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Outline

Four-point correlation functions in planar N = 4 SYM

Summarise recent progress over last two or three years

Amplitudes in planar N = 4 SYM

Obtain 5 point amplitude integrand from 4 point correlator

Five (and higher) point correlator (details in Eden’s talk): Twistor/
Grassmannian / Amplituhedron-like approach to correlators in planar
N = 4 SYM



N = 4 SYM? Prototype gauge theory

SU(N) 4d gauge theory, ’t Hooft coupling ‘a’:
Gauge field
6 massless scalar fields (adjoint rep) φAB

4 massless fermions (adjoint rep)

Finite, conformally invariant (“a” a freely tunable parameter)

The simplest d = 4 quantum field theory.
Starting point in our quest to properly understand 4d QFT.

AdS/CFT correspondence



Correlators
(Correlation functions of gauge invariant operators)

Gauge invariant operators: gauge invariant products (ie traces) of
the fundamental fields
Simplest operator trφ2 (φ one of the scalars)
The simplest non-trivial correlation function is

G4 := 〈O(x1)Ō(x2)O(x3)Ō(x4)〉 O = Tr(φ12φ12)

O ∈ stress energy supermultiplet. We consider correlators of all
operators in this multiplet.
onshell Lagrangian ∈ same supermultiplet



Why are they interesting?

AdS/CFT
Supergravity/String theory on AdS5 × S5 = N=4 super Yang-Mills

Correlation functions of gauge invariant operators in SYM↔
string scattering in AdS
strong coupling (“a”→∞) correlator computed from supergravity
action [’d Hoker Freedman, Arutyunov Frolov]
much studied at weak coupling (a→ 0) (1- and 2-loops
[Eden Schubert Sokatchev]).
Many attempts 8 or 9 years ago at 3-loops, abandoned until
recently...
Contain data about anomalous dimensions of operators and 3
point functions (integrability) via OPE
Big Bonus of last 3 years Correlators contain all scattering
amplitudes (more later)



Four-point correlator

Hidden (permutation) symmetry uniquely fixes the four-point
planar correlator/amplitude to 3 loops [Eden Korchemsky Sokatchev PH]

Fixes 4 loops planar to 3 constants

5 loops planar to 7 constants

6 loops planar to 36 constants

All constants fixed uniquely by examining divergences
(non-planar, few remaining constants)
(Alternatively fixed from the four-point amplitude)



Hidden symmetry

Superconformal symmetry implies
〈OΛ1OΛ2OΛ3OΛ4〉 = 〈OΛ1OΛ2OΛ3OΛ4〉tree + IΛ1Λ2Λ3Λ4(xi)× f (xi ; a)

Any four-point correlator is given in terms of a single function of xi
[Eden Schubert Sokatchev]

integrand f (xi ; a) =
∞∑
`=1

a`

`!

∫
d4x5 . . . d4x4+` f (`)(x1, . . . , x4+`)

Hidden symmetry:

f (`)(x1, . . . x4+`) = f (`)(xσ1 , . . . xσ4+`
) ∀σ ∈ S4+`

NB, the symmetry mixes external variables x1, . . . x4 with
integration variables x5 . . . x4+`



1-, 2- and 3-loop integrands

Entire correlator defined (perturbatively) via f (`)

I conformal weight 4 at each point
I permutation invariant
I No double poles (from OPE)

Naively equivalent to: degree (valency) 4 graphs on 4 + ` points

graph edge =
1
x2

ij

( But: we are also allowed numerator lines⇒ degree ≥ 4 graphs).
Don’t need to label graph since we sum over permutations⇒ sum
over all possible ways of labelling



f (1) =
1∏

1≤i<j≤5 x2
ij

f (2) =
x2

12x2
34x2

56 + S6 perms∏
1≤i<j≤6 x2

ij

f (3) =
(x4

12)(x2
34x2

45x2
56x2

67x2
73) + S7 perms∏

1≤i<j≤7 x2
ij

Unique (planar) possibilities



Four- and five-loops

f (4) = + -

f (5) = - + + - + +

Very compact writing
All come with coefficients 1,-1
From 6 loops we start to see integrands with the coefficient 2 (and
also 0), the first being:



Integrals
* skip to amplitudes

So much for the integrand. What about the integrals?
f -graphs treat all points (external and internal) the same
In order to do the integrals we need to distinguish external and
internal points
inequivalent choices of four external points give different integrals.

