Rev. C 85, 034316 (2012)

Matrix element

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left(M^{0\nu}\right)^2 \left\langle \frac{m_{\beta\beta}}{m_e^2}\right\rangle^2$$

- Very difficult to calculate
- Not exact, factor of two uncertainties

IBM-2 RESULTS (MAY 2012) LIGHT NEUTRINO EXCHANGE

Improving matrix elements

 $2\nu\beta\beta$ only via 1⁺ states, $0\nu\beta\beta$ via all virtual states: straight comparison is not valid

Measure states via exchange reactions

Neutrinoless double-beta decay, Simon JM Peeters 14 Jan 2014 47

Combining it all

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left<\frac{m_{\beta\beta}}{m_e^2}\right>^2$$

$$\langle m_{\beta\beta} \rangle = 1 \text{ eV}$$

Combining NME with PSF we obtain the expected half-lives

Factor of 2 difference with similar uncertainties

Expected half-lives for light neutrino exchange with $\langle m_v \rangle = 1 \text{eV}$, $g_A = 1.269$. ¹²⁸Te and ¹⁴⁸Nd not included in this figure. For other values, scale with $\langle m_v \rangle^2$ and g_A^4 .

By comparing the calculated half-lives with experimental limits we obtain the corresponding limits for masses.

Combining it all

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \left<\frac{m_{\beta\beta}}{m_e^2}\right>^2$$

$$\langle m_{\beta\beta} \rangle = 1 \text{ eV}$$

Combining NME with PSF we obtain the expected half-lives

Factor of 2 difference with similar uncertainties

Expected half-lives for light neutrino exchange with $\langle m_v \rangle = 1 \text{eV}$, $g_A = 1.269$. ¹²⁸Te and ¹⁴⁸Nd not included in this figure. For other values, scale with $\langle m_v \rangle^2$ and g_A^4 .

By comparing the calculated half-lives with experimental limits we obtain the corresponding limits for masses.

NEMO-3

Also measured half-lifes for: ¹⁰⁰Mo, ⁸²Se, ⁴⁸Ca, ⁹⁶Zr, ¹¹⁶Cd, ¹³⁰Te

⁷⁶Ge: K² et. al.: 0vββ found? (No)

5 isotopically enriched ⁷⁶Ge detectors, Nov 1995 – May 2000

Published by only a part of the Heidelberg-Moscow collaboration, H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004), Mod.Phys.Lett.A21:1547-1566,2006

- Inclusion of unidentified (non-existing?) peaks increases the significance
- In tension with astrophysical bounds on the neutrino mass
- Excluded by follow up experiment GERDA

⁷⁶Ge: GERDA

University of Sussex Physics & Astronomy

GERDA: Nov 2011, start Phase I

8 refurbished enriched diodes from HdM & IGEX

- 86% isotopically enriched in ⁷⁶Ge
- 17.66 kg total mass
- plus 1 natural Ge diode from GTF

2 diodes shut off because leakage current high:

• total enriched enriched detector mass 14.6 kg

Neutrinoless double-beta decay, Simon JM Peeters

University of Sussex Physics & Astronomy

GERDA: external backgrounds

Example of problem found and solved:

Add metal shroud in Ar shield, around the detector strings, in order to to avoid drift of ions to detectors

54

GERDA: Nov 2011, start Phase I

University of Sussex Physics & Astronomy

8 refurbished enriched diodes from HdM & IGEX

- 86% isotopically enriched in ⁷⁶Ge
- 17.66 kg total mass
- plus 1 natural Ge diode from GTF

2 diodes shut off because leakage current high:

• total enriched enriched detector mass 14.6 kg

GERDA: Phase I results

Nov 2011 – May 2013: 21.6 kg yr

NO SIGNAL OBSERVED

K2 CLAIM REFUTED WITH HIGH PROBABILITY

$T_{1/2}^{0\nu} > 3.0 \times 10^{25} \text{ yr (90\% C.L.)}$ **GERDA+IGEX+HdM:** $(< m_{\beta\beta}^{} > < 0.2-0.4 \text{ eV})$ ArXiv:1307.2610 115

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters

14 Jan 2014 56

Current status EXO-200

175 kg enriched ¹³⁶Xe to 80.6% arXiv:1108.4193

University of Sussex Physics & Astronomy

May – Jul 2011, 3.2 kg yr

EXO-200

175 kg enriched ¹³⁶Xe to 80.6%

$T_{1/2}=2.11\pm0.04(\text{stat.})\pm0.21(\text{sys.})\times10^{21} \text{ yr}$

Previous numbers:

2.1 x 10²² (Th) Europhys. Lett. 13 (1990) 31

- > 1.0 x 10²² (Exp) Phys. Let. B 546 (2002) 23–28
- > 8.5 x 10²¹ (Exp) Phys. At. Nucl. 69 (12), 2129–2133 (2006)

New result confirmed by KamLAND-Zen

University of Sussex Physics & Astronomy

Sep 2011- Apr 2012, 26.3 kg yr

University of Sussex Physics & Astronomy

More ¹³⁶Xe: KamLAND-Zen Kamioka Mine, Japan

Xe system

Data taking Oct 2011 – Jan 2012

Mini-balloon : $3.08m\phi$ made of thin (25μ m) nylon film filled with Xe-LS containing 330kg 91%-enriched ¹³⁶Xe. Special nylon without filler

	Xe-LS	KL-LS
Primary oil	Decane 82%	Dodecane 80%
Pseudocumene	18%	20%
PPO (g/ℓ)	2.7	1.36
Rel. Density	+0.1%	1
Rel. Light Y.	-3%	1

