$H \rightarrow \tau \tau \tau$ at the LHC

Higgs Maxwell Workshop University of Edinburgh 26 February 2014

Katy Grimm

0

Lancaster University

Introduction: The Latest Evidence for SM BEH scalar boson

- H → Fermions!
- 26 November 2013 CERN Seminar:
 - ATLAS showed evidence for Htautau: 3.2 σ expected, 4.1 σ observed with 20.3 fb⁻¹ of 8 TeV data
 - Conf Note ATLAS-CONF-2013-108
- 3 December 2013 CERN-LHC Seminar:
 - $^{\circ}$ CMS showed evidence for Htautau 3.6 σ expected, 3.4 σ evidence. 19.7 fb-1 of 8 TeV + 4.9 of 7 TeV
 - Paper in arxiv on 20 Jan arXiv:1401.5041v1

H Decay Modes, Searches at the LHC

$H \rightarrow \tau \tau$ at ATLAS and CMS

In addition signatures based on H production are sought:

CMS uses a series of cut-based categories to narrow in on the signatures, and ATLAS uses a Boosted Decision Tree

Tau Identification

- $m_{\tau} = 1.78$ GeV; Decay length = 87 μ m taus almost always **decay** within the beam pipe. $\tau = \gamma_{\tau}$
- Hadronic decays are highly collimated and have low track multiplicity– I or 3 charged pions
- TaulD (and lepton suppression) uses Multivariate Techniques that take advantages of shower-shape and track information

 BR_{τ} $\tau_{\rm had}$ > | Prong (BR = 49.5%): Corresponds mostly to: $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$ or to: $\mathcal{T}^{\pm} \rightarrow \rho^{\pm} (\rightarrow \Pi^{\circ} \Pi^{\pm}) \mathcal{V}_{\tau}$ >3 Prong (BR = 15.2%): Corresponds mostly to: $\tau \pm \rightarrow a_1 \pm (\rightarrow \rho \circ \pi^{\pm} \rightarrow 3\pi^{\pm})$

W

Backgrounds

Highly dependent on the tau channel:

$Z \rightarrow \tau \tau$ Simulation: Embedding

- Both ALTAS and CMS use Embedding: all properties of a $Z \rightarrow \tau \ \tau$ event except the taus are modeled by $Z \rightarrow$ $\mu \mu$ data
- Remove μ from data
 Simulate τ including spin
 Add τ in place of the μ
- Major advantages:
 - Directly model with data: Zboson kinematics, jets, MET resolution, pile-up, and VBF/ EWK production
 - MC would not have a signalfree Ztautau region to check modeling.

 $Z \rightarrow \tau \tau$ with event properties from data

Modeling Multijet Background

- QCD Multijet background is estimated directly from data both at CMS and ATLAS
- The shape is modeled using a sample of one of the following
 - taus/leptons that fail the isolation requirement,
 - taus that fail ID requirements, or
 - taus that have the same charge

CMS Tau pT

ATLAS MET (lephad, hadhad)

Reconstructing di-tau Mass

• Good m_{τ τ} resolution provides separation between H and $Z \rightarrow \tau \tau$

Final state neutrinos are a problem. Ditau Mass is reconstructed using kinematic probabilities of neutrinos w.r.t. taus e.g. dR(τ ν)

Mass Resolution varies between ~10%-20% depending on channel

ATLAS Signal Region Categories

In ATLAS, sub-categories within each channel are created based on signal kinematics

	Category	Selection	$ au_{\mathrm{lep}} au_{\mathrm{lep}}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
	VBF	$p_{\mathrm{T}}(j_1) > (\text{GeV})$	40	50	50
TLAS		$p_{\mathrm{T}}(j_2) > (\mathrm{GeV})$	30	30	30/35
		$\Delta \eta(j_1, j_2) >$	2.2	3.0	2.0
		b -jet veto for jet $p_T > (GeV)$	25	30	-
		$p_{\rm T}^H > ({\rm GeV})$	-	-	40
		$p_{\mathrm{T}}(j_1) > (\text{GeV})$	40	-	-
	Boosted	$p_{\rm T}^H > ({\rm GeV})$	100	100	100
		b -jet veto for jet $p_{\rm T} > ({\rm GeV})$	25	30	-

ATLAS BoostedDecisionTrees

Each channel and sub-category has it's own BDT training.