1 loop only one choice f (1) =
1∏

1≤i<j≤5 x2
ij

=

1∏
1≤i<j≤4 x2

ij
× 1

x2
15x2

25x2
35x2

45
= := g1234

The massive (offshell) box function



From f -graphs to integrals at 2 loops
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Procedure: Take any four points in the f -graph
Ignore all lines between these vertices to obtain the integrands
(one loop box)2 + (two loop ladder)



3 loop integrals
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Integrals
All these integrals are completely known analytically: massive
ladder integrals
[Davydychev Ussyukina]
Two new three-loop integrals surviving away from the light-like
limit. The dashed lines between adjacent external points indicate
that these integrals vanish in the limit.
Not known analytically previously (no corresponding momentum
space graph)
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Method of computation
[Drummond Duhr Eden Pennington Smirnov PH]

Method/ assumptions:

The integrals are of the form:
∑

rational*(pure polylogs)

The rational pieces can be computed via leading singularities
Pure polyog term has a symbol with letters x , x̄ ,1− x ,1− x̄ , x − x̄
Finally we are able to compute the integral in various limits
u → 0,1,∞
match with ansatz: can completely fix the answer

Uses several techniques available only in the last few years arising out
of the amplitude context.
(Schnetz and Panzer study similar integrals also at 4 loops.)



Relation to amplitudes

triality between three objects in N = 4 SYM

[Alday Maldacena, Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini PH, Mason Skinner,
Caron-Huot, Alday Eden Korchemsky Maldacena Sokatchev, Eden Korchemsky Sokatchev PH,
Adamo Bullimore Mason Skinner, ...]



Triality

Full planar superamplitude
MHV tree super Wilson loop (vev)

lim
x2

i i+1→0

〈T (x1, ρ1, y1)T (x2, ρ2, y2) . . . T (xn, ρn, yn)〉
〈T (x1, ρ1, y1)T (x2, ρ2, y2) . . . T (xn, ρn, yn)〉tree

Full super-correlation function (ys completely factorise)

skip superspace



Superspaces: superamplitudes

Use Nair’s N=4 on-shell superspace, all particles→ superparticle

super-particle

Φ(p, η) =G+(p) + ηψ + η2φ(p) + η3ψ̄(p) + η4G−(p)

All amplitudes→ superamplitudes

A(xi)→ A(xi , ηi)

super-amplitude structure: A(xi , ηi) =

[
η8]AMHV +

[
η12]ANMHV +

[
η16]ANNMHV + ...+

[
η4(n−2)

]
AMHV

=Atree
MHV

(
ÂMHV +

[
η4]ÂNMHV +

[
η8]ÂNNMHV + ...+

[
η4(n−4)

]
ÂMHV

)



Superspace: correlation functions

Similar expansion for correlation functions:

energy momentum supermultiplet

T (x , ρ, ρ̄ = 0, y) = O(x , y) + . . .+ ρ4L(x),

correlation function of T s: ρ-expansion organised in powers of ρ4k

Similar superspace expansion to the superamplitude

Gn|ρ̄=0 := 〈T (1)T (2) . . . T (n)〉
= Gn;0 +

[
ρ4]Gn;1 +

[
ρ8]Gn;2 + · · ·+

[
ρ4(n−4)

]
Gn;n−4

Gn;n−4 is known (at least for n ≤ 11 given by f (n−4) ). Very little
known about the others.



Superamplitude/ supercorrelation function duality

Superduality

lim
x2

i i+1→ 0

〈T (1) . . . T (n)〉
〈T (1) . . . T (n)〉tree

n;0
(x , ρ, ρ̄ = 0, y) =

( An

Atree
n;MHV

(x , η)
)2

duality works at the level of the integrand...
Amplitude written in terms of dual/region momenta
pi = xi − xi+1

NB both sides are expansions both in superspace variables and in
the coupling (loop expansion).
Both sides start 1 + . . . .