60

More ¹³⁶Xe: KamLAND-Zen

$0\nu\beta\beta$ research with TeO₂

CUORE-0: the Demonstrator

- A single CUORE-like tower:
 - 52 5x5x5 cm³ TeO₂ bolometers
- Test of the CUORE cleaning procedures
- Test of the CUORE assembly procedures
- A sensitive 0vDBD experiment
- Same detector mass as CUORICINO:
 - TeO2 mass: 39 kg
 - 130Te mass: 11 kg
- Shielding:
 - Internal and external lead shield
 - Borated pohlyethylene shield
 - Anti radon box

Started data taking in March 2013

Operated in the CUORICINO cryostat: γ background not expected to change \implies study α background

63

Cuore-0 vs Cuoricino bkg

 238 U and 232 Th α lines reduced thanks to the new detector surface treatment.

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters 14 Jan 2014 66

Overview

- Ongoing
 - CUORE
 - KamLAND-Zen see current
 - GERDA-II
 - nEXO
- Under development with strong UK component
 - SNO+

115

University of Sussex Physics & Astronomy

- SuperNEMO
- Notable but not mentioned here
 - Candles, NEXT100, Majorana

Cuore-0 and Cuore Sensitivities

- 1σ sensitivity $T_{1/2}^{0\nu\beta\beta} = 1.6 \times 10^{26}$ y; effective Majorana mass down to 47-100 meV.
 - Assuming a background rate of 10⁻² counts/(keV kg y), and 5 keV FWHM
 - 5 years of live time
- Detector assembly will be finished by June 2014, followed by installation in July and commissioning by the end of 2014.
- Data taking will start in 2015.

115

GERDA-II

Phase I ended September 30, 2013: all Phase I detectors dismounted

Phase II: additional 30 enriched BEGe detectors (adding 20 kg)

already produced by Canberra Olen and completely tested at Hades (Belgium)

Improvements:

- Suppress background by factor > 10
- new front-end readout in close proximity (2 cm) to detectors
- new front-end, HV and signal cabling
- PSA discrimination with BEGe's
- liquid argon scintillation veto being instrumented

Ready for deployment of Phase II hardware Spring 2014

The future of EXO: nEXO nEXO: 5 tonne LXe TPC "as similar to EXO-200 as possible"

Sketch of nEXO in the SNOlab Cryopit

SuperNEMO

University of Sussex Physics & Astronomy

From NEMOIII to SuperNEMO

NEMO-3

SuperNEMO

¹⁰⁰ Mo	isotope	⁸² Se or other
7 kg	isotope mass	100+ kg
²⁰⁸ TI: ~ 100 μBq/kg ²¹⁴ Bi: ~ 300 μBq/kg ²²² Rn: ~ 5 mBq/m3 222	internal contamination ²⁰⁸ TI , ²¹⁴ Bi in the ββ foil Rn in the tracker	208 Tl \leq 2 µBq/kg 214 Bi \leq 10 µBq/kg 222 Rn \leq 0.15 mBq/m3
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
$T_{1/2}(0v\beta\beta)$ > 1-2 x 10 ²⁴ y <m<sub>ββ> < 0.3 – 0.9 eV</m<sub>		$T_{1/2}(0\nu\beta\beta) > 1 \times 10^{26} \text{ y}$ <m<sub>ββ> < 0.04-0.11 eV</m<sub>

NEMOIII to SuperNEMO

Demonstrator under construction: running 2015- 2016

All modules running by 2020: $T_{1/2} \sim 10^{26} \text{ y}$ $< m_{\beta\beta} > \sim 40 - 110 \text{ meV}$

SN

Located at 2 km underground @ SNOLAB Vale nickel mine Sudbury, Ontario, Canada

- 780 tonnes of LS (LAB)
- 12 m diameter acrylic vessel
- 9,500 PMTs with 54% coverage
- 7 ktonne ultapure water shield

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters

SNO+ with ¹³⁰Te

- Large natural isotopic abundance (34%) for ¹³⁰Te
- tonne scale for ¹³⁰Te isotope, cost is \$1.5 million only (b/c use natural Te)
- 0.3% Te (by weight) in SNO+ is 2.34 tonnes of Te or 800 kg of ¹³⁰Te isotope... (0.3% loading isn't a fundamental loading limit either!)
- In the energy range where the Te endpoint is, the known U chain background (²¹⁴Bi-²¹⁴Po) can be rejected by factor >5,000! *"temporal event topology" for background rejection*
- the 2vββ background is relatively small (a factor 100 times smaller than in Nd, previous isotope considered for SNO+ double beta)
- if the Te LS is otherwise radiopure, the dominant background will be ⁸B solar neutrinos

SNO+ with ¹³⁰Te

Expected Average Spectra of Contributing Backgrounds for Two Live Years of Data

76

Further future

Further future

Future of $0\nu\beta\beta$ physics

If neutrinoless double-beta is found

- More focus on matrix elements
- Test multiple isotopes
 - Double-beta decay mechanism
 - Non-standard model interactions

(any process with L=2 can *contribute* to $0\nu\beta\beta$: R_p violating SUSY, V+A interactions, Leptoquarks, Double charged Higgs, Compositeness, Heavy Majorana neutrino exchange ...)

- Scaling
 - remove background scaling
 - Large (efficient) signal detector
 - Limited \$\$\$
 - Scalable technology
 - Deploy multiple isotopes
 - Event topology studies (?)

\Rightarrow Liquid scintillator

- Developments needed
 - Large scale cleaning at very high purity levels
 - Transparent optical mixtures
 - Efficient detection

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters

The end

THE END

Neutrinoless double-beta decay: a

field capable of finding answers to important questions in particle physics and cosmology!

University of Sussex Physics & Astronomy

Neutrinoless double-beta decay, Simon JM Peeters