

Christoph Englert

The Quest for a natural Higgs

Higgs-Maxwell Workshop The Royal Society of Edinburgh 26.02.2014

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

➡ answer to this in 1964

[Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

manswer to this in 1964 [Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]

non-linear realisation of gauge symmetry in a Yang Mills+scalar sector is compatible with ⟨H⟩ ≠ 0
 r "spontaneous" symmetry breaking

`t Hooft, "Under the Spell of the Gauge Principle"

Ws and Zs in 1983 at UA1/UA2 $m_W \simeq 80.42 \text{ GeV}$ $m_Z \simeq 91.19 \text{ GeV}$

How do you accommodate this in QFT?

- **Import of this in 1964** [Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]
- non-linear realisation of gauge symmetry in a Yang Mills+scalar sector is compatible with ⟨H⟩ ≠ 0
 r "spontaneous" symmetry breaking
- massive gauge bosons, but no ghost problems at small distances

renormalizability, unitarity

SM seemingly complete after July 4th 2012 and evidence for $J^{CP}=0^+$ and couplings to (longitudinal) massive gauge bosons

SM seemingly complete after July 4th 2012 and evidence for $J^{CP}=0^+$ and couplings to (longitudinal) massive gauge bosons

Higgs properties sui generis:

particle relates to unitarity conservation and an excitation of an isotropic and translationally invariant background field.

The Standard Model: taking stock

The Standard Model: taking stock

all SM symmetries have been "used up" to guarantee renormalizability and a priori unitarity, we have no protection of a separation of scales

The Standard Model: taking stock

all SM symmetries have been "used up" to guarantee renormalizability and a priori unitarity, we have no protection of a separation of scales

➡ ultraviolet catastrophe of the 21st century

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$

what are the ways out?

6

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$

6

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$
- what are the ways out ?
 - Supersymmetry: "play with particle content"

enhanced external symmetry removes sensitivity to the UV,

good properties persist when SUSY is softly broken, only logarithmic sensitivity to UV scales reintroduced

Stabilizing Hierarchies: Conformal dynamics

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$
- what are the ways out?

Coleman-Weinberg sector generates scale dynamically and transmits it via marginal couplings

+ "resummation"

[Meissner, Nicolai `08] [CE, Jaeckel, Khoze Spannowsky `13] [Abel, Mariotti `13]

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$

what are the ways out?

• Compositeness: "play with couplings"

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$
- what are the ways out?
 - Compositeness: "play with couplings"

[Kaplan, Georgi `84]

Stabilizing Hierarchies: Compositeness

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$
- what are the ways out?
 - Compositeness: "play with couplings"

[Kaplan, Georgi `84]

Stabilizing Hierarchies: Compositeness

no straightforward interpretation apart from "something smells funny":

- bosonic and fermionic thresholds enter differently, RS dependent
- it is a relation of couplings rather than masses $m \sim \text{coupling} \times \langle H \rangle$
- what are the ways out?
 - Compositeness: "play with couplings"

[Kaplan, Georgi `84]

All scenarios imply modifications of the SM coupling pattern!

All scenarios imply modifications of the SM coupling pattern!

What do we actually know about the relevant couplings at the moment?

t

H

H

 Z, W^{\pm}

H

H

All scenarios imply modifications of the SM coupling pattern!

What do we actually know about the relevant couplings at the moment?

H

All scenarios imply modifications of the SM coupling pattern!

What do we actually know about the relevant couplings at the moment?

- no sensitivity to the quartic coupling at present and future colliders.
- look at the trilinear Higgs coupling and hope for the best!
- large backgrounds, small signal, but feasible in $b\bar{b}\tau\tau$, $b\bar{b}\gamma\gamma$
- boosted regime unavoidable for $b\bar{b} au au$

The Higgs quartic gauge couplings

• directly accessible in WBF $pp \rightarrow hhjj$, $\mathcal{O}(fb)$ cross section

t,b

 gluon fusion contribution beyond EFT calculations completely unknown until recently and key to this channel

ZW

	Signal with $\zeta \times \{g_{WWhh}, g_{ZZhh}\}$			Background	
	$\zeta = 0$	$\zeta = 1$	$\zeta = 2$	$tar{t}jj$	Other BG
tau selection cuts	1.353	0.091	0.841	3101.0	57.06
Higgs rec. from taus	1.352	0.091	0.840	683.5	31.92
Higgs rec. from b jets	0.321	0.016	0.207	7.444	0.303
2 tag jets/re-weighting	0.184	0.010	0.126	5.284	0.236
incl. GF after cuts/re-weighting	0.273	0.099	0.214	5.284	0.236

challenging, but we'll keep working on it!

[Dolan, CE, Greiner, Spannowsky`13]

The top-Higgs coupling

• of course $t\bar{t}h$ production

[Soper, Spannowsky `12, `14] [Artoisenet et al. `13]

[Farina et al. `12] [Biswas et al. `13]

[Ellis et al. `13]...

but also thj production

- angular observables! [CE, Re`14]
- even in rare (and clean) final states $c_t \gtrsim 0.5$ at >95% confidence level

- cross sections are small but highly sensitive through interference
- somewhat reminiscent of radiation zeros in $W^{\pm}\gamma$ [Fisher, Becker, Kirkby `95]

What the future holds...

• obviously direct LHC measurements will have their sensitivity saturated by systematics

250 GeV linear collider full EW corrections

[Craig, CE, McCullough `13]

(a)

• obviously direct LHC measurements will have their sensitivity saturated by systematics

- Higgs physics (& Particle Physics) is at the naturalness crossroads
- not an impasse
 - symmetry-driven model-building: TeV scale dofs?
 - good prospects to phenomenologically dissect the Higgs sector
 - "no hide" precision statements can resolve 10% tuning
 - fresh data for the first time in decades !
 - something new?