Jets in Higgs searches with the CMS Experiment

Arnaud Pin¹ On behalf of the CMS Collaboration

1 : Manchester University.

CMS membership with the center for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, Belgium

arnaud.pin@cern.ch

The University of Manchester

17th July– Jet vetoes and multiplicity observables 2014 – IPPP Durham, UK

Jet in Higgs searches at CMS

The University of Mancheste

Example of Higgs searches using jets at CMS Not a complete review of Higgs analysis.

Higgs decays to pair of b-quarks

Vector boson:

[PhysRevD.89.012003]

- Sensitivity to jet energy resolution: Mbb
- \rightarrow How to improve it ?

►Quarks:

VBF H to bb [CMS-PAS-HIG-13-011]

Need to discriminate between quark and gluon jets

VH(bb)

 \rightarrow Quark / Gluon jet tagger

≻H→WW: [CMS-PAS-HIG-13-023]

Categorization in jet multiplicity

17/07/14 Arnaud Pin

Jet vetoes and multiplicity observables 2014 - Durham

2

Why & What

Searches and Measurement of the SM Higgs boson:

- > Search for $H \rightarrow$ bb: test for fermionic final state.
- ➤ Large QCD background → Inclusive H(bb) production too challenging

3 Search Analysis:

- > Need to search for $H \rightarrow bb$ in associated production:
 - Less background.
 - ➤ Lower Cross-section.
 - Associated production with:

Vector boson: VH(bb) [PhysRevD.89.012003]Quarks: VBF H to bb [CMS-PAS-HIG-13-011]

Top quarks: ttH H to bb [CMS-PAS-HIG-13-019]

[Not discussed in this talk]

17/07/14 Arnaud Pin

Jet vetoes and multiplicity observables 2014 - Durham

VH

Z/W + H(bb)

Analysis strategy:

1) Event Selection and Categorization

- \succ Select boosted events on P_t V.
- Vector boson decaying leptonically:
 - 6 channels: 2x W(lν), 2x Z(ll), Z(νν), W(τν)

Categorization depends on P_t V:

Pt V [GeV]	W(lv)	W(тv)	Z(II)	Z(vv)
low	100 – 130		50 – 100	100 – 130
intermediate	130 – 180	> 120		130 – 170
high	> 180		> 100	> 170

- Large azimuthal opening angle, $\Delta \phi$ (V,H)
- Total of 14 Categories (e/μ).

2) Multivariate analysis: BDT

5

Improved bb Mass resolution

Why improving Mbb: Highly correlated with the BDT discriminant output

Mass resolution of the two b-jets from Higgs decay: ~10% (depending on Pt) +Shift value

Principle:

Specialized BDT regression to provide corrected jet energy.

Based on detailed jet structure informations including:

- secondary vertex properties (when reconstructed)
- track and jet constituent informations (PF candidate), transverse mass
- energy of charge particle in the jet
- b-jet contains in average more lepton and larger fraction of Etmiss
 - use of the soft lepton in jet properties.
- For WH: $\Delta R(I,j)$, P_T of lepton
- For ZH: E_{Tmiss} and its azimuthal angle with each jet.

arXiv: 1107.3026v1

erc

MANCHESTER

The University of Mancheste

2014 - Durham

Z/W + H(bb)

BDT approach

- Cascade BDT.
- Samples divided in **four** subsets.
- Each enriched in: tt, V+jets, dibosons, and VH

14 BDT distributions are considered

- each P_T V categories
- Electron/muon for Z(II) & W(Iv)

Background:

- Control regions identified in data.
- Used to validate the simulation modeling of the distributions used as input to the BDT discriminants
- To obtain scale factors used to adjust the simulation event yield estimates for the most important background processes

17/07/14 Arnaud Pin

Z/W + H(bb): Results

The University of Mancheste

$m_{\rm H} = 125 {\rm GeV}$	$\sigma/\sigma_{\rm SM}$ (95% CL)	$\sigma/\sigma_{\rm SM}$ (95% CL)	Significance	Significance
	median expected	observed	expected	observed
$W(\ell\nu,\tau\nu)H$	1.6	2.3	1.3	1.4
$Z(\ell \ell)H$	1.9	2.8	1.1	0.8
$Z(\nu\nu)H$	1.6	2.6	1.3	1.3
All channels	0.95	1.89	2.1	2.1

Excess of events is observed above the expected background.