Four-point and five-point duality
4-points: 〈T (1) . . . T (4)〉 = G4;0

A4

Atree
4;MHV

:=M4

5-points:

〈T (1) . . . T (5)〉 = G5;0 + G5;1
A5

Atree
5;MHV

:=M5 +
Atree

5;NMHV

Atree
5;MHV

M5

Expanding out the square in the superduality:

Four points

lim
4pointlightlike

G4/Gtree
4 = (M4)2

Five points

lim
5pointlightlike

G5;0/Gtree
5;0 = (M5)2 lim

5pointlightlike
G5;1 =

2
Atree

5;NMHV

Atree
5;MHV

M5M5

FunctionsM depend on bosonic variables and the ’tHooft coupling a
only (but no η dependence.)



Integrands = correlators with Lagrangian insertions

Loop corrections⇒ Lagrangian insertions.

1 loop correlator

〈T (1) . . . T (n)〉(1) =

∫
d4x0 〈L(x0)T (1) . . . T (n)〉(0)

=

∫
d4x0d4ρ0〈T (0)T (1) . . . T (n)〉(0)|ρi =0

so the Born-level (n + 1)-point correlator with the (chiral part of the
on-shell) Lagrangian inserted at new point x0 defines the 1 loop
integrand
`-loops⇒ ` Lagrangian insertions⇒ n + `-point tree correlator
NB parameter space of amplitudes n, k , ` for correlators we only
need n, k .



Correlator amplitude duality at 4,5 points

So G(`)
5;1 = G(`+1)

4;0 at the integrand level
Both four-point and five-point amplitudes are given in terms of the
same objects: f -graphs

external factor × lim
x2

i i+1→0
(mod 4)

∫
d4x5 . . . d4x4+`

f (`)

`!
:=F (`)

4 = (M4)2

external factor× lim
x2

i i+1→0
(i=1...5)

∫
d4x6 . . . d4x5+`

f (`+1)

`!
:=F (`)

5 =M5M5



Amplitude information from f (2) (octahedron)

Having expanded in fermionic variables, we now expand in the
coupling a: Mn := 1 + aM(1)

n + a2M(2)
n + a3M(3)

n + . . .

Octahedron f (2) → F (2)
4 ,F (1)

5

F (2)
4 = 2M(2)

4 +
(
M(1)

4

)2 F (1)
5 =M(1)

5 +M(1)
5

Graphically at four points, recall:
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Graphically at five-points (one loop):
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1 mass box from correlator
23 October 2013 12:00
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Summing all permutations gives the sum over 1 mass box
functions = parity even 1-loop 5-point amplitude
[Bern Dixon Dunbar Kosower 1994].
Also a well known parity odd part O(ε) but important eg in BDS
To see this let’s consider the next order...



Four-points, 3 loop (from f (3))
We have F (3)

4 = 2M(3)
4 +M(1)

4 M
(2)
4
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→ 1
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→

Last two topologies absent for the amplitude: vanish in limit
Graphically: the four external points we pick need to be connected
consecutively: four-cycle.
Four-cycle splits the planar graph into two pieces. Correspond to
product terms.



Five-points, 2 loop and parity odd 1 loop (from f (3))
We have F (2)

5 =M(2)
5 +M(2)

5 +M(1)
5 M

(1)
5

If the 5-cycle splits the f -graph in two it contributes toM(1)
5 M

(1)
5

otherwise toM(2)
5 +M(2)

5

1

2

4

3
6

5 7 1

6

7

2

5

4

3

1

2

4

5

6

3

7

2 loop ladder pentagon2 box× box

We now have two equations (M(1)
5 +M(1)

5 = sum over boxes and

M(1)
5 M

(1)
5 = products) for two unknownsM(1)

5 andM(1)
5 ,

Solve the eqn gives the full (parity even and odd) amplitudeM(1)
5 .



The equation is quadratic and has solution

M(1)
5 =

1
2

(
F (1)

5 ±
√

(F (1)
5 )2 − 4F (2)

5,products

)
One can check that this simplifies very nicely to:

M(1)
5 =

1
2

(
I(1)

1 + I(1)
2

)
.