- Train the BDT to recognize signal and background based on these training variables:
 - DiTau Mass & Separation
 - DiJet Mass & Separation
 - Direction of MET wrt Taus
 - How momentum points in the event: scalar and vector sum pT
- The BDT is the final discriminating variable

ATLAS BDT Scores

2-jet 0-jet 1-jet **CMS** Categories $p_{T}^{\pi} > 100 \text{ GeV}$ m_{ii} > 500 GeV m_{ii} > 700 GeV $p_T \pi >$ VBF & GluonFusion production 100 GeV $|\Delta \eta_{ii}| > 3.5$ $|\Delta \eta_{ii}| > 4.0$ high-p_Tth high-p_τ^{τh} high-p_τ^{τh} tight boosted loose $p_T^{\tau h} > 45 \text{ GeV}$ VBF tag VBF tag $\mu \tau_h$ (2012 only) $low-p_T^{Th}$ low-p_τ^{τh} baseline high-r - Th Variables used in -high-p₁^{τh}high-p_Tth tight $p_T^{\tau h} > 45 \text{ GeV}$ boos ed loose **VBF** tag **VBF** tag cutting: eT_{h} (2012 only) low-p_T^{τh} low-p_τ^{τh} baseline Jet Multiplicity $E_{\rm T}^{\rm miss}$ > 30 GeV Dilet Mass & Separation high-p_T^µ high-p_T^µ tight $p_T^{\mu} > 35 \text{ GeV}$ loose VBF tag DiTau pT VBF tag eμ (2012 only) low-p_τ^μ low-p_τ^μ baseline H pT, Tau or lep pT Central Jet Veto high-p_T high-p_T p_⊤^I > 35 GeV 2-jet ee, µµ low-p_T low-p_T baseline highly $\tau_h \tau_h$ VBF tag boosted boosted (8 TeV only) baseline $p_{T}^{TT} >$ $p_{T}^{TT} >$ $p_{\tau}\pi > 100 \text{ GeV}$

100 GeV

170 GeV

m_{ii} > 500 GeV

 $|\Delta \eta_{ii}| > 3.5$

CMS Categories

Associated Production:VH

Variables used in cutting: Lepton& Tau pT Lepton & Tau Eta Lepton & Tau isolation

Isolation:

$$I^{L} \equiv \sum_{\text{charged}} p_{\text{T}} + \max\left(0, \sum_{\text{neutral}} p_{\text{T}} + \sum_{\gamma} p_{\text{T}} - \frac{1}{2} \sum_{\text{charged, PU}} p_{\text{T}}\right)^{T}$$
$$R^{L} \equiv I^{L} / p_{\text{T}}^{L},$$

ZH

WH

First ID Z \rightarrow II, 60<m_Z<120 GeV, then a H \rightarrow II from remaining leptons