Observation agrees with Standard Model expectation for Higgs boson @ 125 GeV.

Vector boson Fusion

VBF H(bb)

Fully hadronic final state:

- VBF selection
 - 4 jets
 - Dedicated trigger:
 - CMS L1: 3 jets.
 - Only one of the two leading jets allowed to be forward
 - HLT: four jets (one b-tagged), one pair with large m_{jj} Δη_{jj}
- Use of Quark/gluon-jet tagger
 - > Distinguish quarks/gluon jet up to $|\eta| < 4.7$
 - Reconstruct VBF jet pair "qq"
 - 1. Pair of least b-tagged jets
 - 2. Largest pseudorapidity separation.

Discriminate VBF against QCD

ANN: MVA considering distributions and correlation of various discriminating variables.

MANCHESTER

The University of Mancheste

Quark /Gluon Jet tagger

Measurement have shown that jet initiated by gluons exhibit differences with respect to jet from light flavor quark. (OPAL & ALEPH)*

- Charge multiplicity higher in gluon jet
- difference of fragmentation function
- gluon jet are less colimated.

 \rightarrow Can be distinguish.

From particle flow:	Charged multiplicity Neutral multiplicity Total multiplicity	¢
Jet shape information:	RMS of PF candidate η - ϕ spread Major axis in η - ϕ : σ_2 Minor axis in η - ϕ : σ_1	and $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$
Energy variables:	Pull: R: Energy fraction carried by the le Fragmentation function related vari	eading constituent. iable, P _T D: $p_{T}D = \frac{\sqrt{\sum_{i} p_{T,i}^{2}}}{\sum_{i} p_{T,i}}$
17/07/14 Arnaud Pin	Jet vetoes and multiplicity observables 2014 - Durham	12 EFC

Quark /Gluon Jet tagger

Discrimination power

CMS PAS JME-13-002

Choice of three variables

- Total Jet constituent (PF) multiplicity.
- The Minor axis σ2.
- Fragmentation function P_TD

Quark /Gluon Jet tagger

The University of Mancheste

MANCHESTER

3 inputs

17/07/14 Arnaud Pin

Jet vetoes and multiplicity observables 2014 - Durham

Quark /Gluon Jet tagger

Validation

- \rightarrow Discrepancy in gluon fraction observed in the di-jets sample:
- Smear MC to take into account the discrepancy.
- NOT a reweighting but a jet per jet correction

Quark /Gluon Jet tagger

The University of Mancheste

MANCHESTER

Validation

- Extracted on di-jet sample.
- Applied also on the Z+jet sample for validation

In the VBF analysis:

Good agreement between data and MC.

Jet vetoes and multiplicity observables 2014 - Durham

VBF H(bb)

Measurement Strategy:

\rightarrow Use M(bb) to extract signal:

- In the 4 categories
- B-jet energy regression to improve resolution. (same as VH analysis)

Categorization according to neural net output:

- No kinematic information of b-tagged jets
- Minimal correlation with M(bb)

VBF H(bb): Cross-check & Results

Cross-check : Search for $Z \rightarrow bb$ peak in the m(bb) spectrum.

- Same event pre-selection.
- Same fitting procedure.
- Result in agreement with the expectations:
 - observed (expected) significance: 8.0 (6.8)

MANCHESTER

The University of Mancheste

The University of Mancheste

$H \rightarrow WW$

17/07/14 Arnaud Pin

Jet Multiplicity and $H \rightarrow WW$

The University of Mancheste

Search for a final state with two charged leptons: $H \rightarrow WW \rightarrow 212v$.

To increase sensitivity: categorization in jet multiplicity

- 0 jet, 1 jet and two or more jets.
- \rightarrow Signal and background differ by categories.