I(1)
1 = cyc

[
x2

13x2
25

x2
16x2

26x2
36x2

56

]
I(1)

2 = cyc

[
iε123456

x2
16x2

26x2
36x2

46x2
56

]

The terms are displayed graphically as

The starred vertex v indicates a factor iε12345v .



M4 as 6d Embedding space

Extremely useful to view M4 as set of null 6 vectors in P5 with
(2,4) signature
conformal group SO(2,4) acts linearly
invariant tensors are δIJ and (parity odd) εABCDEF (like Lorentz
invariants)
for conformally invariant quantities x2

ij → Xi .Xj

ε123456 := εABCDEF X A
1 X B

2 X C
3 X D

4 X E
5 X F

6

ε123456 × ε123457

=cyc
(

2x2
67x2

13x2
24x2

35x2
14x2

25 + x4
13x2

24x2
25x2

46x2
57 − x4

13x4
24x2

56x2
57 − x2

13x2
14x2

24x2
25x2

36x2
57

)
= - argument of square root.



Story continues to higher loops (from f (3) and f (4))

F (`) = M(`)
5 + M

(`)
5 +

`−1∑
m=1

M(m)
5 M

(`−m)
5

F (`+1) = M(`+1)
5 + M

(`+1)
5 + M(`)

5 M
(1)
5 + M(1)

5 M
(`)
5 +

`−1∑
m=2

M(m)
5 M

(`−m+1)
5

The full two-loop amplitude is

M(2)
5 =

1
2× 2!

(
I(2)

1 + I(2)
2 + I(2)

3

)

(To help find the result we have conjectured that the only parity odd
object is ε12345v (Never get two internal variables in an ε. )



...and higher loops (from f (4) and f (5))

The full three-loop amplitude is

M(3)
5 =

1
2.3!

∫
d4x6d4x7d4x8

(
13∑

i=1

ciI
(3)
i

)
c1 = · · · = c6 = c9 = . . . c12 = 1 c7 = c8 = c13 = −1



...and higher loops
We have up to f (7) and thus we haveM(5)

5 completely andM(6)
5

(parity even part).

In progress: determine parity even in terms of parity odd

Understand how cancellation of non-planar graphs works

Understand how this determines correlator coefficients (extension
of rung rule - just consistency determines everything up to f (5))

(NB But still not the intriguing f (6) graph occurring with coefficient 2)



Twistor approach to correlators
Twistor Wilson loop [Bullimore Mason Skinner]

Compute using twistor Feynman rules

   figure for talks Page 1    



Key point for correlator application
Internal vertex corresponds to insertion of the action as always

Action = g2
∫

Γ
d4xd8θ log detD|x = g2d4xd4ρ T (x , ρ, ρ̄,Y )

So T = Y IJY KL
∫

d4θIJ,KL log detD|x

〈T1 . . . Tn〉 =

(
n∏

i=1

Y IJ
i Y KL

i

∫
d4θi;IJ,KL

)
×
∑

n-point vacuum (ie

no external Wilson loop) twistor diagrams (stripped of their d4|8Z
integrations.)
Chiral and Invariant under superconformal. (CF analytic
superspace, analytic and covariant).
External data (xi , θi) are the insertion “vertices/lines”.
Checked agreement explicitly for 5-point correlator and 6-point
correlator, ρ4 component.
NB. Works like this only for T correlators. For higher charge
correlators will need covariants again.



Twistor diagrams for the correlator

Two of the 6-point ρ4 twistor diagrams

   figure for talks Page 1    

Lightlike limit→ amplitude is automatic diagram by diagram
Twistor rules imply that an n-point correlator of odd degree θ4k has
n + k propagators. (Here n = 6 k = 1)
Checked: agrees with Feynman computation (with Doobary)
Miracle is that this is independent of Z ∗



Grassmannians from twistor rules
[Mason Skinner, Arkani-Hamed Cachazo Cheung Kaplan]

Close relation between twistor rules and Grassmannians for
amplitudes.
k propagators n external twistor points→ Gr(k ,n) Grassmannian∫

dk×(n−k)C
(C1 . . .Ck ) . . . (Cn . . .Ck−1)

δ4k |4k (
∑

i

Ca
i Zi)

eg 5 point NMHV (k = 1)

∫
d4C

(C1) . . . (C5)
δ4|4(

∑
i

CiZi)



Grassmannian form for maximally nilpotent correlators

Twistor rules for correlators (n + k propagators ending on n twistor
lines).
Suggests Gr(n + k ,2n) Grassmanian form.