Irigger(p1 threshold)							
Channel	HLT requirement		Lepton selectio	n			
$\mu + \mu \tau_h$	$\mu(17) \And \mu(8)$	$p_{ m T}^{\mu_1} > 20 \ p_{ m T}^{\mu_2} > 10$	$ \eta^{\mu} < 2.4$ R	$R^{\mu} < 0.1-0.2$			
		$p_{\rm T}^{\tau_{\rm h}} > 20$	$ \eta^{\tau_{\rm h}} < 2.3$ <i>I</i>	th < 2			
$e + \mu \tau_h /$	$e(17) \& \mu(8)$	$p_{T}^{\epsilon_{1}} > 20$	$ \eta^{\rm e} < 2.5$ R	$R^{\ell} < 0.1-0.2$			
$\mu + e\tau_h$	$e(8) \& \mu(17)$	$p_{\rm T}^{\epsilon_2} > 10$	$ \eta^{\mu} < 2.4$				
	1	$p_{\rm T}^{\rm ch} > 20$	$ \eta^{\tau_{\rm h}} < 2.3$ I	^{<i>v</i>_h} < 2			
$\mu + \tau_h \tau_h$	μ(24)	$p_{\rm T}^{r} > 24$	$ \eta^{\mu} < 2.1$ R	$R^{\mu} < 0.1$			
		$p_{\rm T}^{s_{n,1}} > 25$ $n^{\tau_{n,2}} > 20$	$ \eta^{r_h} < 2.3$ I	^{u_h} < 2–3			
0 5 5	$a(20) = \pi (20)$	$p_{\rm T} > 20$ $p_{\rm e} > 24$	w ^e < 21 p	$p_{e} < 0.1 \ 0.15$			
$e + \iota_h \iota_h$	$e(20) \& t_{h}(20)$ $e(22) \& \tau_{h}(20)$	$p_{\rm T} > 24$ $n^{\tau_{h,1}} > 25$	$ \eta < 2.1$ K	$\tau_{\rm h} < 2$			
	$e(22) \propto t_{h}(20)$	$p_{T_{h,2}} > 20$	$ \eta \sim 2.5$ 1				
		$p_{\rm T} > 20$					
Resonance	HLT requirement	Le	epton selecti	on			
$Z ightarrow \mu \mu$	$\mu(17) \& \mu(8)$	$p_{\rm T}^{\mu_1} > 20$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.3$			
		$p_{\rm T}^{r_2} > 10$					
$Z \rightarrow ee$	e(17) & e(8)	$p_{\rm T}^{\rm e_1} > 20$	$ \eta^{e} < 2.5$	$R^{\rm e} < 0.3$			
		$p_{\rm T}^{e_2} > 10$					
$H \rightarrow \mu \tau_h$		$p_{\rm T}^{\mu} > 10$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.3$			
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 15$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$			
$H \rightarrow e \tau_h$		$p_{\rm T}^{\rm e} > 10$	$ \eta^{\rm e} < 2.5$	$R^{\rm e} < 0.2$			
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 15$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$			
$H \to \tau_h \tau_h$		$p_{\mathrm{T}}^{\overline{v}_{\mathrm{h}}} > 15$	$ \eta^{\tau_{\rm h}} < 2.3$	$I^{\tau_{\rm h}} < 1$			
$H \rightarrow e\mu$		$p_{\rm T}^{\ell} > 10$	$ \eta^{\rm e} < 2.5$	$R^{\ell} < 0.3$			
			$ \eta^{\mu} < 2.4$				

Systematic Uncertainties:

- I) Uncertainties related to theory (most important for Signal MC)
 - 2) Uncertainties from experimental sources

ATLAS:

			σ		
Source of Uncertainty	Uncertainty on μ	\leq Signal strength $\mu = \frac{O_{measured}}{O_{measured}}$			
Signal region statistics (data)	0.30	$\sigma_{_{S\!M}}$			
$Z \rightarrow \ell \ell$ normalization ($\tau_{\rm lep} \tau_{\rm had}$ boosted)	0.13				
$ggF d\sigma/dp_T^H$	0.12	CMS overview (not the full list)			
JES η calibration	0.12	Tau ID & Trigger	6 to 10% on rate		
Top normalization ($\tau_{lep} \tau_{had}$ VBF)	0.12		3% on the Energy I 29% on		
Top normalization ($\tau_{lep} \tau_{had}$ boosted)	0.12	l lau _{had} Energy Scale	yields		
$Z \rightarrow \ell \ell$ normalization ($\tau_{\rm lep} \tau_{\rm had}$ VBF)	0.12	$Z \rightarrow II$ normalization	20-80% on rate		
QCD scale	0.07]	4-15%		
di- $ au_{had}$ trigger efficiency	0.07	Top & Diboson norm.			
Fake backgrounds ($\tau_{lep}\tau_{lep}$)	0.07	$qq' \rightarrow H: PDF \& Scale$	4% & 3% on rate		
$ au_{had}$ identification efficiency	0.06	variations;			
$Z \rightarrow \tau^+ \tau^-$ normalization ($\tau_{\rm lep} \tau_{\rm had}$)	0.06] gg→H; generator	30% & (10-41)% on rate		
$ au_{\rm had}$ energy scale	0.06	differences & missing HO			

