

Twelve is a superfactorial

HiggsTools Kick-Off Meeting 2–4 April 2014 London

PROJECT: **36** month ESR (phd student): Node: TORINO Title: **VV** scattering and Higg-like couplings @ LHC as a probe of EWSB[†] Co-supervisors: *C. Mariotti* (EXP, CMS), *G. Passarino* (TH)

3-month stay in Freiburg, improving skills in NLO calculations

3-month stay at ETH, complementary (experimental) training

A good quality (theoretical) control over the background is required understanding of the pile-up is mandatory

† if we find evidence for physics beyond the SM, how can one determine the underlying theory?

- ① The main focus of the project will be on the gauge invariant definition and extraction of pseudo-observables like
- VV-scattering cross-section and partial waves (*J* = 0, 1), especially in the high mass region.
- ② A good understanding of these POs, in particular the couplings, is essential to creating solid predictions, especially in a BSM scenario.

Project handling requires development of sophisticated tools to convert experimental data into idealized but theoretically sound quantities. The principal goals of the project are

(1) to improve the LO environment, gradually extending it to NLO-level

(2) to develop a strategy for measuring deviations from the SM, based on using the "full" SM, including all available QCD and EW higher-order corrections, and supplementing it with d = 6 local operators.

If the LHC boson alone contributes to $\text{EWSB}~V_LV_L$ -scattering does not grow at high energies

New Physics also means that the LHC boson is not alone but

NP non-observability at 1 TeV tells us that the rest is heavy. Then the scattering could get strong for a range of energies, until the high-energy UV physics starts unitarizing

LHC experiments can/could reveal this interesting possibility suppose the Higgs coupling to WW is $\sqrt{\delta}$ of the SM value