Eg 5-point θ4 correlator (corresponding to 4-point 1 loop)

∫
d24C δ24|24(Ca

αiZαi)
1∏

i<j<k (ijk)

T a
αi ∈ Gr(6,10)

(ijk) := Ca
i1Cb

i2Cc
j1Cd

j2Ce
k1Cf

k1εacdef

Higher point maximally nilpotent (θ4(n−k)) correlators can be
defined similarly. Integration measure more complicated.



Amplituhedron form
Grassmannian formulae can be converted into “amplituhedron
formulae” (Cells of the amplituhedron) [Arkani-Hamed Trnka].
Superdeltafunctions→ purely bosonic delta functions.

I Introduce 4× k Grassman odd variables φI
a

I Supertwistor Zi = (Zi |χi ) ∈ P3|4 → ZiA = (ZiA, χiIφ
I
a) ∈ P3+k .

(a,a = 1 . . . k , A = 1 . . . (4 + k))
I Further define Y a

A =
∑

i

Ca
i ZiA

I δ4k|4k (
∑

i

Ca
i Zi )→

∫
d4kφI

a δ
k×(4+k)(Y a

A; Y a
0 A)

I Y a
0 A = (0k×4,1k×k )

Eg Five-point amplitude

∫
d4φ

∫
〈Yd4Y 〉〈12345〉4

〈Y 1234〉〈Y 2345〉〈Y 3451〉〈Y 4512〉〈Y 5123〉
× δ4(YA; Y0 A)



Towards the “correlahedron”

Similar manipulations can be performed on correlators

Eg five-point k = 1 correlator

∫
(

6∏
a=1

d4φa)

∫
d24Y

1∏
i<j〈YXiXj〉

〈X1X2 . . .X5〉4δ6×10(Y ; Y0)

X AB
i := Ziα

AZαB
i A,B = 1 . . . 10

Again, the rest of the maximally nilpotent k = n − 4 correlators
can be written similarly
Simply rewrite f (`) via x2

ij → 〈YXiXj〉



So we can rewrite correlators in an amplituhedron-like form
We can now do the same for the 6 point NMHV correlator also
(see Eden talk)
But the real beauty of the amplituhedron is that the amplitude is
uniquely defined by the unique differential form in the space
Gr(k , k + 4) with log divergences on the boundaries
〈Yi(i + 1)j(j + 1)〉 = 0.
Simple analogue Gr(1,3). n-point amplituhedron = polygon in
two-dimensions. Y= points inside the polygon. Boundary
〈Yi(i + 1)〉 = 0.
Loops can also be incorporated to the amplituhedron (but in a
slightly different form.)
Correlahedron should look like the loop sector of the
amplituhedron.
Can it then also then be defined as the (unique?) form on
Gr(n + k ,n + k + 4) with log divergences on the boundaries
〈YXiXj〉 = 0 (which no longer form a closed geometry?)
Must reproduce the loop level (amplitude)2 in all possible m-point
lightlike limits



Conclusions

We have found the analytic correlator up to three loops.
Anomalous dimensions and three-point functions can be
extracted. Integrability?
General method for attacking other integrals
Integrand level we have four-point correlator up to 7 loops (using
four-point amplitude)
Conversely use correlator to obtain 5-point amplitude (up to 5
loops or 6 loops parity even)

Four-point amplitude
⇓

Four-point correlator
⇓

Five-point amplitude

Higher-point MHV amplitude from four-point correlator
(disentangle mixing from (NMHV)2??)



Conclusions (cont):

5-point correlator? (Work in progress - hard but we now have a
good handle of this both from superconformal representation
theory (see Eden’s talk) and Twistor field theory)

Amplituhedron/ positive Grassmanians/onshell diagrams: nice
new insights concerning the amplitude integrand.

We have seen how a single object contains many different
amplitude integrands in different limits

Generalisation of amplituhedron type ideas to the correlator....?
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