Leading theory uncertainty is due to effect of top, bottom, charm quark masses in gluon-gluon loop, affecting P_T(H) spectrum in gluon fusion produced H (~30%)

The Combined Fit: Determining the Signal Strength

- To determine the signal strength in the data, a pdf of each background and MC signal is made.
 - In ATLAS the discriminating variable is the BDT distribution
 - In CMS the discriminating variable is the $m_{\tau \tau} m_{vis \tau} r$, or the BDT for the ee and $\mu \mu$ channels
 - A global maximum likelihood fit is done simultaneously in all channels:
 - The backgrounds and signals are allowed to move within their systematic uncertainties
 - The normalizations for many backgrounds are floated
 - Best fit for the signal strength μ is extracted.

Signal strength
$$\mu = \frac{\sigma_{measured}}{\sigma_{SM}}$$

17

Results: By the numbers

ATLAS Fit results: Signal observed with significance **3.2** σ expected, 4.1 observed for signal hypothesis of m_H = 125 GeV

Measured signal strength obs/SM: $\mu = 1.4 (+0.5 - 0.4)$

ATLAS: Events in highest BDT-score bins

		Lep-lep	Lep-had	Had-had
VBF	Signal	5.7±1.7	8.7±2.5	8.8±2.2
	Bkgd	13.5±2.4	8.7±2.4	11.8±2.6
	Data	19	18	19
Boosted	Signal	2.6±0.8	8.0±2.5	3.6±1.1
	Bkgd	20.2±1.8	32±4	11.2±1.9
	Data	20	34	15

High sensitivity CMS categories:

	-					-		
	SM Higgs ($m_{\rm H} = 125 {\rm GeV}$)						$\sigma_{\rm eff}$	
Event category	ggH	VBF	VH	Σ signal	Background	Data	$\frac{S}{S+B}$	(GeV)
$\mu \tau_{\rm h}$								
VBF tag 7 TeV	0.2	1.3	_	1.6 ± 0.1	22 ± 2	23	0.14	19.6
Loose VBF tag 8 TeV	1.1	3.4	_	4.5 ± 0.4	81 ± 7	76	0.17	17.0
Tight VBF tag 8 TeV	0.3	2.0	_	2.4 ± 0.2	15 ± 2	20	0.49	18.1
eτ _h								
VBF tag 7 TeV	0.2	0.7	_	0.9 ± 0.1	14 ± 2	13	0.24	15.9
Loose VBF tag 8 TeV	0.6	1.8	_	2.4 ± 0.2	45 ± 4	40	0.14	16.7
Tight VBF tag 8 TeV	0.3	1.3	_	1.6 ± 0.1	9±2	7	0.51	16.2
τ _h τ _h								
1-jet boosted 8 TeV	7.2	2.1	1.0	10.3 ± 1.7	1133 ± 49	1120	0.054	15.2
1-jet highly-boosted 8 TeV	5.6	1.6	1.2	8.4 ± 1.2	380 ± 23	366	0.14	13.1
VBF tag 8 TeV	0.5	2.4	_	3.0 ± 0.3	29 ± 4	34	0.32	14.3

CMS Fit results: Signal observed with significance **3.7** σ **expected**, **3.2 observed** for signal hypothesis of m_H =125 GeV

Measured signal strength obs/ SM: μ =0.78 (+-0.27)

Representing the Signal

- Every event is associated to a Histogram Bin in the BDT or Mass Distribution. Plot the Signal/Background of the bin for every event:
- In effect, put high-sensitivity bins together and compare to data

CMS Compatibility with $M_H = 125$ GeV

ATLAS Compatibility With M_H=125 GeV

Signals at M_{H} =110, 125 and 150 GeV are shown at best fit μ ; post-fit background normalizations