				Zero-je	et and on	e-jet ggH	tag	Two-jet VBF tag	Two-jet VH tag	
N	Number of j	ets		= 0/1				≥ 2	≥ 2	
I	Default anal	ysis		binned shape-based (e μ) counting (ee, $\mu\mu$)		binned shape-based (e μ) counting (ee, $\mu\mu$)	counting			
A	Alternative analyses		ses	parametric shape-based counting			d	counting	binned shape-based	
V	/BF tagging	5						applied	vetoed	
Ν	Aain backgi	round	s V	VW, top	o-quark,	W + jets, V	$W\gamma^{(*)}$	WW, top-quark	WW, top-quark	
Category	gg	;H (%)	VBF (%)	VH (%)	Total H \rightarrow $\sqrt{s} = 7 \text{ TeV}$	WW yield $\sqrt{s} = 8 \text{ TeV}$]			
	Two-le	epton ana	alyses	0.1	50 (245				
)-jet different-flavor (shape-bas)-jet same-flavor (counting)	sea)	95.7 98.1	1.2 0.9	3.1 1.0	52.6 10.4	245 58.5				
-jet different-flavor (shape-bas	sed)	81.6	10.3	8.1	19.8	111			Centrally pro	duc
-jet same-flavor (counting)	:	83.6	11.2	5.2	3.1	19.6				
e-jet VBF tag different-flavor (s	hape-based)	22.3	77.7	0.0	1.3	6.4	J(et characteristic to	jets from deca	y of
2-jet VBF tag same-flavor (cour	nting)	14.2	85.8	0.0	0.3	2.3				5
2-jet VH tag same-flavor (count	ting)	65.1	4.7 4.1	39.8 30.8	0.8	4.3 2.8		VBF process.		

Jet counting categorization \rightarrow systematic uncertainty: - of 7-20% on the signal yields - of \sim 5% on VV yields

➤[CMS-PAS-HIG-13-023]

17/07/14 Arnaud Pin

Jet vetoes and multiplicity observables 2014 - Durham

Summary

21

- Associate production with vector boson (WH / ZH).
 - → Most sensitive analysis [PhysRevD.89.012003] (5.0 + 19.5 fb⁻¹) -Sensitity improved due to b-jet energy correction.
- Higgs production by vector boson fusion [CMS-PAS-HIG-13-011] (19.5 fb⁻¹)
 - -Successfully employed quark-gluon separation
 - · Multiplicity, width, energy sharing
 - Simple likelihood with three inputs, up to $|\eta| = 5$
 - Quarks well modeled by MC, gluons not so well

> Search for $H \rightarrow WW$:

- Categorization in term of number of jet.
- Analysis optimized for each category \rightarrow to reach the best sensitivity.

17/07/14 Arnaud Pin

Jet vetoes and multiplicity observables 2014 - Durham

Thank you

and a matter of the

Next round with LHC run II ...

17/07/14 Arnaud Pin

Jet vetoes and multiplicity observables 2014 - Durham

111 111 Alla. R.

The University of Mancheste

Backup

17/07/14 Arnaud Pin

Particle flow jet.

> Particle Flow:

- Reconstructing all stable particles in event
- Using all detectors in unison
- Powerful tool for jet structure
 - Particle-level information
 - Full access to jet shape

Gluon quark tagger smearing

- Take likelihood (LD) distributions for quarks and gluons separately
- Define smearing function: $g(x,a,b) = \tanh(a \arctan(2x-1)+b)/2 + \frac{1}{2}$
 - Changes value of LD on jet-per-jet basis
 - Not a reweighting
 - Reduces LD discrimination
- Smear until data and MC agree
 - χ² minimization

Gluon qaurk tagger smearing

Pythia – Herwig agreement:

Pile-Up

- Current LHC running: high-pileup conditions
 - Average of 23 extra interactions (and up to 40!)
- Additional collisions produce soft jets
 - But can overlap (combinatorics!)
 - Resulting jets can have pT > 25 GeV
- Pile-up jet ID
 - Crucial for analyses with low-pT jets

Pile-Up ID

Pile up jets mainly overlap of soft jets from extra interactions

- Two main characteristics:
 - Tracks incompatible with primary vertex
 - Clustered particles more diffuse
- Selected 12 variables (scanned >80)
 - 4 track variables ($|\eta| < 2.5$)
 - 8 shape variables $(|\eta| < 5)$
- Again making use of powerful Particle Flow information

Pile-Up ID

- Trained separately in four |η| bins
- Tested on Z→µµ data
- * Best discrimination in central region

Application of Pile-up ID

Jet Veto

- An example: jet veto in Z→µµ analysis
 - Without pile up ID: large dependence on pile up for $p_T < 40$ GeV
 - With pile up ID: no dependence

Thank you (again)

Next round with LHC run II ...

17/07/14 Arnaud Pin

Jet vetoes and multiplicity observables 2014 - Durham

31

789 999 8H2 mU