- This analysis was not designed to measure the H mass. But we can look at how well the excess matches various mass hypotheses
- Each event is weighted by In(I+S/B) for its corresponding bin in BDTscore
- Excess of data events is consistent with presence of Higgs at 125 GeV

Future Htautau Measurements

- H Fermion coupling
- Possibility to measure H Charge Parity properties through polar angle distributions with specific *T*-spin correlations? (S. Berge, W. Bernreuther, B. Niepelt, H. Spiesberger arXiv:1108.0670v2)
- ~3000 fb⁻¹? Higgs Self-coupling with bbtautau (M.J. Dolan, C. Englert, M. Spannowsky, JHEP10(2012)112)

Summary

- Both ATLAS and CMS see > 3 σ evidence for $H \rightarrow \tau \tau$, the first direct evidence for H decaying to fermions at the LHC
- Measured signal strengths are consistent with the Standard Model:
 - ATLAS: *μ* = 1.4 (+0.5 -0.4)
 - CMS: μ =0.78 (+-0.27)

Backup

$H \rightarrow \tau \tau \tau$ Candidate Event In Had-

Run: 209074 Event: 29487501

> 2012-08-23 15:06:35 UTC

ATLAS Monte Carlo Samples

MC Sample	Generator
GGF	POWHEG w/(NLO) QCD (CT10 PDF)
VBF	POWHEG w/(NLO) QCD (CT10 PDF)
VH	LO QCD PYTHIA (CTEQ6LI)
W/Z+jets	ALPGEN. MLM matching scheme between the hard process and the parton shower (calculated with LO matrix elements for up to five jets)
ttbar	MC@NLO (CTI0)
single top (t/s channel, Wt)	ACERMC (CTEQ6LI)
WZ, ZZ, & WW for leplep	HERWIG (CTEQ6LI)
WW (lephad and hadhad)	ALPGEN interfaced to HERWIG (CTEQ6LI)

Soft-gluon resummation up to NNLLog order. The finite quark-mass effects are taken into account in POWHEG. The parton shower, hadronization and underlying event simulations are provided by PYTHIA.

CMS MC

- GGF & VHF Higgs Production: Powheg
- VH & ttH: Pythia
- Z+jets, W+jets, tt+jets, diboson: MadGraph
- single top: Powheg
- Powheg and Madgraph generators are interfaces with pythia for parton shower and fragmentation
- The PYTHIA parameters affecting the description of the underlying event are set to the Z2 tune for the 7 TeV samples and to the Z2* tune for the 8 TeV samples. All generators are interfaced with TAUOLA for the simulation of the *T*-lepton decays. The Higgs boson *pT* spectrum from POWHEG is reweighted to the spec- trum obtained from a next-to-next-to-leading-order (NNLO) calculation using HRES.

Di-Tau Mass Calculation

• 4 equations, 6-8 unknowns

Calculate all possible dR:

$$\Delta R = \sqrt{(\eta_{\rm vis} - \eta_{\rm mis})^2 + (\phi_{\rm vis} - \phi_{\rm mis})^2}$$

(3)

Triggers

Trigger	$p_{\rm T}$ threshold(s) [GeV]	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
Electron	24	•	•	
Muon	24		•	
Di-electron	12;12	•		
Di-muon	18;8	•		
Electron and Muon	12;8	•		
Electron and $ au_{had}$	18;20		•	
Muon and $ au_{had}$	15;20		•	
$ ext{Di-} au_{ ext{had}}$	29;20			•

Table 1: Triggers used for each channel. When more than one trigger is used, a logical OR of the triggers is taken and the trigger efficiency is calculated accordingly.

b-Tagging @ ATLAS

- H→τ τ uses a NN b-tagging algorithm with a working point corresponding to 70% b-tagging efficiency
 - Provides rejection factor of ~5 and ~150 against c-jets and light flavor jets
 - b-jet data-to-MC scale factors (SF) derived using ttbar di-lepton events
 - b-jet SF uncertainty in the range 2-10%
 - ~2% in the most important P_T (jet) range for H→bb search
 - c-jet SF uncertainty in the range 8-15%